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The current richness of sequence data needs efficient methodologies to display
and analyze the complexity of the information in a compact and readable
manner. Traditionally, phylogenetic trees and sequence similarity networks
have been used to display and analyze sequences of protein families. These
methods aim to shed light on key computational biology problems such as
sequence classification and functional inference. Here, we present a new
methodology, AlignScape, based on self-organizing maps. AlignScape is
applied to three large families of proteins: the kinases and GPCRs from
human, and bacterial T6SS proteins. AlignScape provides a map of the
similarity landscape and a tree representation of multiple sequence alignments
These representations are useful to display, cluster, and classify sequences as well
as identify functional trends. The efficient GPU implementation of AlignScape
allows the analysis of largeMSAs in a fewminutes. Furthermore, we show how the
AlignScape analysis of proteins belonging to the T6SS complex can be used to
predict coevolving partners.
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1 Introduction

The vast amount of biological data, in particular protein sequences, requires the
development of methodologies for effectively displaying and analyzing the information
they encompass. Sequence alignment serves as the starting point of any computational
effort attempting to study the phylogeny of a given gene, as well as the computation of
residue coevolution (de Juan et al., 2013), structure prediction (Jumper et al., 2021),
functional inference (Emes, 2008; Yoon, 2009; Sanderson et al., 2023), and sequence
clustering (Edgar, 2010; Fu et al., 2012). However, displaying and analyzing large
sequence data sets is a challenging task, and it became desirable to develop frameworks
for a convenient and compact manipulation of the data.

One possible way to display and analyze sequences is through phylogenetic trees, where
each leaf represents an individual sequence, branches represent evolutive events, and nodes
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indicate the most recent common ancestor. Phylogenetic trees only
use one dimension to arrange the input sequences. Thus, the
arrangement of clades can be arbitrary, as each node can only
produce a clade with two branches. Sequence similarity networks
(SSNs) (Atkinson et al., 2009) have emerged as an alternative to
address the limitations of trees. SSNs leverage the two-dimensional
(2D) space’s topology, forming graphs where nodes are individual
sequences and edges denote pairwise similarity relationships. This
approach offers greater flexibility by connecting nodes with one,
two, or multiple related nodes. Additionally, SSNs enable the
analysis and display of significantly larger data sets compared to
phylogenetic trees. Consequently, SSNs have the potential to
uncover sequences that facilitate linking divergent clusters. This
ability has proven particularly valuable for functional inference and
sequence clustering (Copp et al., 2018). However, unlike
phylogenetic trees, SSNs do not identify ancestral nodes or
exhibit nested patterns associated with evolutionary descent.
SSNs present two additional limitations: they yield different
outcomes based on the choice of the distance cutoff, and they are
mapped on an arbitrary space, relying on network visualization
programs like Cytoscape (Shannon et al., 2003). Many additional
methods have been developed to address specific tasks in sequence
analysis. For instance, sequence clustering can be performed with
hierarchical clustering algorithms (e.g., BLASTClust (NCBI News,
2023: Spring 2004|BLASTLab, n. d.) and mBKM (Wei et al., 2012)),
greedy algorithms (e.g., cd-hit (Li et al., 2001)), or graph-based
algorithms (e.g., ALFATClust (Chiu and Ong, 2022)). Functional
inference, on the other hand, can be accomplished using methods
based on sequence homology (e.g., BLAST (Altschul et al., 1990)),
Hidden Markov Models (e.g., HMMER (Steinegger et al., 2019)),
or deep neural networks (e.g., ProteInfer (Sanderson
et al., 2023)).

Here, we introduce a Self-Organizing Maps (SOM) (Kohonen,
1982) approach to display and analyze an input multiple sequence
alignment (MSA) in a compact and readable way. A SOM is an
unsupervised machine learning technique intended to provide a
low-dimensional representation of the input space while preserving
the underlying topology on the output space. Hence, similar initial
observations are mapped nearby. Previous studies have utilized
SOM to cluster and classify protein sequences (Ferrán and
Ferrara, 1991; Ferrán et al., 1994; Ahmad et al., 2008). However,
these implementations were trained on small sets of sequences (less
than 100) represented as amino acid frequency vectors. Moreover,
the output maps lacked visual support, appearing as interconnected
units with the input sequences mapped. Our approach, named
AlignScape exploits the 2D output space to arrange the input
sequences and the interpolated data. It provides a novel 3D
graphical representation of large sets of aligned sequences, which
are difficult to visualize using the standard phylogenetic trees and
SSNs. Furthermore, AlignScape has the potential to address several
crucial problems in sequence analysis, including sequence
classification, functional inference, clustering, and gene
coevolution. AlignScape demonstrates robustness to the choice of
the input parameters and has a natural, non-arbitrary, and
quantitative representation of the sequence similarity landscape.
To assess AlignScape, we applied it to analyze the sequences from
human Kinome and GPCRs as well as the proteins forming the
bacterial Type VI Secretion System (T6SS).

2 Materials and methods

Here we describe the four fundamental steps used by
AlignScape, and then we discuss a set of post-calculation
analyses. AlignScape is novel, as it is developed to display
sequence similarity landscapes, which are distinct from
phylogenetic trees and similarity networks. It is built upon the
self-organizing map (SOM) method and applied to MSAs. The
core of the implementation and methodology is summarized as
follows (Figure 1, for details, see Supplementary Methods).

• Step 1) Data representation: to compactly represent a set of
aligned sequences, we employed a data structure known as the
Position Probability Matrix (PPM) (Figure 1A). A PPM is a
multidimensional array of frequencies that an MSA site is
assigned to a residue type or a gap. The PPM of a single protein
sequence is a one-hot encoding matrix.

• Step 2) Initialization: the output SOM is a periodic 2D grid
with a predetermined number of units. Each SOM unit
corresponds to a PPM. Initially, units consist of randomly
generated PPM (Figure 1A).

• Step 3) Training: iteratively, each sequence from an input
MSA is one-hot encoded and assigned to its closest unit,
referred to as the best matching unit (BMU). Then, the input
sequence is accumulated to the PPMs of its BMU and the
neighbor units, optimizing the overall similarity of all involved
units (Figure 1A). To maximize efficiency, the iteration can be
structured in batches of input data instead of single sequences
(Figure 1B). The epochs are complete iterations that cover all
sequences of the input MSA. Finally, the training phase ends
after a desired number of epochs.

• Step 4) Visualization and interpretation: after the training, the
SOM is depicted as a unified distance matrix, known as
U-matrix (Figures 1A–C). The U-matrix provides a
convenient representation of the MSA’s similarity landscape
by reporting the PPM distance (PPMd) between adjacent
SOM units and therefore characterizing the MSA’s
underlying topology. The PPMd is a new metric that we
introduced to compute pairwise distances between PPMs,
and it was derived to perform efficiently on GPUs (see
Supplementary Methods). Generally, the U-matrix is
organized into “basins” of similar sequences and “barriers”
of distant sequences. Occasionally, funnels link neighboring
basins through barriers, and a single basin may connect with
multiple others. This landscape representation of the
sequences is novel with respect to other methods.

Several post-calculation analyses can be carried out on a SOM
and its corresponding U-matrix (Figure 2). Here below we list a
number of analysis that we implemented and used in the examples
presented below.

• Computing the U-matrix distance between sequences. The 3D
representation yielded by the U-matrix allowed us to define a
new distance between sequences which is the length of the
shortest path connecting their BMUs (Figure 2A).

• Annotating the U-matrix for Genetic and Functional
Inference. Each sequence from the input MSA is assigned
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to a unique BMU. This mapping can carry additional
information about the sequence phylogenesis or function,
which can be annotated in the U-matrix unit (Figure 2C).
Sparse annotation of the U-matrix can be used to infer the
genetic or functional classification of non-annotated
sequences (Figure 2D).

• Representing the relationship between the input sequences as
a Minimum Spanning Tree (MST). The MST connects all
BMUs of input sequences without cycles, and with a minimal
total U-matrix distance between them (Figure 2E).

• Transforming the U-matrix from periodic to aperiodic grid.
The standard periodic U-matrix representation, where the
units at the boundaries of the SOM are neighbors, can be
confusing, as it breaks the continuity of basins and barriers. To
address this issue, an aperiodic U-matrix can be computed
based on the MST (Figure 2F). This aperiodic U-matrix
ensures the topographical connection of the MST while
guaranteeing spatial integrity.

• Clustering the U-matrix. U-matrix boundary regions,
whose assignment to neighboring basins is ambiguous,

can be assigned to a single basin using the
agglomerative clustering algorithm (Figure 2I). This
clusters all units such that all pairs of units belonging to
the same cluster are maximally close, and those belonging
to different clusters are maximally distant. Importantly, in
our implementation, the user is not required to predefine
the number of clusters.

• Inferring the sequence of a given U-matrix unit. Each SOM
unit has an associated PPM that can be decoded into a
sequence that was not input. This is achieved by returning
the sequence with the highest joint probability of individual
amino acids (Figure 2B). Therefore, the inferred sequences are
interpolations performed by AlignScape using the
initial MSA data.

• Inferring Mutation Pathways. To infer the mutations between
two input sequences, we calculate the shortest path connecting
their BMUs. The PPMs of the units along this path and their
corresponding inferred sequences allow for retrieving an MSA
that highlights the most likely series of mutations between the
two input sequences (Figure 2B).

FIGURE 1
Description of the AlignScape methodology. (A) Each SOM unit is initially set to a random PPM. Iteratively, each sequence is randomly chosen from
theMSA, is one-hot encoded, and assigned to its best matching unit (BMU). Then, the one-hot encoded sequence is accumulated to the PPMs of its BMU
and their neighboring units. An epoch ends when all sequences are assigned. In the panel, the SOM and the corresponding U-matrix are represented as
small 8 × 8 matrices for clarity. Units are represented by the symbol ukij where k stands for the iteration step, and i and j are the indexes of the unit.
Red arrows and red squares highlight the BMUof the input sequences. (B) For efficiency, MSA processing occurs through batches of sequences randomly
chosen from the MSA. (C) Evolution of the U-matrix at different epochs.
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• Calculating the distance matrix between input sequences. The
U-matrix distance enables the computation of pairwise
distance matrices for any set of input sequences. These
matrices can be hierarchically clustered, and their resulting
dendrogram used to visualize the proximity between U-matrix
units and groups of units (Figure 2H).

• Calculating the correlation between the distance matrices of
two different genes. When two gene MSAs are annotated with
sets of sequences with the same taxonomic or genetic
information (i.e., the organism or the gene cluster they
belong to), one can compute the Pearson correlation
between the two corresponding distance matrices as a
measure of coevolution (Supplementary Figure S1). This
assumes that coevolving genes produce SOMs with similar
topologies.

3 Results

3.1 Human kinome

Kinases belong to the phosphotransferase superfamily, a group
of enzymes that catalyze protein phosphorylation. The human
Kinome contains more than 500 kinase genes, classified as typical
kinases and atypical kinases, based on their structure (484 proteins
comprising a total of 497 typical kinase domains and 29 atypical
kinases (Modi and Dunbrack, 2019)). One-third of these genes
belong to the dark Kinome (Berginski et al., 2021), kinases whose
functional role remains unclear.

To validate AlignScape, we computed and analyzed the sequence
similarity landscape of the human Kinome. To do so, we utilized a
high-quality structural-based MSA of the 497 typical kinase

FIGURE 2
Example of AlignScape analysis. (A) U-matrix distance: the U-matrix distance between two input sequences is depicted as the shortest path
connecting their BMUs (highlighted as gray squares). (B)Mutation pathway: the mutation pathway between two input sequences (sequences from Panel
A) is theMSA of the sequences inferred from the units that the shortest path between the input sequences traverses. MSA sequences are labeled with their
corresponding U-matrix unit indexes. The mutation pathway’s starting and ending sequences are highlighted with gray squares. (C) U-matrix
annotation: the BMUs of sequences with prior classification data are color-coded according to their sequence class. BMUs of sequences without prior
classification data are highlighted with gray squares. (D) Classification inference: annotated sequences are used to infer the class of non-annotated
sequences. Sequences whose class was inferred are highlighted with colored stars. (E) Minimum Spanning Tree (MST): the MST connecting all mapped
sequences represented as the set of shortest paths with minimal total length and no cycles. (F) Aperiodic U-matrix: the MST connectivity from Panel E is
used to transform the periodic U-matrix from Panel E into an aperiodic U-matrix. (G) PairwiseU-matrix distances: U-matrix distances between all mapped
sequences. (H) Distance matrix: hierarchically clustered distance matrix and corresponding dendrogram computed with the distances from panel (G).
Colored boxes between thematrix and the dendrogram indicate themapped sequences. (I)U-matrix clustering: clustered U-matrix where each unit was
color-coded according to the cluster to which it belongs.
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domains, from which a phylogenetic tree was computed in the past
(Modi and Dunbrack, 2019). Notably, all aligned sequences were
annotated by their typical kinase group (AGC, CAMK, CK1,
CMGC, NEK, RGC, STE, TKL, TYR) and an additional group
for unclassified kinases (OTHER) (Manning et al., 2002). The
U-matrix arranges kinases belonging to the same group together
(Figure 3A). It is important to note that a U-matrix unit can be
associated with more than one sequence from the input MSA, and
no unit in the Kinome U-matrix had sequences from different
typical kinase groups. The MST recapitulates the Kinome
phylogenetic tree (Modi and Dunbrack, 2019). For instance, the
branching between TYR and TKL and the inclusion of RGC into the
main branch of TKL is reproduced in both the MST and the
phylogenetic tree. We also reproduce the early splitting of
CMGC’s branch into two clades and the proximity between
CAMK and NEK, separated in both representations by a small
unclassified group. Importantly, the OTHER sequences are mostly
found at the edge between groups or at terminal branches
of the MST.

Next, we aimed to infer the group for the unclassified kinases. To
do so, we first assessed the robustness of the inference analysis
(Supplementary Figure S2A) by randomly removing 25% of the
labels from the annotated units (149 units for training and 50 units
for testing corresponding to about 330 and 110 sequences,
respectively). We obtained a mean accuracy for the inference of
99% when it was based on one k-neighbor. We then inferred the
kinase group of the OTHER sequences (Figure 3B and
Supplementary Table S1). For the 66 sequences of the OTHER

group, the assignment was coherent with the position in the MST,
with the exception of some sequences in the high PPMd regions of
the U-matrix.

As a test, we inferred a mutation pathway between two input
sequences (Supplementary Figure S3A). The pathway consists of a
set of sequence variants interpolated by the SOM (not included in
the input MSA), which smoothly connect the two input sequences
(Supplementary Figure S3D). The pathway can be interpreted as the
minimum set of BLOSUM62 transformations applied to the first
input sequence to reach the second. The analysis predicts that some
mutations occur simultaneously along the pathway, while others are
asynchronous, suggesting compensatory mutations occurring at
different places on the pathway.

3.2 Human GPCRs

G protein-coupled receptors (GPCRs), the largest family of cell
surface receptors (Lagerström and Schiöth, 2008), are crucial targets
in numerous diseases (Zalewska et al., 2014; Alhosaini et al., 2021).
They play a vital role in sensing a wide range of extracellular signals,
including photons, small molecules, and large peptides. These
signals are subsequently transduced into intracellular signaling
cascades, which ultimately regulate key cellular functions. Despite
their sequence diversity, GPCRs share a common structure of a
transmembrane domain (TMD), consisting of seven
transmembrane helices and three extracellular and intracellular
loops (Yang et al., 2021).

FIGURE 3
Aperiodic U-matrix of the kinome. (A) Sequence similarity landscape of the human Kinome represented with an aperiodic U-matrix. Each sequence
from the input MSA was mapped to its BMU, with BMU colors indicating the sequence’s kinase group. The input MSA of 497 sequences had a length of
369 sites. The training of the SOMwas refined over 200 epochs. The SOM size was set to 90 × 90. The SOM calculation took 8 min on a Tesla T4 GPUwith
15 GB memory on Google Colab. The MST analysis took 9 min in a single CPU on Google Colab. (B) Aperiodic U-matrix from panel A featuring the
BMU of the sequences from the unclassified group (‘OTHER’) color-coded according to the inferred groups. The inference was performed using a
k-nearest neighbors algorithm with k = 1. Sequences in high PPMd regions whose group inference was identified as ambiguous were highlighted with
gray dashed circles.
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To establish a comprehensive and accurate classification of
human GPCRs, V. Cvicek et al. (Cvicek et al., 2016) conducted a
comparative analysis between the GRAFS (Fredriksson et al., 2003)
and IUPHAR (Sharman et al., 2013) classifications. To do so, they
computed a structure-based MSA of the TMD for all human GPCR
sequences. These MSA sequences were annotated based on the
groups and subgroups defined in both GRAFS and IUPHAR
classifications, including rhodopsins (A-α, A-β, A-γ, A-δ),
secretin receptors (B), adhesion receptors, glutamate receptors
(C), frizzled receptors, olfactory receptors, bitter taste receptors
(Taste2), vomeronasal receptors, and an additional subgroup for
unclassified rhodopsin GPCRs (A-other). To benchmark
AlignScape, we used the V. Cvicek et al. MSA to compute
and analyze the sequence similarity landscape of the
human GPCRs.

The U-matrix arranges GPCRs belonging to the same group
together (Figure 4A). The U-matrix topology reveals a central basin
composed of all A GPCRs. Four MST branches stem from this basin:
1) A branch with all olfactory sequences grouped into a basin with
low PPMd values, indicating a high degree of similarity among these
sequences. 2) A branch with all C sequences. 3) A branch with all
vomeronasal sequences that subsequently extends to
Taste2 sequences. 4) A branch traversing four basins containing
B sequences, Adhesion sequences, F sequences, and a mixture of the
three groups. Notably, only 6 units out of the total units with an
associated sequence (1.4%), had a mixture of sequences from

different GPCR subgroups. These specific units have a
combination of A-δ with either A-γ, A-β, or A-α sequences.

Unlike the phylogenetic tree constructed by V. Cvicek et al., our
MST lacks a root, making direct comparison between the two
representations challenging. Based on previous data suggesting that
C is the oldest GPCR group (Krishnan et al., 2012), V. Cvicek et al. set
the tree root within C. Concordantly, the U-matrix arranged C
sequences within a basin encircled by high PPMd values (Figure 4
and Supplementary Figure S4). Q9UBS5 sequence, stood out as a
highly dissimilar C sequence, making it a potential candidate for
outgroup placement when rooting a phylogenetic tree. The MST also
agreed with the phylogenetic tree and the IUPHAR classification by
directly connecting Vomeronasal and Taste2 sequences with A
sequences. Similarly, they agree in connecting the olfactory and A
sequences. These observations contrast with the GRAFS classification,
where Taste2 sequence were grouped within F, and where neither
vomeronasal nor olfactory sequences were included due to the
absence of a “clear phylogenetic relationship to any of the main
families." In both the tree and the MST, the precision of the
subgrouping of A sequences is acceptable. Only some A-δ
sequences were placed outside the A-δ clade/branch. Namely, a
few A-δ sequences are observed within the A-α branch, and the
A-β branch (Supplementary Table S2).

Next, we wanted to infer the A subgroup of the sequences
annotated as ‘A-other’ (Figure 4B and Supplementary Table S3).
First, we assessed the robustness of the inference (Supplementary

FIGURE 4
Aperiodic U-matrix of GPCRs. (A) Sequence similarity landscape of the humanGPCRs represented with an aperiodic U-matrix. Input MSA sequences
were mapped to their BMUs, which were colored according to the group of their sequences. The input MSA of 828 sequences had a length of 980 sites.
The training of the SOM was refined over 200 epochs. The SOM size was set to 90 × 90. The SOM calculation took 33 min on a Tesla T4 GPU with 15 GB
memory on Google Colab. The MST analysis took 40 min in a single CPU on Google Colab. (B) Aperiodic U-matrix from panel A featuring the BMUs
of the sequences from the A-other group color-coded according to the inferred subgroups. The inference was performed using a k-nearest neighbors
algorithm with k = 1. A-alpha, A-beta, A-gamma, and A-δ branches were highlighted with circles accordingly colored. Gray dashed circles highlight A-δ
sequences within the A-α or A-β branches. Pink dashed circles were used to highlight sequences of the A-other that were assigned to the A-δ subgroup
despite being located in the A-α or A-β branches.
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Figure S2B) by randomly removing 25% of the labels from the
annotated units and then inferring their group/subgroup with the
remaining 75%. This validation yielded a mean accuracy of 97%
when the inference was based on one k-neighbor. We then infer the
subgroup of all sequences in the ‘A-other’ subgroup. This enabled us
to clearly identify four distinct branches within the A basin.
However, we observed the inclusion of some inferred A-δ
sequences within the A-α branch (Supplementary Table S2).

3.3 Type VI secretion system (T6SS)

T6SS is a macromolecular machine prevalent in Gram-negative
bacteria. Pathogens deploy T6SS within human hosts due to its capacity
to target prokaryotic symbiotic organisms (Jana and Salomon, 2019;
Allsopp et al., 2020) and eukaryotic host cells (Sana et al., 2015; Crisan
andHammer, 2020). T6SS is a contractile injection system that operates
as an inverted bacteriophage, functioning from within the attacking
bacteria to the external environment (Figure 6A). It exhibits homologies
with bacteriophages and other secretion systems (Durand et al., 2012;
Taylor et al., 2018), suggesting a mosaic evolution in which T6SS co-
opted pre-existing functional blocks from various cellular machines
(Denise et al., 2020). Phylogenetic studies classified the system into four
types known as T6SSi to T6SSiv (Boyer et al., 2009; Barret et al., 2013a).
T6SSi has been further classified into six subtypes: i1, i2, i3, i4a, i4b, and
i5. A canonical T6SS is composed of 13 core components encoded in a
gene cluster and structurally organized into three subcomplexes: the
baseplate (BP), the membrane complex (MC), and the contractile tail
complex (TC) (Figure 6A). The BP consists of TssE, TssF, TssG, and
TssK proteins and is tipped by the spike, a pointed conic structuremade
of VgrG proteins. TheMC includes TssJ, TssL, and TssM proteins. The
TC comprises TssB, TssC, and Hcp proteins, along with two auxiliary
proteins: TssA, assisting the assembly of the TC, and ClpV, responsible
for recycling the TC components for subsequent rounds of secretion.

AlignScape was used to compute and analyze the similarity
landscape of all 13 T6SSi core components. Unlike the kinases and
GPCRs examples above, the MSAs of T6SSi genes lack structural
validation, and prior classification into T6SSi subtypes was very
sparse. Consequently, this presented a more difficult scenario for
benchmarking AlignScape.

We began with the SOM of TssB, one of the most conserved T6SS
genes. Despite the few prior data on subtype classification, the TssB
U-matrix arranged the sequences from the i1, i2, i3, and i5 subtypes
into separate basins (Figure 5A and Supplementary Figure S5A). As
for the i4a and i4b sequences, they were arranged within the same
basin but distributed across different regions, with i4b sequences
occupying a small area in the lower-left part of the basin. Importantly,
none of the annotated units had sequences from different T6SSi

subtypes. Additionally, the U-matrix presented several basins
entirely composed of unclassified sequences, from which
taxonomical data provided limited insights into their origin. This
observation aligns with the understanding that T6SS evolution is
largely independent of species evolution (Boyer et al., 2009). Upon
inferring the subtypes of unclassified sequences (Figure 5B,
Supplementary Figure S5B and Supplementary Table S6), the
assignment to basins to the i1, i2, i3, and i5 subtypes clearly
distinct, as well as the distribution of the i4a and i4b sequences
within their own basin. Conversely, the basins of unclassified

sequences displayed a mixture of subtypes, indicating a need for
further analysis to accurately infer their subtypes.

Next, we computed the TssB distance matrix (Figure 5C). The
corresponding dendrogram reaffirmed the previously observed
grouping of subtypes in different U-matrix basins. Notably, the
dendrogram displayed patterns that concurred with evolutionary
relationships among T6SSi subtypes, such as the early bifurcation
into two clades: one with i1 and i2 sequences and the other with i3,
i4a, i4b, and i5 sequences (Boyer et al., 2009; Barret et al., 2013a).

The U-matrix and corresponding distance matrix for the
remaining T6SSi core components reveal two distinct patterns.
On the one hand, TssC (Supplementary Figures S6A–B), Hcp,
TssG, TssE, TssF, and TssA exhibited properties similar to TssB:
U-matrices organize into basins containing homogeneous subtypes,
and the distance matrix dendrograms exhibit the early bifurcation of
the i1-i2 and i3-i4a-i4b-i5 clades. On the other hand, TssM
(Supplementary Figures S6C–D), TssJ, TssK, TssL, and VgrG do
not present a clear separation of subtypes in different basins, and
their dendrograms lack the early bifurcation. These two distinct
patterns prompted us to analyze the correlation of TssB, TssC, and
TssM distance matrices, which we interpret as a measure of gene
coevolution. The correlation between TssB and TssC was 0.921,
indicating strong coevolution between these 2 TC genes. In contrast,
the correlation between TssB and TssM was 0.286, indicating weak
coevolution. Subsequently, we extended the analysis to all T6SSi core
genes (Figure 6B). The resulting AlignScape correlation matrix
reveals two clusters, one containing all T6SS TC genes and
another with all T6SS MC genes. Remarkably, the BP genes fall
between the TC and the MC clusters. TssE correlated with the TC
genes but not with the MC genes. TssG and TssF showed strong
correlations with the TC genes and weaker correlations with the MC
genes. In contrast, TssK correlated with the MC genes but not with
the TC genes. TssA and ClpV correlate with TC genes and TssG,
TssF, and TssE BP genes, with TssA presenting stronger correlations
overall than ClpV. Finally, VgrG did not demonstrate any
correlation with the T6SS components.

To compare AlignScape with other gene coevolution methods
(Pazos and Valencia, 2001; Pazos et al., 2008; de Juan et al., 2013), we
calculated two additional correlation matrices: a
BLOSUM62 correlation matrix (B62) and a phylogenetic
correlation matrix (PHY). The B62 employed the
BLOSUM62 distance (Henikoff and Henikoff, 1992) between
pairs of aligned sequences, while the PHY utilized the distance
extracted from phylogenetic gene trees (See Supplementary
Methods). Excluding randDM, which is completely uncorrelated
with all T6SSi core components in all correlation matrices, both the
B62 and PHY correlation matrices demonstrated a narrower
dynamic range than the AlignScape correlation matrix
(Supplementary Figure S7), which hinders the identification of
clusters of coevolving genes.

4 Discussion

We presented AlignScape, a method that applies Self-
Organizing Maps (SOM) on aligned sequences. SOM preserves
and represents the neighboring properties of the input data in a
periodic 2D grid output space. This characteristic was crucial for
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effectively displaying and analyzing thousands of sequences within a
similarity landscape. AlignScape is depicted by a U-matrix, a
periodic 3D graphical representation that captures the complexity
of the high-dimensional space of an MSA. In this representation,
similar sequences are enforced to be proximal within a densely filled
space that incorporates the input data and its interpolation, in
contrast with SSN, which are intrinsically sparse. This unique
feature of AlignScape allows the creation of a continuous and
intuitive similarity landscape that augments the input sequences
to fully explain the MSA.

AlignScape presents several additional advantages and novelties:
1) Its U-matrix representation handles large sets of sequences, which
can be challenging to visualize using standard phylogenetic trees and
SSNs. This capability stems fromAlignScape’s ability to coarse-grain
input data, where similar sequences are located in close proximity.
This significantly simplifies the visualization of extensive sequence
datasets (Supplementary Figure S9). 2) The U-matrix distance
between two mapped sequences defines a novel sequence
distance. 3) The U-matrix distance facilitates the calculation of
distance matrices and the subsequent construction of correlation
matrices based on taxonomical pairing, serving as a valuable tool for
studying gene coevolution. 4) Users have the flexibility to determine
the level of coarse-graining of the representation. They can also infer
the sequences of U-matrix units and obtain mutation pathways
between input sequences. 5) Similar to SSNs and phylogenetic trees,
AlignScape supports sequence annotation with external attributes,
enabling inference of functional and evolutionary traits for non-
annotated sequences. 6) The MST provides insights into the

relationships between different regions of the U-matrix. Unlike
rooted evolution trees, where the root is enforced, the MST is
completely unsupervised. Additionally, the MST can be utilized
to generate aperiodic U-matrices, which provide a representation
that ensures topographical connection and integrity of the spatial
information. 7) AlignScape is highly efficient as it does not rely on
pairwise distance calculation.

We applied AlignScape to three distinct cases: the human
Kinome, the human GPCRs, and the proteins from the bacterial
T6SS. In each test case, the resulting U-matrices successfully
arranged sequences belonging to the same functional group or
phylogenetic subtype together.

In the case of the human Kinome, which had the most validated
and complete MSA, the MST and the phylogenetic tree exhibited
consistent connections among the kinome groups. This agreement
was further supported by the similar topology between the unrooted
tree and the MST. The subsequent group inference of unclassified
kinases highlighted the arrangement of kinases into groups and the
interconnections between these. However, certain inferences were
ambiguous, primarily due to the location of unclassified kinases at
the boundaries between groups and in barriers of distant sequences.

The human GPCR MSA also underwent extensive validation;
however, it was limited to a protein domain, which may only capture
some of the evolutionary information related to the GPCR groups
and subgroups. Furthermore, the rooted phylogenetic tree makes a
direct comparison with the MST challenging. Despite these
challenges, the interconnections among GPCR groups in the
MST generally mirrored those observed in the tree. Nonetheless,

FIGURE 5
Aperiodic U-matrix and distance matrix of TssB family. (A) Sequence similarity landscape of the TssB gene represented with an aperiodic U-matrix.
Input MSA sequences with prior information on their T6SSi subtype weremapped to their BMUs, which were colored according to the sequence subtype.
Gray squared units along the MST correspond to the BMUs of the sequences without prior classification data. Black circles denote basins without
classified sequences. The input MSA consisted of 2,916 TssB homologs and had a length of 203 sites. The SOM size was set to 90 × 90, and the
training of the SOM was refined over 200 epochs. The SOM calculation took 9 min on a Tesla T4 GPU with 15 GB memory on Google Colab. The MST
analysis took 1 h and 23 min in a single CPU on Google Colab. (B) Aperiodic U-matrix from panel A, where colored BMUs substituted the gray squared
BMUs according to the inferred T6SSi subtype. The inference was performed using a k-nearest neighbors algorithm with k = 1. Gray dashed circles
highlight basins without sequences with prior classification data, hence basins containing sequences for which inference was ambiguous. (C) TssB
distance matrix computed with the sequences with prior classification data (sequence acronyms reported in Supplementary Table S4). Colored boxes
between the matrix and the dendrogram indicate the T6SSi subtype of each sequence.
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both methods face difficulties when arranging the GPCR A
subgroups. AlignScape improved this situation by inferring the
subgroup of unclassified A GPCRs, revealing four distinct
branches within the A main branch, each representing a different
A subgroup with only a few ambiguous inferences.

In the case of T6SS, our analysis began with the TssB gene.
Unlike the human Kinome and GPCRs, most TssB input sequences
were unclassified. Additionally, we lacked a structurally validated
MSA and an accurate phylogenetic tree. Despite these limitations,
and thanks to the AlignScape inference, we could replicate the T6SSi

subtyping and reveal groups of unclassified sequences not present in
the current classification. To further investigate the relationships
among T6SSi subtypes, we computed the TssB distance matrix and
corresponding dendrogram. Remarkably, we observed a consensus
between the earliest phylogenetic trees documented in the literature
(Boyer et al., 2009; Barret et al., 2013a) and the dendrogram. Both
outlined the subdivision of T6SSi subtypes into two branches: i1-i2
and i3-i4a-i4b-i5. AlignScape was also used to infer gene
coevolution. It predicted the coevolution between TssB and TssC,
two proteins originating from a common ancestor (Kudryashev
et al., 2015). Instead, TssB and TssM, proteins located in distinct
subcomplexes and with homologies on different bacterial systems
(Durand et al., 2012; Kudryashev et al., 2015), were predicted as not
coevolving. Then, the T6SS correlation matrix revealed two clusters
of coevolving genes: one with TC and another with MC genes. BP
genes with structural interactions withMC proteins (Vanlioğlu et al.,
2023) coevolved with the MC genes but not with TC genes.
Conversely, BP genes with common origin with TC genes

(Cherrak et al., 2018) coevolved with them but not with MC
genes. Interestingly, VgrG was found to be the least coevolving
gene. These could be link to the fact that a T6SS might utilize
multiple VgrG genes to translocate different substrates (Hachani
et al., 2011; Zheng et al., 2011; Cianfanelli et al., 2016; Liang et al.,
2021) and that these are not necessarily confined within the T6SS
gene cluster (Hachani et al., 2011; Zheng et al., 2011); rather, they are
mobile genetic elements. Hence, the low coevolution of VgrG could
be attributed to its inherent mobile nature. In summary, the T6SS
AlignScape correlation matrix provides a first quantitative
assessment of the T6SS mosaic evolution, where multiple
functional blocks were acquired from different bacterial machines
up to the formation of the complete system. We could detect the
distinctive imprint of this co-option event that likely occurred
between a preexisting secretion system and the phage tail, a
process hypothesized to be responsible for the formation of the
T6SS complex (Denise et al., 2020).

AlignScape currently relies on precomputed MSA. Aligning
sequences on the fly would enhance AlignScape robustness,
especially when dealing with outlier sequences. Another
AlignScape limitation is that the final U-matrix orientation is
unpredictable due to the random initialization and the shuffling
of the training data, making the comparison between variants of the
MSA difficult. To address this issue, a method for aligning
U-matrices should be developed, facilitating U-matrices
comparison and streamlining gene correlation calculation without
the necessity of taxonomical pairing. Finally, the data derived from
the interpolation and mutation inference along pathways

FIGURE 6
T6SS subcomplex structure and AlignScape correlation matrix for T6SS core components. (A) Schematic representation of T6SS structure with the
TC, BP, and MC proteins highlighted with red, orange, and blue squares, respectively. (B) T6SS AlignScape correlation matrix depicting the correlations
between all T6SS core components. randDM corresponds to a randomly generated distancematrix used as a reference of uncorrelation. TC, MC, and BP
clusters of correlated genes are highlighted with red, blue, and orange dashed squares, respectively.
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connecting input sequences offer the potential for computing
coevolutionary patterns between sequences.

Data availability statement

AlignScape is available as a Python library (https://github.com/
bougui505/alignscape). Users can utilize it locally as a Jupyter
Notebook or within a Google Colaboratory Notebook (https://
colab.research.google.com/github/bougui505/alignscape/blob/
master/alignscape.ipynb), supporting both CPUs and GPUs.
Within the notebook, we provide step-by-step instructions on
how to install the necessary libraries, load the MSA, execute the
SOM training, and generate several U-matrix representations. We
also deployed an Apptainer (formerly known as Singularity) version
of AlignScape (https://zenodo.org/records/10417520). We offer
convenient downloads of all relevant files to ensure
comprehensive access to the generated data. These include the
resulting AlignScape object, the MST, the sequence to BMU to
cluster assignment file, and images of all generated U-matrices.
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