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Introduction: A fundamental challenge in computational vaccinology is that
most B-cell epitopes are conformational and therefore hard to predict from
sequence alone. Another significant challenge is that a great deal of the amino
acid sequence of a viral surface protein might not in fact be antigenic. Thus,
identifying the regions of a protein that are most promising for vaccine design
based on the degree of surface exposure may not lead to a clinically relevant
immune response.

Methods: Linear peptides selected by phage display experiments that have high
affinity to the monoclonal antibody of interest (“mimotopes”) usually have similar
physicochemical properties to the antigen epitope corresponding to that
antibody. The sequences of these linear peptides can be used to find possible
epitopes on the surface of the antigen structure or a homology model of the
antigen in the absence of an antigen-antibody complex structure.

Results and Discussion: Herein we describe two novel methods for mapping
mimotopes to epitopes. The first is a novel algorithm named MimoTree that
allows for gaps in themimotopes and epitopes on the antigen. More specifically, a
mimotopemay have a gap that does not match to the epitope to allow it to adopt
a conformation relevant for binding to an antibody, and residues may similarly be
discontinuous in conformational epitopes. MimoTree is a fully automated epitope
detection algorithm suitable for the identification of conformational as well as
linear epitopes. The second is an ensemble approach, which combines the
prediction results from MimoTree and two existing methods.
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1 Introduction

Antibodies are produced by B cells during the immune response to the presence of
foreign matter within the body (“antigens”). Antibodies recognize and bind to specific
regions of target antigens to perform their functions, and the regions of antigen molecules to
which antibodies attach are defined as epitopes (Sela-Culang et al., 2013). B cell epitopes can
be classified into linear and conformational epitopes; in the latter case, epitopes consist of
patches of residues that lie close to each other in three-dimensional space but are separated
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in amino acid sequence (Potocnakova et al., 2016; Sanchez-Trincado
et al., 2017). Conformational epitopes generally account for about
90% of overall antibody binding to an antigen (Barlow et al., 1986;
Van Regenmortel, 1996). In addition, conformational epitopes may
offer functional advantages over linear epitopes that confer
enhanced viral neutralization (Vinion-Dubiel et al., 2001) and
longer lasting immunity (Steimer et al., 1991). For example,
conformational epitope-targeting antibodies to the HIV
gp120 glycoprotein are more effective at neutralizing viral isolates
than linear epitope-targeting antibodies to the same protein, and
they are also responsible for the majority of gp120-specific CD4-
blocking activity in HIV-1-infected human sera.

A deeper knowledge of the structure and immunogenic
properties of conformational epitopes may be beneficial for
designing interventions for many therapeutic areas, including
viral infections and cancer (Tegoni et al., 1999; Cho et al., 2003;
Adams and Weiner, 2005; Riemer et al., 2005b; Li et al., 2005;
Nybakken et al., 2005; Saxena et al., 2006). Immune responses
elicited by partial antigens may sometimes be sufficient to
provide competent protection since most of the surface structure
of the antigen molecules are not antigenic (Sanchez-Trincado et al.,
2017). Therefore, identifying immunogenic conformational epitopes
and developing strategies to generate an effective immune response
against the identified epitopes are important problems in
computational vaccinology.

A mimotope is a peptide that mimics the structure of an epitope,
and which, in its most strict definition, causes an antibody response
that is similar to the one elicited by the epitope (Geysen et al., 1986).
An antibody for a given antigen is expected to recognize mimotopes
which mimic the corresponding epitope. Mimotopes are commonly
obtained from phage display libraries through bio-panning
experiments (Bazan et al., 2012). Bacteriophages displaying
potential mimotope peptides are incubated with the target
antibody which is immobilized on a solid support. As such,
specific phages in the library bind to the target antibody.
Unbound phages are washed out, while bound phages are
selected, eluted, and amplified. Multiple rounds of evolution may
be performed. This method is intended to select peptides with high
binding affinity to the chosen antibodies. A portion of the selected
mimotopes will have some homology to antigen epitopes and may
trigger the anticipated immune response. As a result, mimotopes can
potentially be employed in and used as a starting point for vaccine
design (Bakhshinejad et al., 2016; Goulart and de S. Santos, 2016).

Studies, however, suggest that peptide antigens may not always
be capable of generating a sufficient immune response (Chen et al.,
2009; Irving et al., 2010; Van Regenmortel, 2016). That is,
antipeptide antibodies, raised against peptide antigens, may fail
to bind the cognate protein antigens which are in a folded
conformational state. Peptides likely exist in an ensemble of
conformational states; they may predominantly exist in a linear
or disordered state but be capable of adopting distinct
conformations a significant percentage of the time. Those
peptides that can mimic conformational epitopes found in
protein antigens are expected to be able to bind antibodies
generated against said protein antigens. Mimotopes, therefore,
may be useful in the design of antigens for use in antibody
detection in immunodiagnostic tests. Specifically, design of a set
of mimotopes that mimic conformational epitopes as the antigens is

of high utility in the development of immunodiagnostics to detect
antibodies that recognize the corresponding conformational
epitopes. Furthermore, mimotopes obtained by panning a phage-
displayed random peptide library against a monoclonal antibody or
specific sera may produce “target-unrelated peptides” (Huang et al.,
2014) in addition to true high affinity binders; computational
methods that can map the resulting peptide hits to an antigen
structure may, therefore, also be useful for eliminating non-specific
peptide binders since those peptides would be less likely to map to
the antigen surface.

The algorithmic task of the mimotope-to-epitope mapping is to
map the mimotope to the part of the antigen surface that binds the
antibody used to create themimotope. This epitope should have similar
physicochemical properties to the mimotope, facilitating antibody
binding to both. Since the mimotope is usually not identical but
similar to its corresponding epitope at the sequence and structural
level, the algorithm considers residues with a physicochemical property
distancewithin a certain range as identical, which is amajor challenge in
themapping process. The regions of the antigen surface that are aligned
with themimotopes have a higher probability of being antigenic. Similar
to phage-display experiments, molecular docking has been used to
enrich potential target regions of the antigen. Protein-protein docking
methods have been used to identify the antibody binding site (the
epitope) on an antigen protein (Desta et al., 2022); this approach
requires a structure or model of both the antigen and antibody
structure. Here we are mapping the mimotope to the surface of the
antigen to identify the epitopes that the antibody is expected to be
capable of binding. As such, only the structure or model of the antigen
protein is required. That is, the process of mapping mimotopes
(peptides with high binding affinity to the antibody) to the surface
of the antigen identifies antibody binding sites on the antigen.

Several computational methods for mimotope mapping based on
the antigen structure alone exist (Moreau et al., 2006; Bublil et al., 2007;
Mayrose et al., 2007; Negi and Braun, 2009; Chen et al., 2011; Sun et al.,
2016), all of which have been validated on a similar set of mimotopes
and corresponding protein epitopes based on the existence of the
corresponding antigen-antibody complex structures. In general, the
overall sensitivity is lower than desired, meaning that residues that lie
within the true epitopes are left out of the epitopes predicted by these
algorithms. Thus, the existing methods are useful but imperfect.

Specific mimotope-to-epitope mapping algorithms display unique
strengths and weaknesses. For example, Mapitope (Bublil et al., 2007) is
an algorithm that breaks eachmimotope in the dataset into overlapping
residue pairs (each residue pair contains two consecutive amino acids in
the mimotope sequence), and then computationally pools these residue
pairs and ranks the occurrence of each type. Next, it uses the high-
frequency occurrences to search on the antigen surface to find the
antigen surface residuesmapped by these pairs. However, this algorithm
requires many statistically relevant parameters customized by the user,
and the length of the residue pairs it considers is so short that different
parameter settings can have a very large impact on the prediction.

Pupko and co-workers also developed PepSurf (Mayrose et al.,
2007), which uses a color-coding algorithm to find all possible
simple paths on the antigen surface, matches these paths with
mimotopes based on amino acid similarity, and finally clusters
the paths with high similarities to get the final prediction.
However, the run time of PepSurf depends linearly on the length
of the mimotopes because the step of searching for every possible
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simple path on the antigen surface limits the rate to a great extent.
Therefore, PepSurf is only able to process mimotopes with up to
15 amino acids. Subsequently, EpiSearch (Negi and Braun, 2009)
solved the run time issue, being able to complete all calculations in
less than aminute. However, EpiSearch’s method of dividing regions
on the antigen surface is fast but imprecise, and it is also unable to
process more than 30 mimotopes at a time.

The overall goal of this study is to develop mimotope-to-
epitope mapping prediction methods that are more robust in
terms of providing predictions with improved sensitivity. While
the mimotope is similar to but usually not identical to the true
epitope, most mimotope-to-epitope alignments produce some
gaps in mimotope sequence (stretches of the mimotope sequence
that do not map to the epitope but rather may simply allow the
mimotope to adopt a conformation relevant for antibody
binding) when the mimotopes are mapped to the antigen
surface. In addition, most contiguous mimotope residues
correspond to discontinuous binding sites on the antigen
surface that bind to the antibody (Cho et al., 2003). To
address this feature, we developed a prediction algorithm that
takes into account these sequence gaps while also referring back
to the three-dimensional (3D) structure of the antigen in the final
mimotope mapping step to achieve more sensitive and accurate
epitope prediction. We then explored ensemble approaches
combining the new approach with existing methods.

2 Methods

2.1 Test set

To assess the performance of the mimotope-to-epitope
mapping methods, we collated ten test cases from similar
publications (Huang et al., 2008). The criteria for selecting test
cases are i) the 3D crystallography structure of the antigen-

antibody is available; ii) the complex contains only the antigen
and antibody; iii) a set of mimotopes was derived from bio-
panning experiments with the given antibody. The test set is
presented in Table 1, and the sequences for the mimotope sets
associated with each test case are given in Supplementary Table
S1. Two of the test cases, 1AVZ and 1HX1, are for protein-
protein interactions where one protein is considered as the
“antigen” here since phage-display libraries of peptides were
screened for binding to the other protein considered as the
“antibody” in the pair for our purposes. For example, for
1AVZ, a peptide library was screening using phage display to
identify peptides that bind to the Fyn SH3 domain (the
“antibody”) to block its interactions with negative regulatory
factor (Nef) (Rickles et al., 1994; Greenway et al., 1996). The Nef
dimer, the biologically relevant form of Nef (Arold et al., 1997;
Wu et al., 2018), was taken as the “antigen”.

Since mimotope-to-epitope methods are designed to predict
the epitope on an antigen surface, as a more stringent test, we also
compiled a set of unbound antigen structures when available that
correspond to the test set antigen-antibody structures. This is a
more rigorous test since the antigen may undergo conformational
changes upon binding to the antibody. The antigen-only test set
is given in Table 2. For two of the test cases in Table 1, 1N8Z and
1JRH, the corresponding unbound antigen structure does
not exist.

2.2 Epitope definition

Chimera (Pettersen et al., 2004) was used to define the true
epitope for each antigen in the test set. An antigen residue is
considered to be part of the epitope if the difference between its
solvent-accessible surface area (SASA) in the antigen structure
(taken from the complex) and in the antigen-antibody complex is
greater than 10 Å2 (Hu and Yan, 2009).

TABLE 1 Mimotope-to-epitope test set.

PDB IDa Antibody Antigen References Library sizeb

Antibody—Antigen Test Cases

1JRH mAb A6 IFNgammaR Lang et al. (2000) 59*5

1BJ1 rhuMAb VEGF Vascular endothelial growth factor Chen et al. (1999) 36*6, 3*5, 2*4

1G9M mAb 17b Gp120 Enshell-Seijffers et al. (2003) 10*14, 1*12

1E6J mAb 13b5 P24 Enshell-Seijffers et al. (2003) 14*14, 2*7

1N8Z Herceptin Fab Her-2 Riemer et al. (2005a) 5*12

1IQD mAb Bo2C11 Coagulation factor VIII Villard et al. (2003) 27*12

1YY9 Cetuximab Fab Epidermal growth factor receptor Riemer et al. (2005b) 4*10

2ADF 82D6A3 IgG Von Willebrand factor Vanhoorelbeke et al. (2003) 2*15, 3*6

Protein—Protein Test Cases

1AVZ Fyn SH3 domain Nef Rickles et al. (1994) 8*10, 10*12

1HX1 Bovine Hsc70 Bag chaperone regulator Takenaka et al. (1995) 8*15

aThe protein data bank ID for the antigen-antibody complex X-ray structure.
bNumber of sequences (mimotopes in the set) * sequence length.
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2.3 Amino acid similarity

Since the amino acids in a mimotope are not typically identical
to those in the true epitope, the ability of a mimotope to bind with
high affinity to a target antibody and possibly achieve the same
function as the true epitope is likely due to the fact that at least a
portion of the amino acids in the mimotope share similarity rather
than identity with the epitope residues. Similarities between amino
acids determine whether they can substitute for each other in a
sequence while maintaining similar peptide/protein properties and
function. Several methods exist for assessing amino acid similarity,
based on the physicochemical properties of the individual amino
acids, the role they play in the protein structure, or more subtle
contributions (Stephenson and Freeland, 2013). We used
quantitative descriptors of the properties of amino acids
published by Braun and co-workers when performing mimotope
to antigen surface mapping (Venkatarajan and Braun, 2001). The
calculated similarity is as follows:

PD A, B( ) �
������������������∑
i

λi Ei A( ) − Ei B( )( )2
√

where PD (A, B) represents the property distance between amino
acid A and amino acid B, and λi are the eigenvalues corresponding to
the eigenvectors Ei (i = 1–5) representing the physicochemical
properties of each amino acid. The lower the PD between two
amino acid types, the more similar they are. According to Braun and
co-workers, the finest grouping of amino acids based on the
physicochemical properties is defined by a distance cutoff of 9.5
(Venkatarajan and Braun, 2001). In practice, we chose a distance
cutoff of 8 based on the run time of the algorithm and accuracy of
the output, which means that two amino acids with a PD of 8 or less
are considered identical.

2.4 Selection of surface residues

In order to perform mimotope mapping only on the antigen
surface, we defined antigen surface residues as those having a
SASA greater than 5% of their maximal SASA (Miller et al., 1987).
The SASA value per residue in the antigen structure was
calculated using Chimera with a default probe radius of 1.4 Å
(Pettersen et al., 2004). The maximal SASA of each standard

amino acid was defined as the total SASA of the residue in an
extended Gly-X-Gly peptide where X represents the residue of
interest (Miller et al., 1987).

2.5 MimoTree

Mimotopes may only partially mimic the structure and function
of the true epitopes that they mimic; most mimotopes are similar but
not identical to the true epitope both at the level of sequence and
structure. Moreover, during the process of the mimotopes binding to
the antibody, it is likely that some residues of the mimotopes will not
be bound to the antibody residues, but rather will simply exist in the
mimotope sequence to allow the mimotope to adopt a conformation
relevant for binding to the antibody. As a result, there may be gaps in
the mapping of the mimotope sequence to the antigen surface. To
address this issue, some existing methods use a gap penalty
parameter added to the similarity score of the mimotope and the
antigen surface area or to the weighted score of the predicted path,
such that the weight of a mimotope that forms gaps is reduced.
Introducing a gap penalty, however, reduces the probability that a
mimotope with a gap will be highly scored even if it does match a
true epitope (Mayrose et al., 2007; Negi and Braun, 2009).

In fact, mimotopes that form gaps during binding should be
scored equally well when mapped onto an epitope region. A unique
feature of our algorithm is that it allows for these gaps and does not
penalize mappings with such gaps. These gaps in the mimotope
sequence binding to the antibody are expected to translate into gaps
in the mapping of the mimotope onto the antigen surface. Another
unique feature of MimoTree is that the 3D structure of the antigen is
considered when determining if a gap in the putative epitope
mapping on the antigen surface is allowed. That is, if the
distance on the antigen surface is within the linear length
possible for the number of residues of the mimotope gap, then
the mimotope can be mapped at the corresponding position on the
surface antigen. The MimoTree code is available on GitHub.

2.5.1 Algorithm flow
MimoTree is a Depth First Search (DFS)-based algorithm. The

inputs to MimoTree are a protein data bank (PDB) file of the
structure of the antigen of interest and a mimotope set. MimoTree
initially creates a surface map of the input antigen structure. For

TABLE 2 Antigen-only structures corresponding to the test set.

Antigen only PDB ID Corresponding complex PDB ID Antigen References

1VPF 1BJ1 Vascular endothelial growth factor Muller et al. (1997)

3DNO 1G9M Gp120 Liu et al. (2008)

1A8O 1E6J P24 Gamble et al. (1997)

1D7P 1IQD Coagulation factor VIII Pratt et al. (1999)

1NQL 1YY9 Epidermal growth factor receptor Ferguson et al. (2003)

1AO3 2ADF Von Willebrand factor Bienkowska et al. (1997)

1AVV 1AVZ Nef Arold et al. (1997)

1I6Z 1HX1 Bag chaperone regulator Briknarová et al. (2001)
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each individual mimotope in the dataset, MimoTree performs a DFS
tree-based search of the mimotope sequence to identify surface
segments or seeds on the antigen surface that match to the
mimotope. MimoTree then connects seeds on the antigen surface
that are within a physically reasonable distance based on the 3D
structure of the antigen as described above. The final output
prediction for the mimotope set is the union of i) all seed
connections (the concatenation of seeds matched to the antigen
surface) with average PD scores of 0 (perfect matches) and ii) seed
connections of the longest length for the mimotope set overall with
average PD score >0 and ≤2. A detailed description of the method is
outlined in Figure 1.

2.5.2 Creation of a surface map
For the antigen, MimoTree creates a dictionary where each

surface residue is a key, and a list containing the adjacent
surface residues of each key is represented as the
corresponding value. The maximum alpha-carbon to alpha-

carbon distance at which two residues are treated as adjacent
to each other is 4 Å.

2.5.3 Tree-based searching to identify seeds
For each mimotope in the set, starting from the first amino acid,

MimoTree identifies all of the residues on the protein surface that
match. If the property distance between two amino acids is within
the pre-defined range (described above), the amino acids are
considered as matching in this algorithm. For each surface
residue that matches the first residue in the mimotope,
MimoTree checks the surface map to see if any adjacent residues
match the second residue in the mimotope. If so, it continues
searching for the next residue in the mimotope sequence.
Otherwise, it terminates that search and starts searching in a
different direction from that residue. If that fails, the algorithm
starts searching from the next antigen surface residue that matches
the first mimotope residue. After finding all possible mimotope
matching segments on the antigen surface starting from the first

FIGURE 1
Overview of MimoTree algorithm. A flowchart of MimoTree algorithm is shown in (A) and an example of the tree-based search starting from residue
1 of the mimotope sequence given in (B) is shown in (C). An example of the seed connection process is shown in (D).
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residue of the query mimotope, MimoTree starts a new round of
surface searching from the second residue of the mimotope. It
continues and completes the surface searching starting from each
residue in the mimotope. Finally, the output is all the seeds
(matching segments) on the antigen surface that match any part
of the query mimotope sequence.

This tree-based searching is based on the DFS algorithm. It
starts with a matching surface residue, searches from one
direction to the end of that path, and then returns to the
previous level to start the search from another direction until
the end. Each surface search starting from a residue stops only
after all possible paths have been searched, ensuring a
comprehensive surface search.

2.5.4 Seed connections
After finding all of the seeds (the residues on the antigen

surface that partially match the mimotope), MimoTree tries to join
the seeds based on the sequence order of the mimotopes to form
“seed connections.” The algorithm connects seeds if the mimotope
gap in an extended linear conformation is sufficiently long to
extend from the one seed to the other seed. That is, the length of the
gap in the mimotope sequence, assuming an extended linear
conformation, is compared to the distance in the 3D antigen
structure from the last residue of the first seed to the first
residue of the next seed. If the maximum length of the
mimotope gap is greater than or equal to the distance on the
3D antigen structure between the ends of seeds that are being
connected, then this mimotope can be mapped at that position (to
that epitope) on the antigen surface. In the hypothetical example of
a 7-residue mimotope, where residues 1-3 and 6-7 map to the
epitope (Figures 1B, D), the mimotope gap of residues 4-5 is
allowed if the length of residues 4-5 plus one residue in an extended
linear conformation is greater than or equal to the distance
between the residues in the 3D antigen structure that map to
mimotope residues 3 and 6. More specifically, the algorithm
considers the N-to-N distance between two adjacent residues in
the mimotope as 3.5 Å (Bhagavan and Ha, 2015), so in the example
above the maximum distance would be 10.5 Å (3 * 3.5 Å/residue).
The N-to-N distance between the corresponding residues on the
surface of the antigen (those that match to mimotope residues
3 and 6) is then calculated from the coordinates of the residues in
the input PDB file and must be less than the linear mimotope gap
length (10.5 Å in the example) for a connection to be made. Seeds
of the longest length overall are automatically passed on as seed
connections as well.

2.5.5 Selection of the seed connections
Since MimoTree searches for possible seed connections on the

antigen surface based on the sequence of mimotope, the longer the
seed connection is, the greater the portion of the mimotope that is
matched and the more likely it is that a true epitope has been
identified. The length of a seed connection excludes gaps (so is
length 5 for the example above) and can extend to the limit of the
length of the mimotope (7 for the example above). MimoTree
balances the length of the seed connection with the exactness of
the match based on the average PD score for the seed connection as
described above in Section 2.5.1 to determine the final prediction for
the mimotope set.

2.5.6 Parameter tuning for MimoTree
MimoTree contains several tunable parameters: the cutoff value

for the PD (the degree of amino acid similarity), the N-to-N distance
for length considered for gaps, and the average PD for seed
connection selection. As described above, we calculate the PD
between any two amino acids using the values of the
physicochemical descriptors of each standard amino acid and the
eigenvalues indicating the weights of different descriptors. When the
PD between two amino acids is less than a preset cutoff value,
MimoTree considers the two amino acids to be identical. Thus, in
the process of mapping mimotopes to the antigen surface, if the
property distance between a residue in the mimotope and a residue
on the antigen surface is less than the cutoff value, the algorithm
aligns the mimotope residue to that position on the antigen surface.

If the cutoff value is decreased, the algorithm will match fewer
but more similar mimotope residues to antigen residues. As a result,
the output will be possible epitopes that are more similar in property
space to the aligned mimotopes. Thus, if the input mimotopes are
very similar to the true epitope, reducing the cutoff will improve
both sensitivity and precision of the algorithm, but if the input
mimotopes are not similar enough to the true epitope, lowering the
cutoff will reduce both sensitivity and precision. In other words,
lowering the cutoff makes the algorithm more dependent on the
similarity or identity between the mimotope and the true epitope,
which reduces the robustness of the algorithm. Since lowering the
threshold would consider fewer residues, it would also shorten the
run time of the program. In practice, we found that a cutoff value of
8 yielded the best results across the test set based on the accuracy
and run time.

The N-to-N distance was also varied from 3.4 to 3.8 and set to
3.5 Å; a larger distance will allow more matches but may not be
physically realistic. The average PD used when selecting the longest
seed connection was varied from 2 to 3. All results obtained by
MimoTree herein utilize a PD cutoff of 8, an N-to-N distance of
3.5 Å for gaps, and an average PD of 2 for seed connection selection.

2.6 Ensemble methods

In this study, we compare MimoTree to two of the other
methods that are available online and test several ensemble
approaches. The two methods are PepSurf (Mayrose et al., 2007;
Negi and Braun, 2009) and EpiSearch (Mayrose et al., 2007; Negi
and Braun, 2009) which have complementary search algorithms
(described below). More specifically, ensemble approaches
combining PepSurf and EpiSearch as well as combining PepSurf
and EpiSearch with MimoTree were examined. The PepSurf and
EpiSearch calculations were performed with default parameter
settings using their servers (http://pepitope.tau.ac.il/index.html
and http://curie.utmb.edu/episearch.html, respectively).

2.6.1 Algorithm description of PepSurf
PepSurf first unfolds the antigen surface onto a surface map

containing all surface residues, where a pair of neighboring residues
in the map is defined as any two residues within a distance of 4 Å.
For each individual mimotope, PepSurf looks for all possible simple
paths on the surface map that are the same residue length as the
given mimotope. With its color-coding technique, PepSurf is able to
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find every linear path on the surface map without duplication.
Afterward, PepSurf calculates the weight of each path by
comparing its similarity to the query mimotope based on a
modified BLOSUM62 matrix (Henikoff and Henikoff, 1992;
Mayrose et al., 2007). The modified substitution score
representing the similarity between amino acids i and j, h (i, j), is
calculated as follows:

h i, j( ) � q i, j( )
p i( )f j( )

where q(i, j) is the observed probability of occurrence for each i, j
pair in the original BLOSUM62 matrix; p(i) and f(j) are the
probabilities of occurrence for i and j in the phage display library
and in the original BLOSUM62 matrix, respectively (Mayrose et al.,
2007). For each mimotope, the surface path with the highest weight
is selected. Finally, PepSurf clusters all the selected surface paths and
scores them with respect to their similarity to their corresponding
mimotopes to obtain the final prediction results for the mimotope
set (Mayrose et al., 2007).

2.6.2 Algorithm description of EpiSearch
EpiSearch first generates surface patches centered on each

antigen surface residue using a preset radius value. These
overlapping patches can cover the entire antigen surface. The
type and number of amino acids contained in each surface patch
and in each mimotope sequence are stored in separate matrices.
Then, EpiSearch calculates the number of residues in each surface
patch that are “identical” to any amino acid in the mimotope, where
a pair of residues with a property distance (as defined above) less
than or equal to a preset value is defined as a pair of identical
residues. For each individual mimotope, EpiSearch scores all surface
patches based on the degree of matching of each patch with the
mimotope. The highest scoring patch is selected as the predicted
patch corresponding to the query mimotope. After obtaining the
predicted patches for all the input mimotopes in the set, the
individual residues in the predicted patches that match to the
corresponding mimotope are predicted to be part of the
conformational epitope of the antigen (Negi and Braun, 2009).

2.6.3 Creating an ensemble prediction with
PepSurf and EpiSearch

To assess the complementarity of PepSurf and EpiSearch
approaches in practice, we examined the performance of taking
either the union or the intersection of the top-scoring predictive
epitopes from each. First, PepSurf and EpiSearch were used to make
predictions for each mimotope set-antigen pair independently using
default parameters. For PepSurf, the BLOSUM62 substitution
matrix and a gap penalty of −0.5 were used. For EpiSearch, a
patch size which of 12 Å (which represents the radius value of
the surface patches), a PD cutoff of 10, and an accuracy cutoff of
3 (which indicates the maximum number of mismatches allowed in
each surface patch) were used. For EpiSearch, all residues in the top
solution were considered. The intersection method takes the
intersection of the top-scored solutions from EpiSearch and
PepSurf. The union significantly improved the sensitivity of the
existing methods while intersection decreased performance, so only
the results of the union were analyzed further as described below.

2.6.4 Creating ensemble predictions with
MimoTree, PepSurf, and EpiSearch

In an effort to enhance the performance of MimoTree, two
different ensemble approaches for combining the results of
MimoTree, PepSurf, and EpiSearch were evaluated. For both,
MimoTree, PepSurf and EpiSearch were run individually for each
input mimotope set to predict the corresponding epitope on the
antigen structure using default parameters as described above. First,
MimoTree, PepSurf, and EpiSearch results were combined by
majority vote; that is if a residue was in the prediction from at
least two of the three methods, it was retained in the final ensemble
prediction. A second ensemble approach involved taking the union
of the predictions from Pepsurf and the intersection of the results
from MimoTree and EpiSearch. PepSearch was chosen as the base
prediction in this ensemble because it is the method with the highest
average precision over the test set. The goal was to balance improved
sensitivity and precision, while limiting the overall size and “density”
of the prediction, where the density is the size of the prediction (in
terms of number of residues) divided by the size of the antigen.
Overall, 95% of all epitopes in the PDB have a solvent-accessible
surface area of no more than 2000 Å2, and an epitope typically
contains no more than 40 amino acids (Mayrose et al., 2007; Huang
et al., 2008). See Figure 2 for an overview of the second approach.

2.7 Statistical analysis for each solution

To statistically evaluate the performance of the proposed
methods, we use sensitivity, precision, Matthews Correlation
Coefficient (MCC), and p-value on the predictions produced by
the various methods.

2.7.1 Sensitivity
Sensitivity is defined as the degree of coverage of the true epitope

by the prediction. It is the number of residues correctly predicted
divided by the number of residues in the true epitope or:

sensitivity � TP/ TP + FN( )
where TP is the number of true positives in the prediction and FN is
the number of residues in the true epitope that are not in the
prediction.

2.7.2 Precision
Precision is the number of correctly predicted residues divided by

the number of residues in the prediction. It is calculated as follows:

precision � TP/ TP + FP( )
where FP is the number of residues in the prediction that are not in
the true epitope.

2.7.3 MCC
The Matthews Correlation Coefficient (MCC) is a coefficient of

correlation between observed and predicted binary classifications. It
is calculated as follows:

MCC � TP*TN − FP*FN( )/ �������������������������������������
TP + FP( ) TP + TN( ) TN + FP( ) TN + FN( )√
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where TN is the number of residues in the antigen that are not part
of the epitope.

2.7.4 P-value
The p-value is defined as the probability that a random

prediction for a given antigen can perform as well as or
better than the prediction obtained by the various methods.
The hypergeometric (HG) distribution describes the number of
times that n objects of a specified type are successfully drawn
(without replacement) from a finite number of N objects
(containing M objects of the specified type). The probability
of drawing k objects of the specified type is represented
as follows:

P X � k, n,N,M( ) � Ck
MC

n−k
N−M

Cn
N

where k∈{1, 2, . . . , min (n, M)} and Ck
M is determined as the

number of combinations of M objects taken k at a time
(Berkopec, 2007).

In evaluating the performance of the various methods across the
test set, the p-value calculated based on the HG distribution
represents the probability of randomly drawing n residues from
an antigen containing N residues, of which M residues are in the
prediction, and k or more residues are in the true epitope. A
prediction with a p-value less than 0.05 is considered to be
statistically significant. p-values are calculated as follows:

P X≥ k, n,N,M( ) � ∑min n,M( )

X�k
P X, n,N,M( )

A one-sided Wilcoxon signed-rank tests, a non-parametric
statistical hypothesis test, was also performed to test the
hypothesis that MimoTree has greater sensitivity or precision
than PepSurf or EpiSearch (Conover, 1999).

3 Results

3.1 MimoTree and comparison to
existing methods

MimoTree was first validated on three test cases from the set
(1EJ6, 1AVZ, and 1JRH) by giving it a “near exact” match to the
epitope as the input “mimotope” (see Supplementary Table S2).
Specifically, for a nearly contiguous stretch of the epitope the linear
sequence of the antigen was given as the “mimotope”; as such gaps
were included in the input mimotope. The resulting sensitivities all
agreed approximately with the percentage of the epitope that was
given as the input mimotope, indicating that the algorithm was
working as expected.

The performance of MimoTree was then assessed over the full
test set using the antigen structures from antigen-antibody
complexes (Table 3), as well using antigen-alone structures as
input (Table 4). As expected, the sensitivity is somewhat
diminished when using antigen-alone compared to antigen-
antibody complex structures. The average sensitivity over the test
set dropped from 0.52 to 0.33 and the average precision from 0.17 to
0.12. None of the other published methods have been evaluated on
antigen-alone structures, a more stringent test.

The average sensitivity of MimoTree is improved relative to
Pepsurf and EpiSearch over the test set (0.52 vs 0.32 and 0.31,
respectively; see Table 5). Statistical significance tests comparing
MimoTree to PepSurf and EpiSearch indicate that the sensitivity is
significantly improved (p-values <0.05) while the precision is largely
maintained (Table 6; Figure 3).

3.2 Ensemble approaches

The union of PepSurf and EpiSearch also improved the average
sensitivity (0.56 vs 0.32 and 0.31, see Table 5) while maintaining the

FIGURE 2
Flowchart of the PepSurf ∪ (MimoTree ∩ EpiSearch) ensemble approach.
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TABLE 3 Performance of MimoTree.

PDB ID Sensitivity Precision MCC p-value Size Density (%)

1JRH 0.86 0.27 0.32 1.72e-03 45 47.4

1BJ1 0.53 0.26 0.16 6.37e-02a 34 36.2

1G9M 0.38 0.05 0.04 1.90e-01a 94 30.8

1E6J 0.93 0.14 0.25 1.90e-04 96 45.7

1N8Z 0.44 0.09 0.14 2.86e-03 82 14.1

1IQD 0.44 0.16 0.11 8.64e-02 45 28.9

1YY9 0.30 0.08 0.11 1.56e-02 71 11.6

2ADF 0.44 0.21 0.20 9.16e-03 34 18.0

1AVZ 0.40 0.18 0.06 1.87e-01a 34 33.0

1HX1 0.45 0.29 0.18 3.74e-02 31 27.7

Average 0.52 0.17 0.16 56 29.3

aIndicates that the prediction was not statistically significant.

TABLE 4 Performance of MimoTree using unbound antigen structures.

PDB ID Bound PDB ID Sensitivity Precision MCC p-value Size Density (%)

1VPF 1BJ1 0.53 0.27 0.14 9.32e-02a 37 36.3

3DNO 1G9M 0.23 0.03 −0.04 0.62e-02 96 27.4

1A8O 1E6J 0.86 0.30 0.45 3.79e-03 40 19.1

1D7P 1IQD 0.44 0.13 0.07 1.71e-02 52 32.7

1NQL 1YY9 0.30 0.08 0.10 4.13e-01 76 12.2

1AO3 2ADF 0.00 0.00 −0.13 0.62e-01a 31 16.6

1AVV 1AVZ 0.27 0.13 0.02 1.68e-03 30 19.9

1I6Z 1HX1 0.00 0.00 −0.29 0.73e-01a 32 23.7

Average 0.33 0.12 0.04 49 23.5

aIndicates that the prediction was not statistically significant.

TABLE 5 Performance of union of PepSurf and EpiSearch compared to PepSurf and EpiSearch.

PDB ID Union PepSurf EpiSearch

Sen Pre Size/Den (%) Sen Pre Size/Den (%) Sen Pre Size/Den (%)

1JRH 1.00 0.38 44/46.3 0.79 0.44 25/26.3 0.21 0.13 23/24.2

1BJ1 0.11 0.07 28/29.8 0.06 0.06 20/21.5 0.06 0.06 18/19.4

1G9M 0.38 0.14 58/19.0 0.38 0.17 29/9.5 0.00 0.00 29/9.5

1E6J 0.93 0.33 39/18.6 0.00 0.00 18/8.6 0.93 0.62 21/10.0

1N8Z 0.69 0.31 36/6.2 0.44 0.50 14/2.4 0.56 0.31 29/5.0

1IQD 0.63 0.24 42/26.9 0.25 0.15 26/16.7 0.63 0.40 25/16.0

1YY9 0.00 0.00 36/5.9 0.00 0.00 13/2.1 0.00 0.00 23/3.8

2ADF 0.56 0.36 25/13.2 0.56 0.75 12/6.4 0.13 0.13 16/8.5

1AVZ 0.60 0.23 40/38.8 0.60 0.60 15/14.6 0.00 0.00 25/24.3

1HX1 0.65 0.31 42/37.5 0.10 0.10 21/18.8 0.55 0.44 25/22.3

Avg 0.56 0.24 39/24.2 0.32 0.28 19/12.7 0.31 0.21 23/14.3

Sen = Sensitivity, Pre = Precision, Den = Density.
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average precision across the test set relative to the individual
methods alone. This result indicates that in fact the two methods
are complementary. However, the average size of the prediction and
density (number of residues in the prediction/number of residues in
the antigen) increased as well.

Taking the ensemble of MimoTree, PepSurf, and EpiSearch by
majority voting gives the best average precision overall (0.29) and a
low prediction size and density (20 and 13.5%). The average
sensitivity, while still higher than that for PepSurf or EpiSearch,
is only 0.41. Next, we chose PepSurf which has relatively high
precision (0.28) and low prediction size/density (19/12.7%), as
the base method to which we added the intersection of the
prediction from MimoTree and EpiSearch. This yielded an
average sensitivity of 0.50 (similar to MimoTree) but with a
higher precision (0.27 vs 0.17) and a much smaller prediction
size/density (29/18.9%) (Table 7).

Thus, this ensemble approach, PepSurf ∪ (MimoTree ∩
EpiSearch), yielded the best set of performance metrics overall
(see Table 8). Images showing the prediction vs the true epitope

on the antigen structure are given in Figures 4, 5 for 1N8Z and 2ADF
and in the Supplementary Material for all other test cases
(Supplementary Figures S1-S8). These figures serve as a guide for
what the statistics reflect in terms of the mapping of the mimotope
onto the antigen structure and have not generally been provided for
other published methods.

4 Discussion

In this study, we developed the novel method MimoTree as well
as an ensemble approach combining MimoTree with PepSurf and
EpiSearch for predicting the epitope on the antigen surface from
mimotope data. MimoTree and the PepSurf ∪ (MimoTree ∩
EpiSearch) ensemble approach outperform PepSurf and
EpiSearch by improving sensitivity while maintaining precision.

By examining the union of PepSurf and EpiSearch, we showed
that PepSurf and EpiSearch use different but complementary
algorithms for the process of mapping mimotopes to an antigen
structure that include differences in analyzing, scoring, and
clustering the locations. EpiSearch first divides the surface of the
antigen into overlapping surface patches. These patches are circular
regions centered on each of the surface residues. EpiSearch then
calculates the similarity between the surface residues contained in
these circular patches and each input mimotope and obtains an
initial epitope prediction. The manner by which EpiSearch divides
the antigen surfaces tends to make this algorithm more suitable for
predicting compact epitopes; if the true epitope is loosely distributed
in multiple patches, EpiSearch is less likely to predict it correctly as

TABLE 6 p-values for comparisons between MimoTree and existing
methods.

MimoTree vs PepSurf MimoTree vs EpiSearch

Sensitivity 0.0371 0.0273

Precision 0.7842a 0.6875a

MCC 0.7217a 0.4609a

aDifference between the two groups of data is not statistically significant.

FIGURE 3
Bar plots of Mean Sensitivity, Precision, and MCC over ten casemimotope-to-epitope test set by approach with Standard Deviation indicated by the
error bars. A * indicates difference is significant.
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observed in the test set (e.g., for 1G9M, 1YY9, and 2ADF).
Meanwhile, PepSurf uses color-coding techniques to find all
possible linear paths on the antigen surface. These linear paths of
different shapes may be able to traverse the entire antigen in one
direction. Thus, these twomethods are somewhat complementary in
their surface searching approach. EpiSearch accurately locates
specific residues in the epitope when it finds the right patches,
but it also sometimes locates the wrong patches and therefore misses
the correct epitope entirely. Conversely, PepSurf is better at finding
the correct approximate epitope location but is less likely to find the
specific residues within it.

MimoTree algorithm is novel in that it addresses the possibility
of gaps in mimotope-epitope mapping and it considers the 3D
structure of the antigen in its final epitope connection step. If a
mimotope cannot be continuously mapped on the antigen surface,
several existing methods, including PepSurf, reflect this feature in
the scoring of this path, i.e., a gap penalty with a negative value is added
to the score. However, gaps in the mimotope sequences matched to the
epitope (as well as in the epitope itself if it is conformational) are often
seen sincemimotopesmimic the structure and sequence of epitopes, but
are usually not identical to the epitope. To solve this problem,
MimoTree first unfolds the antigen surface into a surface map. For
each input mimotope, MimoTree looks for each of its sequence

fragments (seeds) on the antigen surface and tries to join these seeds
in the sequence order of the original mimotope with a distance restraint
based on the 3D structure of the antigen and the maximal length of the
mimotope (if in an extended linear conformation). If the distance
between the ends of the two seeds on the 3D antigen structure is less
than or equal to the distance between corresponding residues in the
mimotope (assuming a linear extended conformation), then the seeds
are connected. MimoTree predicts the mimotope to map to that
position on the antigen surface.

Because MimoTree uses a depth-first search method during
the searching process, the longer the length of the seed
connection (matching the mimotope to the antigen surface),
the greater the degree of match overall. Gaps in the seed
connections of longest length that were incorporated into the
MimoTree predictions for each case in the test set were analyzed.
In 3/10 test cases, there were two gaps each in the longest seed
connections, while in 4/10 cases there was one gap in the seed
connections. The average gap length was 3.1 residues and the
most common amino acids found in the gaps were Arg, Lys, Pro,
Leu, Asn, and Glu. In future work these trends could be analyzed
over a larger sample size.

While evaluating the performance of the various methods,
we found that EpiSearch and PepSurf were unable to accurately

TABLE 7 The performance of PepSurf ∪ (MimoTree ∩ EpiSearch) ensemble across the test set.

PDB ID Sensitivity Precision MCC p-value Size Density (%)

1JRH 0.86 0.34 0.42 7.23e-05 35 36.8

1BJ1 0.06 0.08 −0.17 1.49e-01a 25 26.6

1G9M 0.38 0.12 0.15 1.94e-02 43 14.1

1E6J 0.93 0.34 0.52 3.90e-10 38 18.1

1N8Z 0.63 0.38 0.47 3.21e-11 26 4.5

1IQD 0.56 0.25 0.27 2.11e-03 36 23.1

1YY9 0.00 0.00 −0.03 5.64e-01a 17 2.8

2ADF 0.56 0.60 0.54 6.44e-08 15 7.9

1AVZ 0.60 0.32 0.22 3.41e-03 28 27.2

1HX1 0.35 0.23 0.08 1.51e-01a 31 27.7

Average 0.50 0.27 0.25 29 18.9

aIndicates that the prediction was not statistically significant.

TABLE 8 Average performance metrics by approach.

Average sensitivity Average precision Average size Average density (%)

MimoTree 0.52 0.17 56 29.3

PepSurf 0.32 0.28 19 12.7

EpiSearch 0.31 0.21 23 14.3

Union of PepSurf + EpiSearch 0.56 0.24 39 24.2

Ensemble by votinga 0.41 0.29 20 13.5

PepSurf ∪ (MimoTree ∩ EpiSearch) 0.50 0.27 29 18.9

aEnsemble of MimoTree, PepSurf, and EpiSearch.
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predict any of the residues in the epitope of the 1YY9 antigen
(epidermal growth factor receptor (EGFR)). MimoTree does
find some matches between the mimotopes and the epitope
for this test case, however, the prediction is loosely dispersed
over the two main domains of the structure (Domain III, which
interacts with the antibody, and Domain I, which would
interact with EGF), and has low sensitivity and precision
(0.30 and 0.08). This is a particularly difficult test case, in

that the residues in the epitope are loosely distributed in that the
true epitope consists of 20 residues but the longest contiguous stretch
is of four residues, which greatly increases the difficulty of
algorithmically predicting the location of the epitope. 1BJ1 is also a
difficult case in that the antigen (vascular endothelial growth factor
(VEGF)) is secreted as a dimer of two identical monomers and in
the structure an antibody is bound at each of the identical dimer
poles. MimoTree does locate both poles on the monomer of the dimer

FIGURE 4
Structure of Herceptin Fab-Her-2 complex (1N8Z) showing the epitope predicted by the ensemble approach versus the true epitope. The antigen is
shown in pink ribbon with residues in the prediction on the left in cyan in CPK spheres and the true epitope on the right in green.

FIGURE 5
Structure of 82D6A3 IgG-Von Willebrand factor (2ADF) showing the epitope predicted by the ensemble approach versus the true epitope. The
antigen is shown in pink ribbon with the prediction on the left in cyan in CPK spheres and the true epitope on the right in green.
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but the prediction size and density are relatively high (see
Supplementary Figure S9).

For both MimoTree and the PepSurf ∪ (MimoTree ∩ EpiSearch)
ensemble approach the sensitivity is highest for 1EJ6 (0.93), but with
MimoTree the precision is relatively low (0.14). With the ensemble
approach the sensitivity remains high and the precision
increases. The true epitope is identified with high precision
but a second patch on the antigen is also highlighted
(Supplementary Figure S4). Two of the best cases based on the
ensemble approach are 1N8Z and 2ADF both of which balance
sensitivity and precision and have relatively low densities (see
Figures 4, 5).

In general, our results indicate that sensitivity, precision,
and density must all be considered when evaluating a given
prediction and a mimotope mapping approach overall. In
particular, predictions that balance sensitivity and precision
tend to map most closely to the true epitope. The results also
suggest that ensemble approaches likely are more effective at
achieving that balance assuming that the methods included
employ complementary strategies. The current limitations of
MimoTree and the PepSurf ∪ (MimoTree ∩ EpiSearch)
ensemble approach, however, still lie in the relatively high
false positive rate. In future work, adding a machine learning
component to the MimoTree combination step and/or the
ensemble formation may improve the results further by
reducing false positives. Mimotope methods like MimoTree
and the PepSurf ∪ (MimoTree ∩ EpiSearch) ensemble approach
will further our understanding of the characteristics of antigen-
antibody binding interactions, may for certain pathogens lead
to the design of improved vaccine with limited potential for
resistance, and can aid in the rapid design of more specific and
sensitive diagnostic immunoassays.
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