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Radiation exposure poses a significant threat to human health. Emerging research
indicates that even low-dose radiation once believed to be safe, may have
harmful effects. This perception has spurred a growing interest in investigating
the potential risks associated with low-dose radiation exposure across various
scenarios. To comprehensively explore the health consequences of low-dose
radiation, our study employs a robust statistical framework that examines
whether specific groups of genes, belonging to known pathways, exhibit
coordinated expression patterns that align with the radiation levels. Notably,
our findings reveal the existence of intricate yet consistent signatures that reflect
the molecular response to radiation exposure, distinguishing between low-dose
and high-dose radiation. Moreover, we leverage a pathway-constrained
variational autoencoder to capture the nonlinear interactions within gene
expression data. By comparing these two analytical approaches, our study
aims to gain valuable insights into the impact of low-dose radiation on gene
expression patterns, identify pathways that are differentially affected, and harness
the potential of machine learning to uncover hidden activity within biological
networks. This comparative analysis contributes to a deeper understanding of the
molecular consequences of low-dose radiation exposure.
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1 Introduction

Radiation exposure is a critical concern with profound implications for human health
and safety. While extensive research has been dedicated to understanding the effects of
high-dose radiation, there is a growing recognition that low-dose radiation, even at levels
previously deemed safe, may have adverse health impacts. This perception has sparked
significant interest in investigating the potential risks associated with low-dose radiation
exposure across various settings, including medical procedures, occupational activities, and
accidental or environmental exposures.

Notably, studies conducted by Smith et al. (2003) have shed light on the adverse effects
of low-dose radiation. Their research has demonstrated that even at low doses, radiation can
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induce DNA damage and genomic instability, posing risks to the
integrity of genetic materials. These findings underscore the
importance of exploring the biological consequences of low-dose
radiation exposure and the potential implications for long-term
health outcomes. In a comprehensive study conducted by Brenner
and Sachs (2006), the risks of radiation-induced cancer at low doses
were thoroughly examined. The findings challenge the prevailing
assumption that risks are only significant at high doses and raise the
possibility of non-linear responses to radiation. Furthermore, a
recent meta-analysis (Little et al., 2012), further supports the
notion that even low levels of radiation may contribute to long-
term health consequences. This meta-analysis synthesized data from
multiple occupational cohorts and revealed an increased risk of
cancer mortality associated with cumulative low-dose radiation
exposure. Such findings highlight the complexity of radiation
effects and underscore the importance of investigating low-dose
radiation impacts in various contexts.

To comprehensively investigate the potential health
consequences of low-dose radiation exposure, researchers are
increasingly turning to genome-wide expression data analysis as a
powerful tool for uncovering molecular changes and understanding
the underlying biological mechanisms. By profiling gene expression
patterns across the entire genome, researchers can identify
differentially expressed genes, biological pathways, and regulatory
network modules that are influenced by low-dose radiation.
Currently, gene expression data analysis methods can be broadly
categorized into two main categories: hypothesis-driven differential
gene expression analysis (Amundson et al., 2003; Jin et al., 2008; Luo
et al., 2022) andmachine learning approaches (Pirooznia et al., 2008;
Park et al., 2019; Cho et al., 2021). Differential gene expression
analysis serves the purpose of identifying genes that exhibit
differential expression between distinct experimental conditions
or groups. This type of method encompasses well-established
approaches such as t-tests, fold-change analysis, and analysis of
variance. These approaches play a pivotal role in elucidating genes
that are significantly upregulated or downregulated, thereby
shedding light on potential targets that warrant further
investigation. On the other hand, the utilization of machine
learning techniques has gained significant popularity in the
analysis of genome-wide expression data. Supervised machine
learning algorithms, including support vector machines (Brown
et al., 2000), random forests (Kong and Yu, 2018), and neural
networks (Tan and Pan, 2005), have proven instrumental in tasks
such as classification and prediction. These algorithms enable the
identification of meaningful patterns and relationships within gene
expression profiles, facilitating the prediction of biological outcomes
or sample classification based on gene expression patterns.
Meanwhile, unsupervised learning algorithms, such as self-
organizing maps (Tamayo et al., 1999) and Gaussian mixture
models (McNicholas and Murphy, 2010), provide valuable
assistance in the exploration of hidden patterns or subgroups
within the data. These algorithms enable the identification of co-
expression modules or clusters, aiding in the discovery of novel
biological insights and revealing potential regulatory relationships.

The primary objective of this article is to provide a comparative
examination of the effects of low-dose radiation using two distinct
analytical approaches: a pathway-based differential gene expression
analysis method and a pathway-constrained machine learning

method based on deep generative models. The first approach,
inspired by the probabilistic pathway activity inference scheme
outlined in (Luo et al., 2022; Su et al., 2009), focuses on assessing
the activity levels of biological pathways in response to low-dose
radiation. This method allows for a comprehensive understanding of
the molecular mechanisms and biological processes affected by
radiation exposure. The second approach, based on the
techniques described in (Seninge et al., 2021a), employs machine
learning algorithms to infer and interpret the activity of biological
networks in gene expression data. By comparing the results obtained
from these two approaches, we aim to gain insights into the impacts
of low-dose radiation on gene expression patterns, identify
differentially affected pathways, and explore the potential of
machine learning in uncovering hidden biological network
activity. This comparative analysis will contribute to a better
understanding of the molecular consequences of low-dose
radiation exposure and provide valuable information for future
research in radiation biology and related fields.

2 Data

2.1 Gene expression omnibus

The data for our study was collected from the Gene Expression
Omnibus (GEO) database, a comprehensive archive of gene
expression data (Barrett et al., 2012). For our specific focus on
low-dose radiation response, we chose the human gene expression
dataset GSE431511 fromGEO. This dataset includes gene expression
profiles from human cell lines subjected to various radiation levels
and consists of 121 blood samples from five healthy male donors,
each contributing 400 mL of venous peripheral blood Nosel et al.
(2013). The samples represent a range of radiation doses, from low
to high. Prior to analysis, the GSE43151 dataset underwent a series
of preprocessing steps using R GAGE software (Luo et al., 2009).
This involved normalizing and filtering the data, resulting in
10,875 probes for further study. We excluded probes undetected
in 75% of the samples to ensure data reliability. These steps were

TABLE 1 Description of the gene expression dataset GSE43151 that was
used to investigate the molecular signatures of low-dose radiation
response in this study.

Dose level (Gy) Number of samples

0 18

0.005 16

0.01 18

0.025 18

0.05 17

0.1 18

0.5 16

1 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43151
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essential to reduce data noise and improve the identification of
significant biological pathways and their molecular characteristics.

2.2 Pathway database

We used the KEGG (Kyoto Encyclopedia of Genes andGenomes)
database to obtain a reliable set of known biological pathways
(Kanehisa and Goto, 2000). KEGG is a collection of manually
drawn pathway maps for understanding high-level functions and
utilities of biological systems. The genomic information is maintained
in the GENES database, which is a collection of gene catalogs for all
fully sequenced genomes and some partially sequenced genomes with
current annotations of gene functions. The PATHWAY database’s
higher-order functional information is augmented with a collection of
ortholog group tables for information about conserved subpathways,
which are frequently encoded by positionally related genes on the
chromosome and are especially valuable in predicting gene functions.
In our case, we identified 343 pathways relevant to the gene expression
dataset GSE43151 from the available 548 KEGG pathway maps by
discarding the pathways that do not contain any gene whose
measurement was included in GSE43151.

3 Approaches

3.1 Approach 1: probabilistic pathway
activity inference

To perform the pathway analysis, we first identified the genes
whose measurements were included in the gene expression dataset
GSE43151 for the pathways of our interest. For every pathway,
member genes that were missing in the given dataset were removed
from the gene set. Consider a pathway G with n genes gk

n
k�1. We

assume the expression of gene gk varies depending on the phenotype.
For our analysis, phenotypes were classified based on radiation
exposure: zero-dose, low-dose, and high-dose. We evaluated the
expression level of gene gk under each phenotype, assuming
Gaussian distribution for simplicity (Luo et al., 2022). The key
metric we calculated is the log-likelihood ratio (LLR) for each gene’s
expression level, represented by Lk(x):

Lk x( ) � log f1
k x( )/f2

k x( )[ ] (1)

The LLR Lk(x) indicates which phenotype is more likely based
on the expression level of gene gk. We aggregated the LLR of all genes
in a pathway to assess its overall activity, defining the pathway
activity score Sj for sample j as:

Sj � ∑n
k�1

Lk xj,k( ) (2)

Given the potential sensitivity of LLR to small data variations,
we normalized these scores to L̂k(x) using the following normalization:

L̂k x( ) � Lk x( ) − E Lk x( )[ ]��������������������
E Lk x( ) − E Lk x( )[ ]( )2[ ]√ . (3)

While the use of (1, 2) without normalization for inferring the
pathway activity level would be equivalent to using a Naive Bayes

model (NBM) for classifying the phenotype (class label) given the
expression profile of the member genes that belong to a given
pathway, this normalization step in (3) makes the pathway
activity scoring scheme diverge from the traditional NBM.

To examine the ability of a pathway to discriminate between two
phenotypes, we computed the t-test statistics scores using the
activity levels Sj for all member genes (as defined in (2)) and
averaged the absolute value of the t-test scores to compute an
aggregated differential activity score. The aggregated score–which
we refer to as the pathway activity score–was then used as an
indicator of the pathway’s discriminative power (Tian et al.,
2005). It should be noted that low-dose and high-dose samples
were analyzed separately to detect the most strongly differentially
activated pathways under each radiation exposure level. We had
three types of samples: zero radiation, low-dose radiation
(0.005 Gy–0.1 Gy), and high-dose radiation (0.5 Gy). Although
different low-dose levels of ionizing radiation have been tested,
we treated all dose levels between 0.005 Gy and 0.1 Gy as the same
type (i.e., low-dose radiation). Based on this categorization, we
ranked all relevant KEGG pathways based on the strongest
differential pathway activity between zero-dose against low-dose
radiations, and separately, based on zero-dose against high-dose
radiations.

3.2 Approach 2: pathway-constrained gene
expression analysis using VEGA

Lately, the emergence of deep generative models such as
variational autoencoders (VAEs) has facilitated the
understanding of cellular mechanistic responses under different
perturbations based on gene expression profiles (Lopez et al., 2018;
Niyakan et al., 2021). These deep models have the potential to
capture high-order nonlinear bio-molecular interactions; however,
one of their main limitations is the lack of interpretability for the
latent space that these models infer. By incorporating prior
biological knowledge such as gene pathway information,
pathway-constrained VAE-based models, for example,
VEGA–VAE Enhanced by Gene Annotations (Seninge et al.,
2021b), can provide interpretability for learned latent variables
as inferred pathway activity scores.

More specifically, in the VEGA architecture, the decoder is a
sparse single-layer neural network whose neuron connections are
mirroring the user-provided gene-pathway maps, while the
encoder embeds the input gene expression profiles into the
latent space through a nonlinear neural network. The
generative part of VEGA for reconstructing gene expression is
designed to be a masked linear decoder, in which each latent
variable (pathway) is directly connected to an output gene if this
gene is previously annotated to be a member of this pathway. This
choice of the decoder architecture in VEGA enforces the
encoding of the prior biological knowledge that genes work
together in coordination in pathways while the deep neural
network encoder and decoder capture nonlinear high-order
interactions. Here, we use the pathway prior knowledge
previously described in Section 2.2, and thus the decoder
wirings are based on the corresponding gene-pathway
mapping relationships.
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In this article, for training the VEGA models in the
experiments, we have taken a learning rate of 1e − 4 with the
Adam optimizer. We have trained all the models for a maximum of
200 epochs to avoid overfitting, with early stopping implemented
in VEGA to stop the training procedure when the training or
validation loss stops decreasing for 10 consecutive epochs. For the
encoder and decoder architectures, we have followed the
instructions in the original VEGA paper (Seninge et al., 2021b):
The encoder is composed of two layers of fully connected nodes
with the input number of features being the same as the number of
genes in the gene expression dataset and the number of its first
layer output features set to be 800. The latent space dimension is
set to be the number of extracted pathways from the KEGG
database (343 pathways as described in Sec. 2.2) plus one
additional fully connected node to capture additional data
variability, which leads to a latent space dimension of 344 in
the trained VEGA models. The decoder is a sparse single-layer
neural network as described previously to reconstruct gene
expression based on the pathway-constrained latent
representations.

Differential pathway activities are often of interest when
contrasting two different groups of cells. Inspired by the Bayesian
hypothesis testing procedure from Lopez et al. (2018), for the
differential pathway activity analysis, the posterior probabilities of
mutually exclusive hypotheses are approximated through repeated
Monte Carlo sampling of the correspondingly derived VEGA’s
latent variable distributions. Then, the pathways are ranked by
estimated Bayes factor (Held and Ott, 2018), the ratio of the
hypothesis posteriors. The sign of the corresponding Bayes factor
indicates which of the null and alternative hypotheses is more likely,
and its magnitude represents the significance level of the pathway
differential activity.

4 Results

4.1 Threshold for categorizing
radiation doses

Defining low and high radiation doses remains a debated topic
in scientific literature and regulatory standards. The National
Council on Radiation Protection and Measurements (NCRP)
suggests low doses are typically below 0.1 Gy, while high doses
exceed 1 Gy (Wood, 1994). Our study’s gene expression data ranges
from 0.005 Gy to 0.5 Gy, fitting within the NCRP’s low-dose
category. We analyzed pathway activities across these doses to
understand their differential effects.

Figure 1 presents a box plot representation, where the x-axis
represents the aggregated differential activity score. In our case, it is
aggregated t-test score, which is acquired by averaging the absolute
t-test scores of individual genes within a specific pathway. On the
other hand, the y-axis represents the radiation dose level. The
findings from the plot unveil different patterns in the computed
pathway activity scores across various radiation doses. First, the box
plot illustrates that samples exposed to a radiation dose of 0.5 Gy
exhibit the lowest pathway activity scores among all the considered
doses. Similarly, samples exposed to a dose of 0.05 Gy display
relatively lower pathway activity scores, implying a comparatively
milder impact on gene expression when compared to other low
doses. In contrast, samples exposed to different radiation dosages
demonstrate considerably higher pathway activity scores, indicating
greater differential separability in terms of gene expression profiles.
Moreover, the plot reveals a trend as the radiation dose increases
from 0.005 Gy to 0.025 Gy. The computed pathway activity scores
mean progressively rise, indicating an overall shift towards higher
pathway activity scores. This observation suggests that as the
radiation dose escalates within this range, the differential
activities in gene expression become more pronounced.

Figure 2 provides an in-depth analysis of the pathway-based
differential activity for samples categorized as low-dose or high-
dose, following the establishment of a threshold of 0.1 Gy. The
experiment follows a sequential approach, starting from the lowest
dose of 0.005 Gy and progressively incorporating additional low
doses in ascending order. Recall that the pathway activity score
computation utilizes a single-sample t-test approach. In this context,
the null hypothesis posits that the pathway activation score
maintains a mean of 0, thereby lacking informative content
regarding the data. Conversely, the alternative hypothesis
suggests a nonzero mean for the activity test, implying positive
values for Low samples and negative values for zero samples.
Consequently, the computation involves evaluating the ratios
p1(x)/p2(x) when x originates from class 1, and conversely, p2(x)/
p1(x) when x originates from class 2. In Figure 2, as more samples
from various low dosages are included in the analysis, the computed
pathway activity scores demonstrate a consistent upward trend.
Note a higher t-statistic corresponds to an increased propensity for
rejecting the null hypothesis. With the progressive inclusion of an
expanded set of low-dose samples achieved through the
combination of diverse low doses, the computed t-statistic
exhibits a notable increase in magnitude. This phenomenon
serves to strengthen the evidential basis that supports the
rejection of the null hypothesis in favor of the alternative

FIGURE 1
Box plot representation of pathway activity scores across
radiation doses. The pathway activity score computation involves a
two-step process. In the first step, the aggregated log-likelihood ratio
(LLR) is calculated for each pathway. For instance, considering a
specific pathway comprising 20 genes, the aggregated LLRs are
determined using Eq. 2. Subsequently, the second step involves the
calculation of the pathway activity score. In this context, for a radiation
dose level of 0.005, corresponding to 16 samples (refer to Table 1), the
pathway activity score is derived by averaging the absolute t-test
scores of the aggregated LLRs across these 16 samples.
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hypothesis. This finding provides empirical support for the selection
of 0.1 Gy as a reasonable threshold to distinguish between low-dose
and high-dose radiation in our study. Meanwhile, despite the limited
quantity of data available, the shift in the computed LLR distribution
consistently follows a monotonic pattern. This suggests that the
adopted pathway-based differential activity analysis can effectively
capture the dose-dependent effects on gene expression (Luo et al.,
2022). A potential issue with adding more low-dose data is the
increase in sample size and statistical power, potentially leading to
higher t-test scores without a change in effect size. To address this,
we conducted an analysis in reverse order, starting with 0.1 Gy, then
including 0.1 and 0.05 Gy, and continuing in this manner. This
reverse-order analysis confirmed consistency with our initial
ascending-order findings, supporting the robustness of our
study’s conclusions.

4.2 Integration of low-dose data

Wewould also like to highlight the uniqueness of samples across
different radiation dosage levels in our study. Despite using a

threshold of 0.1 to distinguish between low-dose and high-dose
samples, we still have five distinct dosage levels falling within the
low-dose category. It is important to note that due to the limited
number of samples, which is a common scenario in biological
experiments, the results of the pathway-based differential activity
analysis can vary among different dosages. To provide a
comprehensive overview, Table 2 presents the top five pathways
ranked based on the calculated LLRs for each dose. It is worth
mentioning that the analysis was performed independently for each
dosage level, and the low-dose samples are divided into subgroups
based on their respective dosages. Based on the findings presented in
Table 2, there is no overlap observed among the top five ranked
pathways. Each of the identified pathways in the low-dose and high-
dose categories appears to be distinct and unique, without any
shared representation within the top five rankings.

Figure 3 presents an extended analysis of the results. The x-axis
of Figure 3 represents the number of KEGG pathways, while the
y-axis represents the number of intersected pathways observed
across the experiments. Each experiment corresponds to a
specific radiation dosage level, and the pathways are ranked
accordingly. The figure comprises a line plot that illustrates the

FIGURE 2
Pathway-based analysis of log-likelihood ratios (LLRs) for low-dose and high-dose samples, supporting the threshold of 0.1 Gy as a distinguishing
criterion. The difference observed in the analysis outcomes depicted in Figures 1, 2 arises from their respective experiment settings. Figure 1 shows
individual pathway activity scores associatedwith each discrete dose level. In contrast, Figure 2 presents pathway activity scores that commence from the
lowest dose level, progressively incorporating additional low-dose samples in an ascending sequence, as indicated by the annotations on the y-axis
labels. This progressive inclusion approach offers a nuanced perspective on the pathway activity trends across the spectrum of low doses.
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list intersection of the pathways. For example, the blue line in the
plot is obtained by iteratively counting the elements that are
common to both the 0.005 Gy and 0.01 Gy experiments. This
line represents the intersection of pathways observed between
these two dosage levels. By comparing the different lines, we can
observe that as we include more experiments to identify the number
of overlapped pathways, the slope of the line gradually decreases.
This suggests that as the number of experiments increases, the extent
of pathway intersection diminishes. In particular, without
distinguishing between low-dose and high-dose samples, we find
that there are no overlapped pathways among the top 50 ranked
pathways (See the purple line). This finding provides further
evidence for the intrinsic complexity pattern inherent in the gene
expression data itself.

Based on the analysis results presented in Table 2; Figure 3,
there is evidence to suggest that combining all low doses and
conducting a joint analysis, referred to as the low-dose joint
analysis, would yield better insights. To validate this

assumption, we performed the same intersection analysis
between each experiment and the low-dose joint experiment.
The results of this analysis are presented in Figure 4. In
Figure 4, we observe a distinct difference compared to Figure 3.
The low-dose joint analysis successfully integrates information
from different doses, and the intersections between different doses
and the low-dose joint experiment exhibit a similar pattern. This
suggests that by combining the low-dose samples, we can capture
common pathway interactions that are shared among different
low-dose samples. Within the top 50 pathways, we observe a
notable number of pathways that are overlapped between
different comparison experiments and the low-dose joint
experiment. This finding indicates that the integration of low-
dose samples enhances the identification of shared pathways across
various radiation dose levels. By pooling the low-dose data
together, we can capture common molecular mechanisms and
gain a more comprehensive understanding of the underlying
biological processes affected by radiation exposure.

TABLE 2 Top five ranked pathways for each radiation dosage level. The color scheme used in the table distinguishes between low-dose (represented by the
color blue) and high-dose (represented by the color red). The pathway name can be retrieved by searching for the entry ID number at https://www.genome.
jp/kegg/kegg2.html.

Rank 0.005 Gy 0.01 Gy 0.025 Gy 0.05 Gy 0.1 Gy 0.5 Gy

#1 hsa05167 hsa05131 hsa04714 hsa05110 hsa05146 hsa05202

#2 hsa05170 hsa05130 hsa04723 hsa04015 hsa05222 hsa04110

#3 hsa04144 hsa04120 hsa05415 hsa05012 hsa04120 hsa04310

#4 hsa04120 hsa04022 hsa05166 hsa04966 hsa05212 hsa05203

#5 hsa05022 hsa04922 hsa01100 hsa00410 hsa05131 hsa04390

FIGURE 3
Analysis of pathway intersection across different radiation dose levels.
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4.3 Pathway-based differential activity
analysis results

We conducted two distinct experiments to explore the effects of
radiation exposure. The first experiment compared high-dose
radiation (0.5 Gy) to zero-dose, while the second experiment
focused on comparing low-dose radiation (including all low-dose
samples) to zero-dose. To assess the impact of radiation on different
pathways, we performed an extensive evaluation of relevant

pathways in the KEGG database. The pathways were ranked
based on their discriminative power using the methodology
described in Section 3.1. This ranking approach considered the
accumulated differential activity score, which was computed by
averaging the absolute values of the t-test scores of the genes
within each pathway and estimating the corresponding p-values.
In Figure 5, we present the top five pathways that exhibited the most
significant differential activation in response to low-dose radiation.
Similarly, Figure 6 showcases the top five pathways that

FIGURE 4
Intersection analysis of individual experiments and low-dose joint analysis.

FIGURE 5
Top five pathways showing significant differential activation in
response to low-dose radiation compared to zero-dose.

FIGURE 6
Top five pathways showing significant differential activation in
response to high-dose radiation compared to zero-dose.
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demonstrated the highest degree of differential activation under
high-dose radiation conditions.

The hsa04120-Ubiquitin mediated proteolysis pathway emerges
as the top pathway in the experiment of low-dose radiation.
Accumulating evidence suggests that low-dose radiation has the
ability to modulate this pathway, resulting in the degradation of
specific proteins involved in essential cellular processes, including
cell cycle regulation and DNA repair. For instance, Zheng et al.
(2019) provides insights into the impact of low-dose radiation on the
Ubiquitin-mediated proteolysis pathway. It is observed that
exposure to low-dose radiation selectively triggered the
degradation of specific cell cycle regulators, such as cyclin-
dependent kinase inhibitors, through the ubiquitin-proteasome
pathway. Similarly, the work in He et al. (2019) shed further
light on the link between low-dose radiation and the Ubiquitin-
mediated proteolysis pathway. Their study demonstrated that low-
dose radiation exposure can activate this pathway, resulting in the
degradation of specific proteins involved in DNA repair, cell cycle
regulation, and apoptosis.

In experiments involving high-dose radiation, the hsa05202-
Transcriptional misregulation in cancer pathway was notably
prominent. Research has shown that high-dose radiation affects
various cellular processes at the transcriptional level, particularly
those linked to cancer. It was observed that this pathway plays a
significant role in critical cellular functions such as proliferation,
survival, cycle progression, and apoptosis. These processes are
particularly vital in understanding the cellular alterations induced
by high-dose radiation, illustrating the pathway’s impact on cellular

dynamics in such conditions (Choudhary et al., 2020; Wei
et al., 2021).

Next, we examined the effects of different radiation dosages on
the top-ranked pathways that are highly sensitive to low-dose
radiation exposure. As discussed earlier in Section 3.1, we
employed a probabilistic pathway activity inference scheme (Su
et al., 2009), which can be seen as a simplified probabilistic
graphical model (PGM), specifically an NBM (Naive Bayes
Model). Equation 2 was used to calculate the pathway activity
score based on the log-likelihood ratios (LLRs) of the individual
genes within the pathway. Our objective was to determine whether
this PGM, designed to detect the presence of low-dose radiation
exposure, consistently produces reliable activity inference results
when the radiation dosage varies. Figure 7 illustrates the inference
results obtained from the PGM trained to differentiate between zero-
dose and low-dose samples. The y-axis represents the aggregated
LLRs, while the x-axis represents the radiation dose levels. To
visualize the data distributions, we employed violin plots for each
dosage level, which show the range, median, and distribution of the
accumulated LLRs. The results focus on the top five pathways that
exhibited the highest responsiveness to low-dose radiation. As
depicted in Figure 7, all these pathways displayed similar trends,
with the inferred differential activity levels generally decreasing as
the radiation exposure level increased. Due to the limited number of
available samples for analysis, the violin plots show a wide
distribution range. However, the mean and median values
provide a clear indication of the observed trend. These findings
suggest that these pathways, along with the gene expression profiles

FIGURE 7
The pathway activity level measured in terms of the accumulated log-likelihood ratios (LLRs) in response to different levels of radiation exposure.
Dose-dependent activity level is shown for the top five pathways that were most differentially activated under low-dose radiation exposure. (A) Ubiquitin
mediated proteolysis (B)Natural killer cell mediated cytotoxicity (C) Rap1 signaling pathway (D)Mitophagy (E) Shigellosis. All plots in (A–E) for the top low-
dose response pathways display similar trends, where the differential activity levels reflecting the presence of potential molecular signatures of low-
dose radiation response decrease as the radiation dose level increases.
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of their constituent members, may serve as potential molecular
signatures associated with the biological response to low-dose
radiation exposure.

4.4 Pathway analysis results using VEGA

To decipher the response differences with different radiation
exposure levels, we further discuss the pathway activity inference
results of applying VEGA, which may help identify nonlinear high-
order molecular interactions as previously described in Section 3.2.
The gene expression data were pre-processed by following the same
steps noted in Section 2.1. We have separated the normalized gene
expression data into two different sets of samples based on radiation
levels explained in Section 4.1: 1) Samples with zero- and low-dose
exposure; and 2) Samples with zero- and high-dose radiation
exposure. For each of these two different groups of samples, a
VEGA model has been trained for 200 epochs to embed the gene
expression data into the lower-dimensional interpretable pathway-
constrained latent space to infer the pathway activity.

Figure 8 displays the UMAP (UniformManifold Approximation
and Projection) (McInnes et al., 2020) embedding of the derived
latent space by the corresponding VEGA models when trained on
the two groups of gene expression samples. As indicated in these
visualized embeddings in Figure 8, the latent space learned by VEGA
has captured the transcriptomic response to different radiation
levels as embedded points are clustered together based on their
corresponding radiation exposure in both combinations of the
(zero,low)-dose and (zero, high)-dose sample groups. While there
are differential pathway activities clearly distinguishing zero- and
high-dose samples, differential activities between zero- and low-dose
samples can be more subtle and require careful investigation.

To identify the KEGG pathways that are differentially activated
in either low-dose or high-dose radiation exposure, compared to
samples with no radiation exposure, we applied the Bayesian
hypothesis testing procedure that has been implemented in
VEGA as described in Section 3.2 on both the (zero,low)-dose
and (zero, high)-dose sample groups.

Figures 9A–C show the same UMAP embedding plots of the
corresponding VEGA latent space when trained on zero- and low-
dose samples as shown in Figure 8A with the samples now colored
according to the VEGA-inferred activities of Ubiquitin mediated
proteolysis, Natural killer cell mediated cytotoxicity and
Rap1 signaling pathway KEGG pathways, respectively. These are
the top three pathways that we identified as the most differentially
activated in the presence of low-dose radiation and discussed them
in detail in Section 4.3. These pathways as shown in these plots have
differential VEGA-derived pathway activity scores between low- and
zero-dose samples. To quantify the pathway’s differential activity
between low- and zero-dose samples, we have calculated the Bayes
factors for each of the KEGG pathways as we described previously.
The Natural killer cell mediated cytotoxicity pathway that was
previously identified as the second top differentially activated
pathway in the presence of low-dose radiation by our proposed
pathway-based analysis, is also ranked as the top differentially
activated pathway in the trained VEGA model by having the
loge(|BF|) of 27.6. The calculated loge(|BF|) for the Ubiquitin
mediated proteolysis and Rap1 signaling pathway KEGG pathways
was 3 and 2.6, respectively. There is strong evidence for the
differential activation of these pathways with loge(|BF|) greater
than 2.3 (equivalent to having |BF| > = 10) in the Bayesian
hypothesis testing framework. Additionally, we have observed
that low- and zero-dose samples are well-segregated in the two-
dimensional VEGA-based pathway activity score visualization of the

FIGURE 8
UMAP embedding of the latent space inferred by the VEGA models trained on (A) zero and low-dose, and (B) zero and high-dose radiated samples
colored by their corresponding radiation exposure levels.
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top two KEGG pathways resulting from our differential pathway
activity analysis as shown in Figure 9D. Overall, these VEGA-based
pathway analysis results confirm our previous findings derived by
probabilistic pathway-based analysis of gene expression profiles in
low-dose radiation exposure.

We further perform VEGA-based pathway analysis for the
(zero, high)-dose group of samples. By visualizing the UMAP
embedding plots of the VEGA latent space trained with zero- and
high-dose samples as shown in Figure 8B with the samples colored
according to the corresponding VEGA-inferred activities of
Transcriptional misregulation in cancer, Cell cycle and Wnt
signaling pathway KEGG pathways, we can observe their
differential activity as depicted in Figures 9E–G respectively.
We have previously identified these three pathways as the top
three differentially activated KEGG pathways in the presence of
high-dose radiation as shown in Figure 6. Same as what we have
done for the (zero,low)-dose sample groups, we further calculate
the Bayes factors for these KEGG pathways by following the same
statistical hypothesis testing procedure implemented in VEGA.
The calculated loge(|BF|) values for the Transcriptional
misregulation in cancer, Cell cycle and Wnt signaling pathway
pathways are 2.8, 2.8 and 3. As the Bayes factor values suggest,
these three pathways are also detected to be differentially activated
in the presence of high-dose radiation by VEGA as well since they
all have loge(|BF|) higher than the significance level threshold of
2.3. Moreover, in Figure 9H where the samples (colored by their
radiation exposure levels) are plotted according to the bivariate
VEGA pathway activity scores of the top two KEGG pathways
resulting from our differential pathway activity analysis, we can see

that the zero- and high-dose samples are separated clearly. This
again demonstrates the discriminative power of the top most
differentially activated pathways that we identified previously.

It is worth mentioning that VEGA as a deep generative model
has the potential to capture high-order nonlinear interactions in
differential pathway activities that might be missed in a pathway-
based analysis using Eq. 2 due to the simplifying assumptions made
therein. For example, the pathways Cushing syndrome and
Riboflavin metabolism are among top five differentially activated
pathways when comparing (zero,low)- and (zero, high)-dose
samples by VEGA, with 27.6 and 4.5 loge(|BF|) values
respectively, had relatively small pathway activity scores by Eq. 2
and were not among differentially activated pathways by the first
approach. Several studies have discussed and reported the
effectiveness of low-dose radiotherapy in the treatment of
patients with Cushing’s disease (Ahmed et al., 1984; Mahmoud-
Ahmed and Suh, 2002); confirming VEGA-inferred pathway
differential activity of Cushing syndrome pathway
(loge(BF) = −27.6) in (zero,low)-dose differential activity analysis.
These results are indicative of VEGA’s capability in unraveling more
complex non-linear interactions inherent in gene expression data as
well as the different modeling perspectives of the two pathway-based
analysis approaches studied in this work.

In summary, VEGA-based pathway analysis confirms the top
differentially activated pathways derived from the statistical
pathway-based analysis of gene expression profiles based on the
probabilistic graphical model. It also has the potential of capturing
additional differentially activated pathways considering non-linear
interactions.

FIGURE 9
UMAP embedding of the latent space inferred by the VEGA models with the samples colored according to the VEGA-inferred activities of our
identified top three most differentially activated KEGG pathways when trained on zero- and low-dose samples (A–C) and zero- and high-dose samples
(E–G). Bivariate VEGA-inferred pathway activity scores plots of the top two KEGG pathways resulting from our differential pathway activity analysis on
(zero,low) and (zero, high) dose samples are shown in (D,H) respectively.
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5 Conclusion

In this study, we conducted a comparative analysis aiming to
investigate the response to low-dose radiation exposure and identify
potential molecular mechanisms involved. To achieve this, we first
performed a pathway-based gene expression analysis. Utilizing a
probabilistic pathway activity inference scheme, we assessed the
differential activity levels of specific pathways under varying degrees
of radiation exposure. Gene expression patterns under the radiation
exposure at six different dose levels ranging from 5mGy to 500 mGy
were investigated, where the measurements in the original study (Nosel
et al., 2013) weremade using blood samples obtained from five different
donors during five independent irradiation sessions. This method
involved aggregating the log-likelihood ratios (LLRs) of member
genes within each pathway to infer their differential activity. By
employing this approach, we were able to accurately detect pathways
where member genes displayed subtle yet consistent coordinated
expression patterns in response to low-dose radiation exposure. To
prioritize the pathways, we conducted an extensive search through the
KEGG database, focusing on their differential activity levels influenced
by low-dose radiation exposure. Through this comprehensive analysis,
we successfully identified the top pathways potentially associated with
the response to low-dose radiation. We have also performed additional
analyses leveraging the pathway-constrained deep neural network
model, VEGA, where the comparative analysis also confirms the
detected differential pathway activities based on pathway activity
scores via aggregated LLRs of member genes. Findings in this study
reflect the complicated nature of the biological response to low-dose
ionizing radiation, as well as the fact that low-dose exposures affect
many different gene pathways that are not significantly altered after
higher doses of radiotherapy.

To further enhance our understanding of pathway-based responses
to different perturbations, pathway-constrained models that can infer
aggregated activity scores capturing nonlinear interactions will be
further developed incorporating the perturbation labels and
conditions as supervised models to better study coordinated
transcriptomic responses to different radiation exposure conditions
(Niyakan et al., 2024). Another intriguing avenue for future
investigation involves leveraging large language models to extract
knowledge about protein interactions, pathways, and gene regulatory
relationships from relevant scientific literature (Park et al., 2023b; Park
et al., 2023a) and integrating them into the analysis. This has the
advantage of detecting and utilizing context-specific molecular
interactions (or other relevant prior scientific knowledge) for
integrative analysis of transcriptomic data–instead of restricting the
analysis to known pathways, which are static (i.e., not context-specific)
and potentially incomplete. By incorporating such “context-specific”
knowledge extracted by LLMs as priors, we may significantly advance
our comprehension of the molecular signatures underlying the cellular
response to low-dose (as well as high-dose) ionizing radiation exposure.
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