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Metagenomic sequencing has revolutionized our understanding ofmicrobiology.
While metagenomic tools and approaches have been extensively evaluated and
benchmarked, far less attention has been given to the reference sequence
database used in metagenomic classification. Issues with reference sequence
databases are pervasive. Database contamination is the most recognized issue in
the literature; however, it remains relatively unmitigated in most analyses. Other
common issues with reference sequence databases include taxonomic errors,
inappropriate inclusion and exclusion criteria, and sequence content errors. This
review covers ten common issues with reference sequence databases and the
potential downstream consequences of these issues. Mitigation measures are
discussed for each issue, including bioinformatic tools and database curation
strategies. Together, these strategies present a path towards more accurate,
reproducible and translatable metagenomic sequencing.
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1 Introduction

Metagenomic sequencing has unlocked the ability to rapidly study and understand the
content and role of microbes in clinical, environmental, industrial and research
applications. It has enabled the diagnosis of disease, identification of pandemic agents
and revealed the microbial importance of our microbiome and environment (Tringe and
Rubin, 2005; Gilbert et al., 2018; Chiu and Miller, 2019; Huang et al., 2020). After random
sequencing of DNA or RNA, metagenomic analysis typically involves comparison of
sequenced reads or assembled contigs against a reference database for taxonomic
classification. While the bioinformatic methods, including quality control, preprocessing
and method of classification are vital to translating this data into knowledge and
understanding, the reference sequence database serves as a ground truth for
comparison and is of paramount importance. Changing the reference sequence database
can lead to significant changes in the accuracy of taxonomic classifiers, and therefore the
understanding derived from analysis (Ye et al., 2019; Wright et al., 2023). In a sensationalist
example, Marcelino, Holmes and Sorrell demonstrated the detection of turtles, bull frogs
and snakes in human gut samples by changing the reference sequence database of a
published analysis (Marcelino V et al., 2020). More practically, changes to the reference
sequence database affect the number of reads classified, the recall and precision of taxa,
computational efficiency of classification, and diversity and distance metrics (Méric et al.,
2019; Gihawi et al., 2023; Wright et al., 2023).

It is well-established that issues with reference sequences databases are pervasive.
Contamination is probably the most recognized database issue; systematic evaluations have
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identified 2,161,746 contaminated sequences in NCBI GenBank and
114,035 contaminated sequences in RefSeq, its higher quality subset
(O Leary et al., 2016; Steinegger and Salzberg, 2020). Others have
reviewed causes and mitigation strategies for sequence
contamination (Cornet and Baurain, 2022). However, database
issues go well beyond contamination, and default databases used
in the most popular tools are affected by taxonomic errors,
inappropriate inclusion and exclusion criteria, and errors with
sequences themselves. This phenomenon is a result of most
metagenomic tools simply mirroring NCBI resources, including
NCBI GenBank, RefSeq, Taxonomy, and BLAST nucleotide
database (nt), into their database (Kim et al., 2016; O Leary
et al., 2016; Breitwieser et al., 2018; Wood et al., 2019; Piro et al.,
2020; Schoch et al., 2020; Blanco-Míguez et al., 2023).

These resources have undergone important and extensive
curation by the NCBI team, which is reviewed elsewhere (O
Leary et al., 2016; Schoch et al., 2020). They are also the only
resources, to date, which encompass all taxonomic kingdoms. We
therefore choose to focus on them in this review. Genome
Taxonomy Database (GTDB) and MetaPhlAn have made efforts
to curate reference sequence databases; however, their curation is
almost entirely limited to prokaryotes, precluding vital
understanding of most ecological niches which extend to viruses,
fungi and other eukaryotes (Parks et al., 2022; Blanco-Míguez et al.,
2023). Furthermore, applications of the GTDB and MetaPhlAn
databases are limited, as these resources do not follow medically

accepted taxonomy. For example, both GTDB and MetaPhlAn
collapses similar species such as Escherichia coli and Shigella
spp. into a single taxon (Parks et al., 2020; Blanco-Míguez
et al., 2023).

A comprehensive list of database issues, along with examples
and mitigation strategies, has yet to be compiled. While not
exhaustive, this review covers ten common issues with reference
sequence databases and how to mitigate them (Table 1). Issues
which are prevalent and problematic, yet beyond the scope of this
review, include synonymous taxonomic names, protein database
curation, database versioning and provenance, and regulatory
compliance. This review also does not cover curation of
antimicrobial resistance, plasmid sequence and strain typing (e.g.,
core genome multilocus sequence typing) databases, which in our
experience, are even more technically complex and plagued with
challenges compared to reference sequence databases.

2 Issues and mitigation strategies

2.1 Incorrect taxonomic labelling

Taxonomic misannotation, or simply, assigning the incorrect
taxonomic identity to a sequence, is a common cause of database
error. Misannotation may result in false positive taxa detections,
false negative detections or imprecise (but technically correct)

TABLE 1 Summary of popular issues with reference sequence databases and mitigation strategies.

Issue Mitigation strategies

1. Incorrect taxonomic labelling • Comparison of sequences against type material

• Extensive database testing and use

2. Unspecific taxonomic labelling • Review of label distribution across ranks

• Identification of unspecific taxon names, such as those including “sp.”

3. Taxonomic underrepresentation • Broad database inclusion criteria

• Sourcing of sequences from multiple repositories to fill underrepresented taxa

4. Taxonomic overrepresentation • Selective inclusion criteria

• Sequence deduplication or clustering

5. Inappropriate inclusion or exclusion of host, vectors and non-microbial
taxa from database

• Inclusion of best available host reference genome

• Intentional inclusion and exclusion of taxa tailored for the ecological niche under study

• Inclusion of common vector and contaminating sequences

6. Partitioned sequence contamination • Assessment of sequences with tools such as BUSCO, CheckM, EukCC, compleasm and others
(Parks et al., 2015; Saary et al., 2020; Manni et al., 2021; Huang and Li, 2023)

7. Chimeric sequence contamination • Assessment of sequences with tools such as GUNC, CheckV, Kraken2 or Conterminator (Wood
et al., 2019; Steinegger and Salzberg, 2020; Nayfach et al., 2021; Orakov et al., 2021)

8. Poor quality reference sequences • Strict quality control of included sequences for fragmentation, completeness, circularity and
other measures

9. Low complexity masking • Masking of low complexity sequences if compatible with the classification algorithm

10. Database maintenance and updating • Team approach to database management

• Dedicated resources for database curation and updating

• Automation of quality control procedures
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classifications. Misannotation is usually the result of data entry error
or incorrect identification of the sequenced material by a data
submitter (Federhen, 2015). Partly, this is a consequence of the
lack of a standard for the taxonomic annotation of sequences by a
submitter, or may also result from failure of the submitter to adhere
to existing standards (Table 2). While conventional techniques, such
as matrix-assisted laser desorption/ionization mass spectrometry
(MALDI-TOF MS), biochemical tests and 16S rRNA gene
sequencing are generally accurate for bacterial identification, they
are susceptible to error (Janda and Abbott, 2007; Patel, 2015). For
example, MALDI-TOF MS and 16S rRNA gene sequencing cannot
reliably differentiate closely related organisms such as E. coli and
Shigella species, which have near-identical 16S rRNA gene
sequences (Patel, 2015; Devanga Ragupathi et al., 2018).
Compounding issues with 16S rRNA gene sequencing is the fact
that it only reflects a single locus of a prokaryotic genome and does
not encapsulate the complexities of the core and accessory genome,
including hundreds to thousands of genes which undergo evolution
and horizontal gene transfer. Similar to Issue #3 in this review, older
systems such 16S rRNA gene sequencing and MALDI-TOF may
misclassify organisms if the true identity is missing from the
reference database (Patel, 2015). Fungal, viral and parasitic
identification may be even more complicated, with many
laboratories still relying on microscopy or nucleic acid
amplification for identification. Novel and emerging organisms
are also particularly prone to misidentification.

Taxonomic misannotation is pervasive in NCBI GenBank and
RefSeq: it has been estimated to affect 3.6% of prokaryotic genomes
in GenBank and approximately 1% of its curated subset RefSeq
(Ciufo et al., 2018; Lupo et al., 2021). In 2018, NCBI reported that
they were flagging 75 genome submissions per month for review
based on unexpected taxonomic annotation, and that number has
likely only grown since (Ciufo et al., 2018). While NCBI performs
review of submitted data for accurate taxonomic classification,
GenBank records are owned by the data submitter and cannot be
modified by NCBI. Furthermore, NCBI may not have necessary data
available to them to confirm taxonomy, with a reported
137,000 GenBank records unable to be validated due to
insufficient data (Kannan et al., 2023). Certain taxonomic
branches may be more affected by error, with up to 35.9%
taxonomic discordance reported for the Aeromonas genus (Beaz-
Hidalgo et al., 2015). Many individual cases of misannotation are
reported in the literature as well. For example, NCBI assembly GCF_
900453015.1 was originally misidentified as Micrococcus lylae, with

its identity since updated to Macrococcus caseolyticus and two
Raoultella ornithinolytica assemblies (GCA_000703465.1 and
GCA_000703485.1) were originally submitted as E. coli
(Federhen, 2015; Lupo et al., 2021). A comprehensive list of
misannotations is beyond the scope of this review.

Misannotated sequences can be systematically detected and
either corrected or excluded from a reference sequence database.
Detection of misannotated sequences can be accomplished by
comparing sequences against a known gold-standard or other
sequences in the database (Beaz-Hidalgo et al., 2015; Ciufo et al.,
2018; Kannan et al., 2023). For example, comparing CP001654,
submitted as Dickeya dadantii, to type material (trusted material
deposited in at least two culture collections), enabled NCBI to
correct its annotation to Dickeya paradisiaca (Federhen, 2015).
Generally, species follow a 95%–96% Average Nucleotide Identity
(ANI) demarcation enabling outliers to be identified and reviewed
(Ciufo et al., 2018). Not all species follow this rule, such as E. coli and
Shigella spp, which maintain legacy exceptions, and therefore care
must be taken when clustering sequences by ANI.

Others, such as the FDA-ARGOS project, have suggested a more
restrictive approach where only sequences with a robustly verified
identity are included in the database (Sichtig et al., 2019). While
technically appealing, this approach is practically onerous and has
resulted in databases with significant taxonomic
underrepresentation (Issue #3), precluding their widespread
adoption (Gauthier et al., 2023). Finally, a database testing
process can detect taxonomic misannotation. Processing
thousands or more of diverse samples frequently reveals false
positive detections which can be investigated further. Reference
sequence databases for use in critical applications, such as clinical
metagenomics, should be validated across thousands of samples and
manually curated to ensure appropriate detection and correction of
edge cases.

2.2 Unspecific taxonomic labelling

Occasionally, sequences are technically annotated to an accurate
taxon but not annotated to the most specific leaf in the taxonomic
tree. As an extreme example, annotation of all bacterial sequences to
the NCBI taxonomic node “Bacteria” would preclude speciation of
bacteria in a sample. The currently accepted NCBI taxonomy
includes deep branching taxonomies to the strain, subtype and
serotype rank; reference sequences should be annotated to the
deepest node in the taxonomic tree while maintaining accuracy.
Analysis tools may then leverage sequence homology, coverage and
other factors to determine the most confident or accurate taxonomic
classification of a query sequence (Chandrakumar et al., 2022).

A real example of unspecific taxonomic labelling causing
imprecise metagenomic analysis is Respiratory Syncytial Virus
(RSV). RSV subgrouping has clinical and public health
implications, and assigning reads to a single RSV subgroup via
metagenomic classifier should be feasible based on the relatively low
absolute nucleotide identity shared between the two subgroups and
absence of subgroup recombination (Yu et al., 2021). However,
public sequence annotation precludes this analysis because both
subgroup A and B RefSeq sequences are annotated to the Human
orthopneumovirus taxon (ID 11250), despite there being more

TABLE 2 Example standards for taxonomic curation and assignment.
Examples encompass a mix of kingdom- and clade-specific standards.

Taxonomic group Example standard

All Stewart et al. (2018), Yu et al. (2023)

Bacteria and Archaea Bowers et al. (2017)

Viruses Kuhn et al. (2014), Ladner et al. (2014), Roux
et al. (2019)

Fungi Lücking et al. (2021)

Symbiont-associated micro-
organisms

Jorge et al. (2022)
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specific taxonomic nodes in NCBI’s taxonomy (Muñoz-Escalante
et al., 2019; Ramaekers et al., 2020).

Another example of unspecific taxonomic labelling is SARS-
CoV-2. In NCBI’s taxonomy, SARS-CoV-2 is a child of viral species
SARS-CoV with rank “no rank.” However, some data submitters
have only annotated their submitted SARS-CoV-2 sequences to the
parent viral species SARS-CoV. If one includes the NCBI Viral
Genome Neighbors in their reference sequence database; as
suggested by Breitwieser, Baker and Salzberg; one will also
include 37 sequences labelled as SARS-CoV (NCBI taxonomic ID
694009) (Breitwieser et al., 2018). Inspecting these sequences reveals
11 were added to NCBI after 2014 and at least nine of 11 are
annotated by the submitter as SARS-CoV-2. Classifying reads
against a database with these sequences will result in most SARS-
CoV-2 reads being classified to the species rank based on lowest
common ancestor. While technically accurate, reporting
classification of these reads as SARS-CoV may cause confusion
with the eradicated virus from the 2003 SARS-CoV outbreak, and
results in imprecise abundance estimation.

Unspecific taxonomic labelling can be systematically corrected
with a detailed examination of taxon labelling and distribution in a
database. For example, sequences annotated to taxa with high ranks,
such as genus, family or above, can be investigated to determine if
they can be classified to lower ranks using their annotation or
sequence homology and coverage. Occasionally these sequences
will be annotated to a specific rank but with an imprecise name;
there are 307 sequences in RefSeq as of August, 2023 with taxon label
“Escherichia sp.,” and therefore keywords must be used to identify
these imprecisions. Taxa important for specific applications, such as
the aforementioned RSV and SARS-CoV-2 in public health and
clinical metagenomics, can be manually corrected with curation.

2.3 Taxonomic underrepresentation

Ensuring broad taxonomic representation for the biological
specimen and sequencing application is paramount to achieving
accurate classification. It is impossible to precisely detect a taxon as
present if not represented in the reference database, and reads may
match to a near neighbor, giving a false positive classification. Even
advanced methods of sequence classification leveraging absolute
nucleotide identity or conserved markers may be able to detect an
organism without reference sequence but will not be able to identify
to the species rank or below (Chandrakumar et al., 2022).

Some popular databases, such as that used in MetaPhlan, do not
include all taxonomic kingdoms by design and are therefore not
suited to applications such as clinical metagenomics requiring
detection of all pathogens, including viruses and eukaryotes
(Blanco-Míguez et al., 2023). Outside of these cases, popular
taxonomic databases, including RefSeq, vastly underrepresent the
taxonomic diversity of many ecological niches. For example, more
than 40% and 60% of metagenomic reads from skin and stool,
respectively, remained unmapped to any genomic positions when
analyzed against a reference database that combined the Human
Microbiome Project, and manually selected bacterial, archaeal, and
fungal genomes from RefSeq that are present on human skin (Oh
et al., 2016). Other studies have supported these estimates: 58 ± 2.2%
of human gut species richness was estimated to be uncharacterizable

with a different reference database composed of bacterial and
archaeal genomes (Sunagawa et al., 2013).

Even if a species is present in a database, underrepresentation of
strain diversity may cause missing accessory genes or sequence
variation, leading to missed detection. As of July, 2023, there are
35,864 bacterial species in RefSeq represented by only a single
genome. Yet, the pangenome of many bacterial species continues
to grow after one thousand genomes are sequenced (Park et al.,
2019). Furthermore, many databases particularly underrepresent
viruses, fungi and parasites, impacting detection and classification
accuracy. Breitwieser, Baker and Salzberg found that including
NCBI Viral Genome Neighbors led to an increase of up to 20%
more reads classified using KrakenUniq in comparison to the
standard RefSeq database (Breitwieser et al., 2018). Lu and
Salzberg showed that using RefSeq for metagenomic classification
would have missed a Anncaliia algerae corneal infection which was
detected if using VEuPathDB, a more comprehensive database for
eukaryotic pathogen genomes (Lu and Salzberg, 2018; Amos
et al., 2022).

The reasons for taxonomic underrepresentation (and
conversely, overrepresentation, Issue #4) are multifactorial and
include both technical and non-technical factors. From a
technical perspective, certain organisms or organism groups are
harder or more expensive to sequence given the limitations of
commercially available technology. In general, longer genomes
require more sequencing data to achieve sufficient coverage for
assembly, increasing cost. GC content and repetitive elements also
make assembly more challenging, while certain organisms cannot be
cultured, making isolation of their genomes dependent on
metagenomic approaches (Chen et al., 2013; Bowers et al., 2017;
Browne et al., 2020). From a non-technical perspective, there is
systematic bias for prioritizing and funding sequencing of organisms
causing greater human burden of disease or economic impact in
higher income populations (Johnson and Parker, 2020; Inzaule et al.,
2021; Vries et al., 2021).

Several steps can be taken to ensure broad taxonomic
representation in a reference sequence database. First, ensuring
broad inclusion criteria may increase the taxonomic
representation of a database and improve classification accuracy.
Multiple groups have independently shown that the top performer
in their reference sequence database evaluations was the largest
database evaluated (Méric et al., 2019; Wright et al., 2023).
Specifically, Wright et al. found their database with all of NCBI
RefSeq and nt, Plasmid and UniVec_Core (“NCBI RefSeq Complete
V205”) performed best, while Meric et al. found their database
“GTDB_r86_46k” with manual dereplication of GTDB performed
best (Méric et al., 2019; Wright et al., 2023). Others have shown that
taxon-specific reference databases perform especially poorly
(Marcelino V et al., 2020). Taxonomic representation of specific
taxonomic groups can be added by sourcing sequences from
dedicated or ancillary sources. For example, viral diversity can be
increased by include NCBI Viral Genome Neighbors in a database;
however, care must be taken as these sequences can also be lower
quality or contaminated, as per the issues above. Fungal and
parasitic sequences not found in RefSeq may be sourced from the
VEuPathDB project; however, these too are also often contaminated
and incomplete (Lu and Salzberg, 2018; Amos et al., 2022). Finally,
manual curation may be taken to include additional appropriate
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genomes in a reference sequence database, such as those found in a
local outbreak or population.

2.4 Taxonomic overrepresentation

In contrast to taxonomic underrepresentation, taxonomic
overrepresentation is the inclusion of sequences which do not
add value to metagenomic classification. Taxonomic
overrepresentation may compromise the efficiency and speed of
metagenomic classification or preclude generation of an indexed
database (see Issue #10). Twenty pathogenic bacterial species
account for more than half of the prokaryotic genomes included
in RefSeq (n = 54,663/95,336 as of 2017) (Haft et al., 2018). As of
July, 2023, this now includes 33,979 E. coli genomes,
16,891 Klebsiella pneumoniae genomes and 15,497 Staphylococcus
aureus genomes; Kim et al. showed that reducing redundant
sequences for these species resulted in 6.1X, 4.9X, and 7.1X
database compression ratios, respectively (Kim et al., 2016).

Paradoxically, taxonomic overrepresentation may also reduce
classification accuracy of sequences deriving from overrepresented
species. At the most basic level, inclusion of an increasing number of
genomes for a taxon makes quality control of those genomes harder:
quality control tools may not scale to thousands of genomes, and the
included genomes are more likely to contain outlier issues. Even
with proper quality control of these genomes, many metagenomic
classifiers rely on alignment of sequencing reads against a database,
yet many do not appreciate that these sequence aligners filter out the
most frequent sequences from their seeding processes, the first stage
of alignment, which may impact downstream taxonomic profiling
and abundance estimation. As an example, several classifiers are
based on minimap2, which as of version 2.26, filters the top 0.02%
most frequent minimizers from its index, or SNAP, which as of
version 2.0.2 filters single-end read seeds occurring more than
300 times in its index (Fan et al., 2021; Plyusnin et al., 2023; Li,
2018; Naccache et al., 2014; Zaharia et al., 2011). Filtering high
frequency seeds may prevent these alignment tools from identifying
matches to the overrepresented taxa. Zhou, Gay and Oh
demonstrated this with up to a 46.5% increase in the number of
reads classified when using a deduplicated sequence database while
preserving taxonomic accuracy (Zhou et al., 2018).

Taxonomic overrepresentation can be mitigated with selective
inclusion criteria and sequence deduplication. Some have opted to
build reference sequence databases by only selecting one or a fixed
number of genomes per species (e.g., designated reference or
representative genomes), thereby normalizing taxonomic
representation (Zhou et al., 2018; Piro et al., 2020). Others have
examined including only unique regions of each taxon in a reference
sequence database (Kim et al., 2016; Zhou et al., 2018). Others,
mainly working with protein, 16S rRNA gene or specialized
databases, have clustered sequences to reduce duplication (Quast
et al., 2013; Steinegger and Söding, 2018; Blanco-Míguez et al.,
2023). Care must be taken with all these approaches to avoid
taxonomic underrepresentation (Issue #4); Wright Comeau and
Langille found worse metagenomic classification with their non-
redundant database compared with their redundant database
(Wright et al., 2023). It is likely that future metagenomic
classifiers will leverage recent advances in pangenomics and

graph-based algorithms to represent sequences not as
deduplicated linear sequences but as paths through a graph.
Already there is evidence that these approaches can normalize
databases by preserving structural and local variation while
removing redundancy (Karasikov et al., 2020).

2.5 Inappropriate inclusion or exclusion of
host, vectors and non-microbial taxa
from database

Similar to taxonomic overrepresentation, the inclusion and
exclusion criteria for host, vector and non-microbial taxa are
paramount to ensuring accurate taxonomic classification.
Inclusion of reference sequences which are implausible to find in
the sequenced material or ecological niche increases the risk of false
positive and false negative classifications. Marcelino, Holmes and
Sorrell demonstrated the detection of turtles, bull frogs and snakes in
human gut samples using an inappropriate, taxon-specific database
(Marcelino V et al., 2020). A more common example of this issue is
the use of NCBI nt for metagenomic analysis of human clinical
samples with popular pipelines (Naccache et al., 2014; Kalantar et al.,
2020). NCBI nt includes diverse taxa, including the 40 Gbp West
african lungfish, 32 Gbp axolotl and 20.5 Gbp Sitka spruce genomes,
along with more closely related species such as non-human
primates. Not only does inclusion of such large genomes make
the database unwieldy (Issue #10), it also predisposes to false
positives because these genomes are often contaminated (Issues
#6 & #7).

For host-associated metagenomic studies, the host species
should be included in the reference sequence database. Including
the host ensures that host reads are not misclassified. Even with host
read removal before metagenomic classification, no approach is
perfect and often a metagenomic classifier is used as one step to
identify host reads (Bush et al., 2020). The choice of the host
reference sequences is paramount. The T2T human genome has
been shown to contain nearly 200 million additional base pairs over
the GRCh38 genome, including 14.9 Mbp unique sequence when
considering 50-mers. These additions result in 0.97% absolute
increase in paired reads mapping to the human genome with a
20%–25% reduction in per-read mismatch rate (Aganezov et al.,
2022). Others have shown the failing to classify human reads
accurately, because of reference genome selection, impacts
metagenomic results and conclusions (Gihawi et al., 2023).
Despite massive advances in human genomics, the bioinformatics
community has been slow to adopt new reference genomes. Even in
2016, 3 years after release of the GRCh38 reference, the
2009 GRCh37 genome accounted for 70% more public BAM
submissions to SRA (Schneider et al., 2017). Indeed,
metagenomic-specific publications in high-impact journals
continue to use GRCh37 as their reference genome into 2023
(Tomofuji et al., 2023). Further care must be taken to choose the
T2T assembly with the added Y chromosome, as well as not to use
the preformatted NCBI human indices, some of which intentionally
contain Epstein Barr Virus and may confound metagenomic
analysis if looking for this virus. Databases for use in
metatranscriptomic experiments should also include the host’s
transcriptome in the database, as splicing may yield additional
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k-mers or sequences not present in the genome. The choice of host
transcriptome source is also important and has been previously
reviewed (Zhao and Zhang, 2015).

Other considerations when choosing non-microbial sequences
include the choice of vector and artificial sequences. NCBI has
published two versions of UniVec, including a full and a core
version, which vary on their comprehensiveness and trade recall
for precision. Notably, NCBI states that “stretches of sequence
[longer than 50 bp] are not necessarily represented as one
contiguous piece in UniVec,” meaning that vector sequences may
cause false positives if they map to another reference sequence with a
longer alignment (Issue #6). EMBL-EBI has also published a
contaminant and vector database, emvec, included in some
reference sequence databases (Kim et al., 2016; Breitwieser et al.,
2018). The emvec database notably contains the human
mitochondrial genome, which can lead to unexpected
classifications if all sequences in the vector database are
uniformly assigned the same taxonomic identity, as is performed
by Centrifuge and similar tools (Kim et al., 2016).

2.6 Partitioned sequence contamination

Sequence contamination is the most publicized database issue.
We use partitioned sequence contamination to refer to the presence
of sequences from multiple organisms cleanly divided across
different contigs or scaffolds in the same assembly. This issue
contrasts with chimeric sequence contamination (Issue #7),
where the contamination occurs within the same contig or
scaffold. Another scheme to classify sequence contamination is
redundant and non-redundant contamination; however, this
scheme does not fully capture the different causes and mitigation
strategies for each type (Cornet and Baurain, 2022). The reader is
directed to Cornet & Baurain for a review of causes of sequencing
contamination (Cornet and Baurain, 2022). In brief, partitioned
sequence contamination may arise from a contaminated biological
specimen, sample preparation (e.g., kit-ome—the microbial content
of sequencing reagents) or inaccurate metagenomic binning. An
underappreciated reason for sequence contamination is barcode
crosstalk, which on some sequencing platforms may affect up to
0.3% of reads (Wick et al., 2018; Xu et al., 2018).

Partitioned sequence contamination is pervasive in reference
sequence genomes. For example, of some reports, the cow genome
was found to have 173 contaminated contigs of bacterial origin,
including Acinetobacter, Pseudomonas and Stenotrophomonas
(Merchant et al., 2014). Viral genome contamination was found
to comprise 14.5% complete contigs (Chen et al., 2022). GCF_
003286725.1, an isolate of Aerococcus urinae, is contaminated with
Afipia broomeae at contig boundaries and at least 5% of
cyanobacterial genomes are contaminated (Cornet et al., 2018;
Orakov et al., 2021).

Although not exactly contamination, inclusion of plasmid
sequences with genome assemblies is another cause for
metagenomic misclassification. NCBI assigns plasmid sequences
the taxonomic identity of their observed host (Schoch et al.,
2020). However, plasmids are often mobile, and observation in a
single host does not predict the full host range of the plasmid, which
may yet to be sampled (Robertson et al., 2020).

The most popular methods for assessing partitioned sequence
contamination in bacteria are CheckM and BUSCO (Parks et al.,
2015; Manni et al., 2021). BUSCO, along with other methods such as
EukCC and compleasm, can also assess eukaryotic reference
sequences (Saary et al., 2020; Manni et al., 2021; Huang and Li,
2023). These tools all function on a similar basis: the conservation of
a set of single copy orthologous genes. Detection of duplicate single
copy orthologs reflects contamination. Notably, all these approaches
only flag contaminated genomes, usually necessitating complete
genome removal if not investigated further. If there is only a
single reference genome of a species, as is the case for many taxa,
this may lead to complete removal of all representation of the
organism without further intervention. If raw reads are available
for a sample, the genome may be reassembled after filtering
contaminating reads, thereby reducing the likelihood of
assembling contaminated contigs. Most tools filter contaminating
reads by aligning them against a reference genome or using k-mer
based classification (Rachtman et al., 2021; Rumbavicius et al.,
2023). Contaminated contigs may also be identified and removed
using approaches described in Issue #7. Finally, popular approaches
such as CheckM and BUSCO only assess for intra-lineage
contamination, such as one bacterium contaminating another
bacterium. Inter-lineage approaches to contamination detection,
such as alignment of contigs across kingdoms, are discussed below.

2.7 Chimeric sequence contamination

As opposed to having sequences from multiple organisms
occupy different contigs or scaffolds in the same assembly (Issue
#6), chimeric sequence contamination is the joining of sequences
originating from different organisms into the same contig or
scaffold. Chimeric sequence contamination may arise from a
contaminated biological specimen or sequencing procedure
confounding the assembly process. As early as 1992 it was
reported that vector sequences used to clone and sequence
samples contaminated 0.23% of sequences in Genbank (Lamperti
et al., 1992). Contaminating vector sequences are often found at the
ends of contigs, and continue to be submitted to public repositories
(Schäffer et al., 2018). Similarly, chimeric sequences of metagenome-
assembled genomes may result from assembly errors. Cornet et al.
found chimeric contigs in at least 0.5% of cyanobacterial assemblies
(Cornet et al., 2018). Steinnegger and Salzberg identified
Acidithiobacillus thiooxidans contamination of a human reference
(GRCh38) scaffold and E. coli contamination of the Caenorhabditis
elegans reference X chromosome (Steinegger and Salzberg, 2020).
They also found 114,035 contaminated sequences affecting
2,767 species in RefSeq, and over two million contaminated
sequences in GenBank, supporting the recommendation in Issue
#5 to avoid the use of NCBI nt (Steinegger and Salzberg, 2020). To
the author’s knowledge, NCBI does not perform systematic
detection or correction of chimeric sequences in these databases.

Occasionally, chimeric sequences result from inappropriate
handling of sequencing data, such as merging contigs together.
Merchant, Wood and Salzberg identified chimeric cow sequence
in a Neisseria gonorrhoeae genome, resulting from this issue
(Merchant et al., 2014). Viral reference sequences are particularly
prone to chimeric contamination, as they may contain host
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sequences on the ends if integrated into the host genome. Chen et al.
found that 85.5% of contamination cases in viral genomes were of
chimeric fragments, and 668 viral sequences in GenBank and NCBI
Viral Genome Resources were contaminated (Chen et al., 2022).

Chimeric sequence contamination can be avoided by assessing
sequences and their expected taxonomic composition before inclusion
into the reference database. Notably, the methods for detecting
chimeric sequence contamination are often different from the
methods for detecting partitioned sequence contamination. While
methods described above generally look at the complete genome
assembly, methods for detecting chimeric sequence contamination
must examine each contig individually. This assessment is
complicated by horizontal gene transfer, a common phenomenon
in bacteria, which may appear as regions of a contig originating from
different organisms (Orakov et al., 2021). NCBI’s VecScreen can be
used to detect vector contamination, and additions have beenmade to
leverage taxonomy to reduce false positives (Schäffer et al., 2018).
GUNCuses a database of genes and their expected taxonomic range to
assess the phylogenetic homogeneity of the gene content of each
contig relative to the entire genome (Orakov et al., 2021). GUNC can
therefore flag assemblies where contigs do not have homogeneous
gene content. Notably, however, GUNC is limited to prokaryotic
genomes and performs better for chimerism across genus or higher
ranks (Orakov et al., 2021). CheckV assesses for proviral sequence
chimerism with host sequences but is limited to detecting microbial
host contamination (Nayfach et al., 2021). Others, such as the authors
of KMCP, have used tools like CheckV to mask proviral sequences
from the reference database and avoid metagenomic read
misclassification (Shen et al., 2023). Other kinds of chimeric
sequence contamination can be detected by performing local
alignment of sequences across taxa, where low sequence homology
is expected. Conterminator performs this alignment with MMSeqs2
(Steinegger and Salzberg, 2020). However, care should be taken as
Conterminator only examines interkingdom contamination, as well as
cases where the contaminating sequence is less than 20 kilobases and
the receptive sequence is more than 20 kilobases, meaning
contamination of viral sequences will often be missed. Kraken has
also been used to mask parts of contigs which share sequence
homology to unexpected taxa (Lu and Salzberg, 2018). As
evidenced from the multitude of different approaches, it is likely
that multiple approaches are required to accurately detect and
mitigate chimeric sequence contamination.

2.8 Poor quality reference sequences

Reference sequences may be poor quality due to sequence
fragmentation, incompleteness or inaccurate sequence content.
Fragmentation is the inclusion of unnaturally split genomic or
transcriptomic sequences in the database, while incompleteness is
simply missing a portion of the desired genome. Often there is a
trade-off between including suboptimal sequences to increase
taxonomic representation (Issue #3) while avoiding this issue.
This results from the fact that most publicly available genomes
were generated with a short-read sequencing platform, and therefore
cannot be completed (Segerman, 2020). Incomplete reference
sequences manifest similarly to taxonomic underrepresentation
(Issue #3) and are therefore not explored further here.

Several aspects of sequence fragmentation hinder metagenomic
classification. First, fragmented genomes with short fragments are
far more likely to be contaminated (Issues #6 and #7). Breitweiser
et al. showed that 99.7% of contaminated contigs and scaffolds in
bacterial genomes are shorter than 10 kbp, 99.3% are below 5 kbp,
and 92% are below 1 kbp (Breitwieser et al., 2019). Yet, just 0.34% of
the total sequence of those assemblies is in scaffolds smaller than
1 kbp, 1.8% of sequence is in scaffolds smaller than 5 kbp, and 3.6%
of the total bacterial and archaeal sequence in RefSeq is in contigs
that are less than 10 kbp in size (Breitwieser et al., 2019).

However, the issue of fragmentation goes beyond sequence
contamination. Query sequences aligning to reference sequence
contig ends and inaccurately resolved repeats may be missed in
classification (Breitwieser et al., 2019). This is particularly
problematic for incomplete genome assemblies which are
fragmented due to assembly from short read sequencing data
(Aganezov et al., 2022). For most organisms, ribosomal
sequences are the most abundant reads in a metagenomic
sample; yet their corresponding genomic region in reference
genomes is usually highly fragmented, precluding accurate
classification of the corresponding reads (Yuan et al., 2015; Chan
et al., 2023). Similarly, reads deriving from repeats in the human
genome are significantly more likely to contaminate bacterial
genomes because they are not identified during an initial
filtering/classification step (see Issue #5) (Breitwieser et al., 2019).

Next, many genomes are circular, yet the linear representation of
FASTA format necessitates representing the sequence broken at a
certain point. While it is generally accepted to break the sequence at
dnaA, near the origin of replication, many bacterial genomes do not
follow this convention, and it is not applicable to plasmids, viruses
and other circular sequences (Hunt et al., 2015). Inconsistent
circularization may hinder duplicate reference sequence
identification if the sequences are rotated differently. When
aligning long reads or query contigs against reference sequences,
inappropriate or inconsistent breakpoints may also hinder
examination and visualization of structural variation.

Looking beyond fragmentation, the accuracy of reference
sequences can pose issues for metagenomic classification.
Sequence accuracy of reference sequences depends on the purity
of the original sample, accuracy of the sequencing technology,
sequencing depth and bioinformatic methods used to build an
assembly. Ion Torrent sequencing typically suffers from a greater
insertion and deletion error rate than other platforms; this manifests
as a significantly increased prevalence of pseudogenes and protein
frameshifts in reference sequences generated with this platform
(Segerman, 2020). Similarly, Oxford Nanopore Technologies
(ONT) sequencing has traditionally suffered from high rates of
insertion and deletion errors around homopolymers. While the
accuracy of the platform has significantly improved with the
latest chemistry and basecallers, at least 3% of RefSeq genomes
were generated with the error-prone ONT chemistries (Segerman,
2020; Sereika et al., 2022).

The quality of reference sequences can be ensured via tight
quality control of included sequences. Fragmented genomes, or
short fragments within those genomes, can be excluded from the
database. Genome fragmentation can be assessed with tools such as
QUAST, which generates assembly statistics, and BUSCO, which
examines completeness (or lack thereof) using single copy orthologs
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(Gurevich et al., 2013; Manni et al., 2021). Some tools, such as
MetaPhlAn, exclude incomplete genomes from their databases;
however, this may exacerbate taxonomic underrepresentation
(Blanco-Míguez et al., 2023). Genomes generated with certain
sequencing platforms or bioinformatic approaches known to
produce more erroneous assemblies can be excluded to improve
sequence content. Furthermore, other metrics for quality control can
be established, such as the minimum sequencing depth required, to
ensure accurate sequence content.

2.9 Low complexity masking

Many organisms contain long stretches of low complexity
sequences. These sequences are usually uninformative for
metagenomic classification and can result in false positive
classifications (Sharon et al., 2005; Camacho et al., 2009; Frith
et al., 2010). Masking these sequences usually results in faster,
more precise classification (Frith, 2011). However, not all public
or popular databases perform low complexity masking. For example,
as of July, 2023, the downloadable versions of BLAST and KMCP
databases, as well as the default database build of ganon, do not
include low complexity masking (Camacho et al., 2009; Piro et al.,
2020; Shen et al., 2023).

Low complexity sequence masking of nucleotide sequences can
be performed with NCBI’s dustmasker tool (Morgulis et al., 2006).
Considerations around low complexity masking include whether the
masking is only applied at a seeding stage of sequence alignment, or
whether it also prevents an extension stage from including masked
regions. In general, masking only the seed stage is sufficient to
prevent most spurious alignments, and is the approach taken by
NCBI’s online BLASTN tool. Kraken 2, Centrifuge and other
metagenomic classifiers also rely on dustmasker or a similar
implementation to perform masking (Kim et al., 2016; Wood
et al., 2019). While dustmasker has a default threshold to mask,
others have shown adjusting the intensity of masking can affect
metagenomic classification (Frith, 2011). Care must also be taken
when choosing which sequences to mask. For example, it may be
counterproductive to mask host sequences, which have a high
probability of being truly present in a sample, as reads deriving
from these regions may cause false positive alignments to non-host
sequences (Gihawi et al., 2023).

2.10 Database maintenance and updating

As evidenced by the above nine issues, maintaining reference
sequence databases is complex and resource intensive, requiring
sustained funding and a team of curators, bioinformaticians,
software engineers and microbiologists. With the rapid expansion
of sequencing, the identification and reclassification of species has
drastically accelerated (Haft et al., 2018; Nasko et al., 2018; Piro et al.,
2020). Reference sequence databases even days old may be outdated
and produce inaccurate results. Yet, the barriers to generating a
reference sequence database have led groups to build a database and
rarely or never update it again.

Occasionally, rapid database growth completely precludes
generation of new indices based on the computational resources

and processing time required to build a newer version of the
database. Piro et al. reported that they could not build databases
from RefSeq with Krakenuniq or Centrifuge in less than 24 h and
with 48 threads, and Plyusnin et al. documented failure to build the
Centrifuge NCBI nt database after 70 h and with 32 threads (Piro
et al., 2020; Plyusnin et al., 2023). Likely for this reason, the latest
available Centrifuge database leveraging NCBI nt as its source was
built in 2018, with multiple users requesting a newer compilation of
the database (GitHub, 2022).

Even with tools that are built to handle growing reference
sequence databases, many tools suffer from “dormant rot,” the
inability to install or run the tool after the absence of updates
and maintenance (Deschamps et al., 2023). The bioinformatics
landscape is particularly rife with examples of poorly maintained
and documented tools, as developers are often incentivized to build
and publish new tools instead of ensure long term sustainability
(Ferenc et al., 2022).

The aforementioned issue can be mitigated with a team
approach to database management. Databases and the tools to
build them should be updated frequently and periodically.
Metagenomic classification tools which can accommodate large
databases in their indexing process should ideally be chosen for
analysis. Database curation methods should be automated to enable
rapid and easy updating of databases, within a version control and
quality management system. Emerging infections may necessitate
interval update of the database between periodic updates. When
databases are updated, continuous integration tests should be run to
evaluate the integrity, validity and accuracy of a new database.

3 Conclusion

This review highlights ten common issues with reference
sequence databases. These issues have significant impact on
metagenomic classification accuracy and downstream
interpretation, yet the research, clinical and public health
communities continue to use databases fraught with these issues.
Often this is because most analyses use the default databases of tools
such as Kraken 2, Centrifuge, ganon and others; these databases
offer the path of least resistance to performing metagenomic
analysis: they are easy to compile or download and guaranteed to
work with their paired tool (Kim et al., 2016; Wood et al., 2019; Piro
et al., 2020). However, the simplicity and ease of using default
databases comes at odds with the absence of quality control
measures required to ensure accurate classification.

As reviewed here, compiling a high quality reference sequence
database to support accurate and meaningful metagenomic
classification remains a challenging endeavor. These efforts are
particularly valuable in high stakes applications, such as clinical
metagenomics, biodefense and public health. Much of this effort can
be automated to reduce manual curation; however, significant
expertise and resources are still required to set up and perform
the automation. Processing millions of sequences through a plethora
of tools requires experience with cloud processing, containerization,
workflow management and process optimization. Each database
design decision, from the inclusion and exclusion of sequences to the
filtering of erroneous sequences and processing of retained
sequences, requires meticulous thought and assessment. A suite
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of many tools, including custom tools, is required to handle all the
database issues, and tools may interact in unexpected and
unintended ways. Even with a robust suite of quality control,
manual intervention and curation are typically required for edge
cases and outliers. Furthermore, assuming a perfect metagenomic
sequencing database, expertise is required to understand
metagenomic sequencing results and place them into context.
The infamous cases of biothreat agents detected in the New York
subway, and more recently, extremophile organisms in the tumor
microbiome, highlight these cases (Ackelsberg et al., 2015; Gihawi
et al., 2023).

Looking forward, we are excited for several trends in the field to
improve reference sequence databases. First, refinements to the
accepted taxonomy based on genomics will enable more rational
classification of organisms. These changes will in turn enable more
systematic evaluation of sequence databases using techniques such
as sequence homology and conservation. While it will likely take a
long time for some of the classic taxonomic “errors,” such as E. coli
and Shigella spp, to be reclassified, improvements are being made
across the microbial spectrum. Recent examples include the
abandonment of dual nomenclature for fungi, changes to the
Staphylococcaceae family and Lactobacillus genus, and
reclassification of influenza viruses (Lücking et al., 2021; Walker
et al., 2021; Munson and Carroll, 2022).

In addition to an accurate taxonomical framework, long read
sequencing is set to enable more accurate and complete reference
sequences. Recent improvements to Oxford Nanopore and Pacific
Biosciences sequencing enables near-perfect bacterial genomes, and
effects on metagenome-assembled and eukaryotic genomes will
likely be even more striking (Sereika et al., 2022; Yu et al., 2023).
Reference sequences generated on these platforms will supplant or
improve short-read reference sequences, as in the case of the human
reference genome, and mitigate many of the discussed issues in this
review (Aganezov et al., 2022). Even with short-read sequencing,
newer techniques such as Hi-C and single-cell sequencing have
become increasingly popular and driven improvements in reference
sequence quality. Both Hi-C sequencing, which cross-links DNA
molecules in close physical proximity, and single-cell sequencing,
which recovers nucleic acid sequences from individual cells, have
enabled high quality reference genomes and plasmid-host linkage
from metagenomes and uncultured organisms (Blainey, 2013;
Stewart et al., 2018).

Beyond the sequencing, significant efforts are being made at
upstream sequence repositories such as NCBI to improve the

submission process and flag problematic sequences after
submission. RefSeq has continually improved its curation process.
However, much work remains on top of upstream curation, as
highlighted in this review. Algorithmic and tool improvements, such
as graph-based tools, will enable the large-scale comparison of
genomes and identification of anomalous sequences. Artificial
intelligence advances, such as pattern recognition, will also be of
use to automatically identify erroneous or outlier sequences for
further inspection.

Together, these technological advancements, along with the
established mitigation measures reported here, present a
promising path towards better, high quality reference sequence
databases. These improvements will continue to expand
metagenomic sequencing as a pivotal technology in the
understanding of health, disease and our environment.
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