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Introduction: Although a powerful biological imaging technique, fluorescence
lifetime imaging microscopy (FLIM) faces challenges such as a slow acquisition
rate, a low signal-to-noise ratio (SNR), and high cost and complexity. To address
the fundamental problem of low SNR in FLIM images, we demonstrate how to use
pre-trained convolutional neural networks (CNNs) to reduce noise in FLIM
measurements.

Methods: Our approach uses pre-learned models that have been previously
validated on large datasets with different distributions than the training
datasets, such as sample structures, noise distributions, and microscopy
modalities in fluorescence microscopy, to eliminate the need to train a neural
network from scratch or to acquire a large training dataset to denoise FLIM data. In
addition, we are using the pre-trained networks in the inference stage, where the
computation time is in milliseconds and accuracy is better than traditional
denoising methods. To separate different fluorophores in lifetime images, the
denoised images are then run through an unsupervised machine learning
technique named “K-means clustering”.

Results and Discussion: The results of the experiments carried out on in vivo
mouse kidney tissue, Bovine pulmonary artery endothelial (BPAE) fixed cells that
have been fluorescently labeled, and mouse kidney fixed samples that have been
fluorescently labeled show that our demonstrated method can effectively remove
noise from FLIM images and improve segmentation accuracy. Additionally, the
performance of our method on out-of-distribution highly scattering in vivo plant
samples shows that it can also improve SNR in challenging imaging conditions.
Our proposed method provides a fast and accurate way to segment fluorescence
lifetime images captured using any FLIM system. It is especially effective for
separating fluorophores in noisy FLIM images, which is common in in vivo
imaging where averaging is not applicable. Our approach significantly improves
the identification of vital biologically relevant structures in biomedical imaging
applications.
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1 Introduction

In addition to conventional fluorescence imaging, fluorescence
lifetime imaging microscopy (FLIM) is a fundamental methodology
in the biomedical imaging field that enhances the contrast of
molecular structure. In light microscopy, FLIM is used to
precisely measure the fluorescence decay lifetime of excited
fluorophores (Chang et al., 2007; Mannam et al., 2020a; Datta
et al., 2020). By doing this, FLIM provides a highly effective tool
for researchers. This important metric indicates the average time the
fluorophore remains in the excitation condition before returning to
the ground condition. Remarkably, FLIM offers distinct perspectives
on many biochemical factors, such as ion concentrations,
concentrations of dissolved gases, refractive index, pH levels, and
micro-environmental conditions within living samples, immune to
sample excitation power, fluorophore concentration (either adhesive
or auto-fluorescence), and photobleaching, all of which are often
very difficult to control in the majority of the experiments (Datta
et al., 2020). FLIM systems are broadly categorized into two types:
time-domain FLIM (TD-FLIM) and frequency-domain FLIM (FD-
FLIM). The TD-FLIM method involves the precise measurement of
the time that elapses between the excitation of the sample by a pulsed
laser and the photon arriving at the detector. In contrast, FD-FLIM
exploits the modulation changes and the relative phase between the
emitted fluorescence and the excitation using periodic modulated
pulses for FLIM lifetime image generation.

Conventional FLIM systems (both TD-FLIM and FD-FLIM)
are limited by slow processing speeds, a technical constraint; low
signal-to-noise ratio (SNR), a fundamental constraint; and
expensive and sophisticated hardware setup (Mannam et al.,
2020a). We have developed a new Instant FLIM system
(Zhang et al., 2021) that utilizes analog signal measurements
for high-speed data collection, as illustrated in Figure 1, to
overcome the technical limitations of the FLIM system. This
approach eliminates bandwidth bottlenecks by incorporating
pulse modulation with high-efficiency techniques and

affordable deployment with readily available high-frequency
devices such as mixers, low-pass filters, and phase shifters.
Furthermore, the analog measurements of the down-converted
frequency (intermediate frequency) signals used in our
demonstrated frequency-domain Instant FLIM system enables
the simultaneous measurement of fluorescence intensity,
fluorescence lifetime, and frequency-domain phasors during 2-
D, 3-D, or 4-D imaging for both live (in vivo), in vitro and fixed
cell (ex vivo) applications.

Another fundamental problem is the low SNR, which remains to
be addressed. Conventional image denoising techniques, such as
averaging (mean filtering) within the same field-of-view (FOV) or
median weight filtering, can enhance the SNR at the cost of image
blurring and reduced frame rates with high computational time.
Other image denoising method is block matching 3D filtering
(BM3D) (Dabov et al., 2007) due to its ability to effectively
remove noise from images while preserving image details. This
method is well-suited if the images corrupted by the Gaussian
noise. However, this BM3D image denoising method
performance is low in the low-light condition typically for the in
vivo imaging. Overall, each of these image denoising methods have
trade-offs between denoising performance, computation speed, and
applicability to a specific noise distribution. Offline image denoising
methods can also be used to improve the SNR, but they require the
data to be stored before and after denoising, which is not feasible for
memory-intensive imaging modalities such as light-sheet
microscopy (Mannam et al., 2020a). A potential solution to this
problem is to use real-time machine learning models for lifetime
image denoising. This approach has the potential to improve the low
SNR problem without compromising instant FLIM’s real-time
imaging capabilities.

Machine learning (ML) has become more popular in recent
years for its ability to enhance image processing performance,
particularly in the area of image denoising (Goodfellow et al.,
2016; von Chamier et al., 2021; Weigert et al., 2018; Nehme
et al., 2018; Mannam and Howard, 2023). Several machine

FIGURE 1
A schematic diagram of the Instant FLIM system (Zhang et al., 2021), which simultaneously extracts intensity and lifetime information from analog
signals. G and S denote the real and imaginary components in the phasor space of the complex FLIM measurement. The G and S images are denoised
utilizing our pre-trained image denoising model, which is marked as Ĝ and Ŝ. We obtain the denoised lifetime image by taking the ratio of Ŝ

Ĝ
(without

considering the scaling factor). Pre-trained machine learning models, which were utilized for lifetime denoising and K-means segmentation
algorithms to cluster fluorophores, are highlightedwith a blue dotted box. Additional details about the experimental setup is explained in Section 2.1. PMT:
photomultiplier tube, LPF: low-pass filter. Figure is derived from conference proceedings (Mannam et al., 2021).
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learning (ML) methods have been successful at denoising images
with Gaussian, Poisson, or mixed Poisson-Gaussian noise (Weigert
et al., 2018; Mannam et al., 2022). However, most machine learning
methods demand dedicated large training datasets for noise
reduction in the images during the training stage.
Additionally, pre-trained models are typically only effective
for specific tasks, such as intensity image denoising. This
paper presents the application of a pre-trained ML model
(DnCNN Denoising) for phasor image denoising in FLIM
measurements. The pre-trained DnCNN model was trained on
a dataset comprising 12,000 images of fluorescence intensity. By
utilizing the pre-trained machine learning models, researchers
obviate the demand for the development of a new model
exclusively for lifetime image denoising since the noise
distribution of the complex FLIM measurement corresponds
to the training dataset’s noise distribution called mixed Poisson-
Gaussian (MPG) noise. Moreover, our DnCNN model achieves
precise phasor denoising outcomes at a significantly faster
processing speed than conventional lifetime denoising
approaches, such as median filtering. The denoised phasor
image is obtained from the denoised FLIM measurements,
followed by segmenting the denoised phasor using an
unbiased ML technique called K-means clustering. This
segmentation separates each fluorophore accurately in the
denoised phasor image compared to the noisy phasor image.
Section 2 outlines both the pre-existing and our created pre-
trained ML model techniques for lifetime image denoising.
Section 3 reports the comprehensive results of our approach
on various test samples, with both qualitative and quantitative
metrics. Finally, Section 4 presents our conclusion.

2 Methods for fluorescence lifetime
denoising

In this section, the traditional and machine learning methods
used to perform lifetime image denoising are explored. The
orthogonal axes of FLIM measurements (G and S
measurements), as depicted in Figure 1, are utilized in our in-
house developed instant FLIM system for the extraction of
lifetime information through the difference between two
complementary-phase mixers, presented in the subsequent
equations.

S∝VIF 0( ) − VIF π( ), G∝VIF 0.5π( ) − VIF 1.5π( ) (1)
where, VIF(ϕ) indicates the intermediate frequency voltage at the
given phase of ϕ.

Extracted lifetime is defined as, τ, as ratio of imaginary (S)
to real (G) measurement at a given position using the equation
τ = S/(ω p G), ignoring the scaling factor. In the FD-FLIM
system, the resulting lifetime is calculated using the following
equation

τ � 1
ω

VIF 0( ) − VIF π( )
VIF 0.5π( ) − VIF 1.5π( ) (2)

where ω = 2πfmod, and the laser pulse modulation frequency (fmod),
is 80 MHz as implemented in our instant FLIM measurement

setup. Phasor plots can be easier to interpret and visualize
lifetime information in TD- and FD-FLIM measurements. This
simplification is achieved by transforming the fluorescence
lifetime value of each pixel into a point within a 2-D phasor plot.
The x-coordinate is represented by the coordinate g, while the y-
coordinate is represented by the coordinate s. Phasor coordinates (g
and s pairs) are used to distinguish between different fluorophores
and excited state reactions in a phasor plot. The phasors for the TD-
FLIM time-correlated single photon count (TCSPC) system can be
extracted using the transformations presented in the subsequent
equations.

gi �
∫∞
0
I t( ) cos wt( )dt
∫∞
0
I t( )dt , si �

∫∞
0
I t( ) sin wt( )dt
∫∞
0
I t( )dt (3)

where I(t) is the TCSPC fluorescence intensity information at the i −
th pixel and time index of t. For the analysis of FD-FLIM system, the
phasors are extracted through the calculation of the following
equations.

gi � mi cos ϕi( ), si � mi sin ϕi( ) (4)
where ϕi and mi represent the phase shift and modulation degree
change of the emission in comparison with the high-frequency
excitation, respectively, at a random i − th pixel. The resulting
phasor plot enables the identification of groups of pixels with similar
fluorescence decays, which facilitates image segmentation.
Therefore, the clustering method aids in identifying fluorophores
with similar lifetime decay values on the phasor plot belonging to a
single cluster.

2.1 Traditional methods

Typically, FLIMmeasurements are significantly noisy for in vivo
imaging at low excitation power, and hence the phasor plot,
potentially representing inaccurate clustering of sample
boundaries to identify underneath fluorophores. One approach
for phasor noise reduction in complex FLIM phasor axes is
through conventional filtering methods like mean and median
filters. However, these filters must be iteratively applied more
than once to effectively reduce the noise and achieve a high SNR.
Median filtering preserves edges in denoised image relative to mean
filtering (Digman et al., 2014), it requires multiple runs on the FLIM
measurements (both orthogonal real and imaginary planes) to
reduce the phasor noise. To illustrate this feature, we show the
phasor of the 3-D volume of in vivo zebrafish embryo and perform
the median filter a couple of times on the orthogonal real and
imaginary axes of complex FLIM measurements. Figure 2A, B show
the noisy FLIM measurements (both real:G and imaginary:S axes of
complex FLIM measurements, respectively) of an in vivo zebrafish
embryo captured with our in-house customer made instant FLIM
system and the system data processing is depicted in Figure 1.
Figures 2C, F show the fluorescence intensity and composite
lifetime, respectively. The composite lifetime corresponds to HSV
(hue-saturation-value) representation of the fluorescence intensity
and fluorescence lifetime images combined, where the pixels’
brightness and hue are utilized to map the intensity, and lifetime
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values, respectively. To illustrate, we present a single plane from the
3D-volume stack, exhibiting neural cells fluorescence marked with
an enhanced green fluorescent protein (EGFP) with lifetime ranging
from approximately ≈1.5–2.5 ns. The low-lifetime region,
approximately(≈0 ns–0.5 ns), signifies the presence of neural cells
in the spinal cord. Figure 2.

Phasor plots are obtained as a 2-D grid image in the XY plane,
with real and imaginary FLIM measurement values projected onto
the x − and y − axes, respectively. More details about phasor plots
can be found in our lab’s previous review paper, Mannam et al.
(2020a). Figure 3A illustrates the zebrafish 3-D volume noisy phasor.
Subsequent to this, Figure 3B–D demonstrate median filter (Digman
et al., 2014) applied once, twice, and three times to reduce the noise
of the phasors on the complex FLIM phasor, respectively. The
phasor plot shown in Figure 3A cannot reveal the lifetime
distribution corresponding to the EGFP neural cells (≈1.5–2.5 ns)
due to noisy measurements. Conversely, the application of a median
filter to complex FLIM measurement enables identification of the
neural cells in the median-filtered phasor plot. In addition, applying
median filtering more than once (“twice” or “thrice”) to complex
FLIM measurements results in neural cells with improved SNR in
the phasor. However, applying the median filter four or more times

has no additional advantage and lacks in slow computational time.
Table 1 indicates the median filtering on complex FLIM
measurement of 3-D volume zebrafish sample’s execution time.
From Table 1, performing median filtering more often iteratively on
the phasor extracted from raw FLIM measurements is significantly
intensive in computation time and not effective for accurate
identification of lifetime regimes and hence fluorophore
boundaries. (Figure 3; Table 1).

2.2 Pre-trained ML models

In this section, we demonstrate a unique pretrained CNNmodel
trained on a diverse set of fluorescence microscopy intensity images
utilizing CNNs for instantaneous denoising of both the orthogonal
dimensions of the complex phasor axes (G, and S images) through
the use of the FIJI tool, an image processing software (Rueden et al.,
2017). The computation time for the image denoising is
approximately ≈ 80 ms (low computation time is important for
real-time applications) using a single image (Mannam et al., 2022) of
size 512 × 512 pixels. Convolutional neural networks (CNNs) are a
popular type of machine learning model used for computer vision tasks

FIGURE 2
Using our custom-built instant FD-FLIM setup, the Noisy FLIM measurements were captured in an in vivo zebrafish embryo [Tg(sox10:megfp) at
2 days post-fertilization] in (A) and (B) for both G and S, while denoised images can be found in (D,E), respectively. Fluorescence intensity (C) and
composite lifetime (F) images are provided, respectively. The composite lifetime corresponds to the hue saturation value (HSV) representation of the
intensity and lifetime images combined, where the pixels’ brightness and hue are utilized to map the fluorescence intensity, and lifetimes,
respectively. Excitation wavelength of 800 nm with a sample power of 5.0 mW and pixel dwell-time of 12 μs. To improve signal-to-noise (SNR), a 3D-
volume of size 360 × 360 × 48, with each slice depth measuring 1 μm across 48 slices and a pixel dwell time of 12 μs, was averaged three times. FLIM
Intensity image is normalized between 0 to 1 as shown in (C). Scale bar: 20 μm. Figure and data are derived from conference proceedings (Mannam et al.,
2021).
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that involve image data. They are designed to achieve high accuracy and
efficiency by analyzing the image’s features at different levels of
abstraction. In this part of the subsection, we provide details on the
development of pre-trained models. A CNN typically consists of an
encoder block followed by a decoder block (Mannam and Kazemi, 2020).
The encoder module decreases the size of the noisy input image by
identifying the significant features and rejecting the unwanted noise. The
decoder module restores noiseless images from encoders to their original
size. Once theCNNmodel training using a large fluorescencemicroscopy
image dataset is completed, the trained CNN model performance is
evaluated on a test dataset. The FMD dataset, referred to as the “training
dataset,” Mannam et al. (2022), comprises 12,000 raw fluorescence
intensity images captured via multi-modal microscopes such as
widefield, two-photon, and confocal microscopes. Our previous paper
(Mannam et al., 2020b; Mannam et al., 2022) provides further
information concerning the FMD dataset’s collection process, pre-
processing and post-processing steps, and theMLmodel training process.

In our research, we utilized two pre-trained machine learning
models specifically designed for denoising fluorescence images (G
and S of complex phasor components) in the presence of mixed
Poisson-Gaussian (MPG) noise. The first model, known as the
“DnCNN,” is a supervised deep convolutional neural network
(CNN) constructed using the DnCNN architecture (Zhang et al.,
2017). This model excels at accurately estimating noise residuals
present in noisy fluorescence real and imaginary components.
Subtracting the estimated residuals from noisy inputs, the DnCNN
model architecture generates denoised images that exhibit superior

performance. The “Noise2Noise model,” the second model discussed
(Lehtinen et al., 2018), operates on a self-supervised basis. It uses two
noisy images as both input and target data, which are extracted in the
same field-of-view (FOV). This approach is particularly helpful when
obtaining ground truth data is challenging or impossible, such as in vivo
imaging. Unlike the DnCNNmodel, the Noise2Noise training uses the
noisy image captured as the target image in the same FOV. Our prior
research details the training and testing procedures for these models, as
outlined in Mannam et al. (2022). Notably, our investigation shows the
effectiveness of these pre-trainedmodels on out-of-distribution samples
obtained from various resources. These evaluations encompassed
various dimensions, including fluorescence intensity images captured
through the Widefield2SIM microscope, diverse sample and structure
types, varying levels of noise, different microscope modalities like dark-
fieldmicroscopy, and fluorescence images in three-dimensional volume
stacks. Our pre-trained models have demonstrated superior denoising
capabilities in comparison to traditional denoising methods and
existing machine learning-based fluorescence microscopy denoising
models, as consistently observed through our testing. The pre-
trained CNNs used in the following sections are publicly available
and can be accessed through GitHub folder1.

FIGURE 3
The raw phasor (A) and three iterations of the median filter [applied once (B), twice (C), and three times (D)] were applied to the complex FLIM
measurements of G and S images of the in vivo zebrafish embryo Tg (sox10: megfp) at 2 days post-fertilization obtained using our custom-built instant
FD-FLIM setup, respectively. In addition, for raw FLIMmeasurements refer to Figure 2, which includes both intensity and composite lifetime information.
Figure and data are derived from conference proceedings (Mannam et al., 2021).

TABLE 1 Computation time for median filtering on FLIMmeasurement data of real G and imaginary S components of entire 3D volume stack in MATLAB (MATLAB,
2019) including the average value and standard error for the measurement presented before and after the ± symbol, respectively. In this case, the 3D volume of
sample data with size 360 × 360 with 48 images in the volume stack. In addition, for raw FLIM measurements refer to Figure 2, which includes both intensity and
composite lifetime information.

3-D volume name Execution time average ± standard error (seconds)

Median filter G_volume 0.276 ± 0.0027 (once)

0.355 ± 0.0022 (twice)

0.432 ± 0.0025 (three times)

S_volume 0.281 ± 0.0026 (once)

0.347 ± 0.0021 (twice)

0.423 ± 0.0024 (three times)

1 https://github.com/ND-HowardGroup/Instant-Image-Denoising/tree/master/
Plugins/Image_Denoising_Plugins_Journal/Plugin_Targets
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Table 2 shows summary of the samples collected to demonstrate
our approach using different FLIM systems and different samples to
generate fluorescence microscopy denoised images and denoised
phasor images. To use pre-trained ML models for images from a
different distribution than the training dataset, it is important to
analyze the noise distribution of the input images (G and S). Figure 1
shows the extraction of the complex phasor orthogonal axes from
the FLIM measurement using the difference between two
complementary phases: G = VIF(0.5π) − VIF(1.5π) and S =
VIF(0) − VIF(π). The FLIM measurement signal, VIF(ϕ) originates
from a photomultiplier tube (PMT) and other analog device
components including low-pass filters (LPFs), which results in a
noise distribution that contains both Poisson and Gaussian noise,
also known as mixed Poisson-Gaussian (MPG) noise. The real (G)
and imaginary (S) images of the FLIM measurement follow a
Skellam distribution, which is the difference between two Poisson
distributions (contributors 2004; Griffin, 1992). For large signal
values, the Skellam distribution approximates a Gaussian
distribution (Wang et al., 2021) with mean as the difference
between the two VIF measurements and variance as the sum of
the variance of each VIF channel. In this paper, we use pre-trained
image denoising CNN models trained on MPG noise (in the FMD
dataset) to denoise both axes of a FLIM measurement. During
inference, we input the noisy real-axes (as shown in the G
image) and imaginary-axes (as shown in the S image) to the pre-

trained ML models to obtain the denoised complex FLIM
measurements as Ĝ and Ŝ, respectively. Table 2.

Figure 4 depicts the proposed workflow for utilizing pre-trained
‘DnCNN’machine learning models to denoise FLIM measurements
and extract the phasor from the resultant denoised complex FLIM
measurements. The method includes pre-processing and post-
processing steps to restrict the range of orthogonal phasor axes
to use the full-dynamic range of demonstrated pre-trained image
denoising models and convert them back to their original scale
during the inference process. Figures 2D, E display the denoised
images of G and S, respectively, for one imaging plane in the 3D
volume stack. Additionally, Figure 4 illustrates noisy phasors and
denoised phasors through the use of our pre-trained DnCNN ML
model. Figure 4.

To quantitatively assess the performance of lifetime image
denoising methods, we employ the phasor representation of the
fluorophores (Digman et al., 2014), the peak signal-to-noise ratio
(PSNR) and the structural similarity index measure (SSIM) metrics
(Gabriel, 2008; Sage, 2017). Phasor representation provides an accurate
measurement of the fluorophore lifetime value and this measurement
is independent of the excitation laser power, fluorophore concentration
and only depends on the micro-environment. PSNR measures the
mean squared error (MSE) between a denoised image and its
corresponding clean reference image. The PSNR between a
denoised image (X) and its corresponding clean (or averaged)

TABLE 2 List of the samples experimentally captured to demonstrated our denoising approach along with experimental conditions for the reproduction of the
sample images. Please note that for all of these samples are imaged using two-photon FD-FLIM systems with the two-photon excitation wavelength of 800 nm.

Sl. No Sample
name

Imaging
type

Fluorophores labeled Sample
power (mW)

FLIM setup

1 Zebrafish in vivo EGFP 5 Instant FLIM

2 Mouse Kidney in vivo Auto fluorescence 5 Commercial
FLIM

3 BPAE cells ex vivo DAPI, Alexa Fluor 488 phalloidin, MitoTracker Red CMXRos 5 Instant FLIM

4 Mouse Kidney ex vivo DAPI, Alexa Fluor 488 wheat germ agglutinin, Alexa Fluor
568 phalloidin

3.3 Instant FLIM

5 Plant images in vivo Auto fluorescence 3 & 5 Instant FLIM

FIGURE 4
A block diagram illustrating the proposed methodology applied to the 3D volume stack depicted in Figure 2. The phasor representation before
(shown in red arrow) and after (shown in green arrow) FLIM measurement denoising (noisy and denoised phasors) using our pre-trained DnCNN
denoising model. Figure and data are derived from conference proceedings (Mannam et al., 2021).
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image (Y) within the same field-of-view (FOV) is defined as:
PSNR(X, Y) � 10 log( max(Y)2

MSE(X,Y)), where MSE(X, Y) �
1
N∑N

n�1(Xn − Yn)2 is the average mean-square error of X and Y
with N pixels. SSIM evaluates the similarity between two images
based on their luminance, contrast, and structural features. It
produces a score between 0 and 1, where 1 indicates perfect
similarity. Additionally, SSIM has been shown to correlate well
with PSNR (Hore and Ziou, 2010). The PSNR and SSIM metrics
are computed for the lifetime images after scaling them to 8-bit
images using min-max normalization. The corresponding values
are displayed in the scale bar of each fluorescence lifetime image.

While quantitative metrics like PSNR and SSIM cannot be
calculated due to the lack of an averaged image, the phasor
approach provides a qualitative assessment of the denoising
effectiveness of pre-trained CNNs in in vivo zebrafish embryos
FLIM measurements.

Finally, the segmentation in FLIMmeasurements that represents
different fluorophores with accurate lifetime values (dividing into
segments) is crucial for identifying fluorophores location of various
lifetime values. The location of the fluorophores and their lifetime
values are unknown in intravital imaging, where autofluorescence
dominates. In a phasor plot, phasors with similar fluorescence
decays cluster together, resulting in the need for accurate
segmentation. Segmentation of the phasor occurs by selecting a
cluster representing fluorophores with similar decay rates or
lifetimes and assigning distinct colors to these clusters. The
resulting images display the respective fluorophores using each
color. To perform segmentation, typically a region marked with
different colors is selected by the user in the phasor, and lifetime
information is used to identify the fluorophore that belongs to this
region. However, this method is prone to time consumption and
unreliable outcomes, is contingent upon the user’s region selection,
and cannot be reproduced. To prevent biased segmentation results,
we suggest a fresh, impartial process for automatic phasor labeling,
utilizing the unsupervised method named “K-means clustering”
(Zhang et al., 2019). This algorithm finds consistent K centroids
in a phasor plot and assigns each fluorophore to a cluster whose
centroid is closest within a specific radius (MacQueen et al., 1967;
Jain, 2010). K-means clustering automatically organizes the
denoised phasor into precise clusters. The following section will
discuss the results of the segmentation achieved through the
utilization of this denoised phasor obtained using the pre-trained
ML models.

3 Results and discussion

We applied pre-trained ML models to denoise FLIM data,
resulting in clean phasors. These denoised phasors were further
processed using K-means clustering across various test samples, as
shown in the below sub-sections.

3.1 In vivo samples with phasor-
segmentation

Figure 5 To illustrate our proposed pre-trained MLmodels for
the FLIM lifetime image denoising, an in vivo mouse kidney

sample is chosen and captured under a commercial FLIM
setup. Figures 5A, B illustrate the fluorescence intensity and
lifetime, respectively, for an in vivo mouse kidney (sample
taken from The Jackson Laboratory, a male variant C57BL/6J
mice of age at 8–10 weeks) acquired using a commercial FD-
FLIM digital system (Zhang et al., 2019). False-color composite
HSV images of fluorescence lifetime are shown in Figure 5B,
where pixel brightness represents fluorescence intensity and hue
represents fluorescence lifetime in the range of 0–3 ns. The
fluorescence intensity image was labeled with the mouse
proximal tubules (both upstream marked as S1 and
downstream marked as S2) and distal tubules (DT), each
having unique metabolic representations that are
distinguishable through FLIM phasors. FLIM denoising is
carried out on the complex FLIM phasor plane (both
orthogonal real and imaginary axes) via our pre-trained ML
models to extract denoised complex FLIM measurements
represented as Ĝ and Ŝ, respectively. This process results in
the extraction of an accurate phasor from denoised images.
Figure 5C displays a single image of the phasor labeled for
both upstream and downstream tubules obtained from the
denoised phasor. Additionally, we observe that S1 upstream
proximal tubules and DT distal tubules have similar lifetime
distributions, although they differ morphologically, leading us to
categorize them into only two clusters: S1/DT combined as one
cluster and S2 as the other cluster. Figure 5E demonstrates an
unsupervised cluster segmentation method named “K-means
clustering” technique on a 2-D phasor plot. The K-means
clustering findings reveal that color-coded red and blue color
pixels in the noisy phasor correspond to S1/DT microtubules
together as one cluster and S2 microtubules as another cluster,
respectively. Notably, the proximal tubules of upstream tubules
lying on the phasor’s right side (red color) have a shorter lifetime
than the downstream tubules lying (blue color) on the phasor’s
left side, which have a longer lifetime. However, the overlapping
segmented clusters shown in Figure 5G make tubule
identification challenging.

To resolve the problem of noisy FLIM measurements, we
performed the pre-trained DnCNN model to denoise the FLIM
measurements (complex phasor plane). This improves the phasor
SNR, which is demonstrated in Figure 5D, exhibiting a high SNR
compared to the noisy phasor as shown in Figure 5C. Once the
denoised phasor is extracted, the K-means clustering method is
used to achieve precise segments for the two proximal tubules
(S1/DT and S2), as displayed in Figure 5F. After segmentation
and denoising, the overlapped segmentation image was generated
and can be found in Figure 5H. The red and blue tubules
displayed in the image correspond to the S1/DT proximal
tubules combined as one cluster and the S2 proximal tubules
as another cluster, respectively. Hence, the demonstrated pre-
trained DnCNN model provides rapid and precise automated
segmented clusters of fluorescence lifetime images obtained
through in vivo FLIM measurements. In cases where FLIM
measurements exhibit noise, pre-trained CNN-based FLIM
phasor denoising and segmentation using K-means clustering
methods can prove beneficial. Clustering has been found to be an
effective approach for improving biological structure detection in
biomedical imaging research applications. An example where our
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method can be used to accurately identify microtubules of an in
vivo mouse kidney sample is shown in Figure 5H. The absence of
an averaged image hinders the calculation of quantitative metrics
like PSNR and SSIM, mirroring the situation in zebrafish embryo
FLIM measurements. Despite this limitation, the phasor
approach offers a valuable qualitative evaluation of the
denoising efficacy of pre-trained CNNs in the context of in
vivo mouse kidney FLIM measurements.

3.2 Phasor denoising and clustering in fixed
fluorescence samples

In addition to the in vivomouse kidney samples, we show our
demonstrated pre-trained ML model for FLIM denoising on a
fixed BPAE sample. We acquired noisy BPAE sample images
(Invitrogen prepared slide #1 F36924 by FluoCells) using our in-
house customized two-photon frequency-domain fluorescence
lifetime microscopy system, as described in Zhang et al. (2021).
The samples featured three fluorphores: MitoTracker Red
CMXRos labeled mitochondria (lifetime range from 1.5 ns to
2 ns), Alexa Fluor 488 phalloidin labeled F-actin (lifetime of

values greater than 2.8 ns), and DAPI labeled nuclei (lifetime
range from 2 ns to 2.8 ns). Instant FLIM setup includes a Nikon
40× magnification objective lens [water immersion, working
distance (WD) of 3.5 mm, numerical aperture (NA) of 0.8],
and emission wavelengths from 300 to 700 nm were filtered
and collected collectively. The system also includes a
photomultiplier tube (PMT) and a transconductance amplifier
(TA) for the conversion of emitted photons to voltage. Further
specifics can be found in Zhang et al. (2021). To capture the
BPAE samples, the fixed cells are excited with a two-photon
excitation wavelength of 800 nm (equivalent one-photon system
of excitation wavelength of 400 nm) and with 5 mW sample
power, 12 μs pixel dwell time, and 200 nm pixel width in the
imaging plane. Emission spectra for the three fluorophores in
fixed BPAE cells are provided in2, and the emission by the three
fluorophores is collected together in our Instant FLIM system
(Zhang et al., 2021).

FIGURE 5
Application of K-means clustering segmentation on in vivomouse kidney phasor data obtained through a commercial FD-FLIM system (Zhang et al.,
2019). Panel (A) showcases a two-photon FLIM intensity image featuring microtubules indicating either S1/DT or S2, while panel (B) displays the
corresponding fluorescence lifetime image. Phasor plots, denoted as (C) for noisy and (D) for denoised versions using our proposed method, are
displayed. Additionally, K-means clustering on phasors is demonstrated in panels (E,F) before and after denoising, respectively. Themicrotubules S1/
DT and S2 exhibit distinct lifetimes, represented by red and blue colors. The overlap of segment1 (S1/DT) and segment2 (S2) using noisy and denoised
phasors is depicted in panels (G,H), respectively. Excitation wavelength of 800 nm with a sample power of 5.0 mW and pixel dwell-time of 12 μs. FLIM
Intensity image is normalized between 0 to 1 as shown in (A). Scale bar: 20 μm. Figure and data are derived from conference proceedings (Mannam et al.,
2021).

2 https://www.thermofisher.com/order/catalog/product/F36924
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The qualitative outcomes obtained from the fixed BPAE sample
are illustrated in Figure 6A, the noisy intensity of the fixed BPAE
sample cell, acquired experimentally via the two-photon Instant
FLIM system, is depicted (presented as a single-channel image using
Cyan hot false color). Figures 6B–D display a composite lifetime
image derived from the noisy FLIM data, denoised from the noisy
FLIM BPAE data using a pre-trained DnCNN model, and averaged
measurements (averaged lifetime over 5 acquisitions within the
same FOV) representing high-SNR images for reference,
respectively. Figures 6E–H show the selected ROIs for the
intensity, composite lifetime images of noisy, DnCNN-denoised,
and averaged lifetime images, respectively. Denoised lifetime images
exhibit notably fewer red pixels, indicating reduced noise and
accurate lifetime values compared to noisy lifetime images. The
phasors of the selected ROI in the noisy, denoised, and averaged
FLIM measurements are presented in Figures 6I–K, respectively
Figure 6. Clear identification of the nucleus and mitochondria is
evident in the denoised lifetime and phasor images in comparison
with the noisy lifetime. The denoised images closely align with the

averaged image and exhibit improved SNR values. In Figures 6A–D,
the upper series signifies complete FOV of size 512 × 512, while the
lower series in Figures 6E–H represents ROI marked by the yellow
square of size 125 × 125 of the corresponding upper series images.
The results of K-means clustering on the phasors of the noisy,
denoised, and averaged FLIM measurements are presented in
Figures 6L–N, respectively. The PSNR values of the BPAE
samples lifetime images noisy and denoised using DnCNN pre-
trained CNNs methods are 13.69 dB and 18.07 dB, respectively.
Similarly, the SSIM values of the lifetime images noisy and denoised
using DnCNN methods are 0.076 and 0.173, respectively. From the
PSNR values, there is an improvement in image quality of 4.38 dB
due to DnCNN pre-trained CNNs denoising method. In a previous
study, we demonstrated the superior performance of our pre-trained
CNNs compared to established image denoising methods like
BM3D (Mannam et al., 2022). To further corroborate this
finding, we have included qualitative and quantitative
comparisons for the same BPAE sample cell in our GitHub
repository.

FIGURE 6
Phasor representation was obtained for a fixed BPAE sample using our instant FD-FLIM system, and pre-trained MLmodels were applied before and
after. The FLIM data was acquired following (Zhang et al., 2021). The four images shown are (A) two-photon intensity, (B) noisy, (C) denoised using our
proposed method, and (D) averaged fluorescence composite lifetime. Composite lifetime is represented in the form of hue saturation value (HSV) based
on the combination of intensity and lifetime images, where the brightness of pixels is mapped to the intensity value while the fluorescence lifetimes
are represented by the hue. The complete frame is of size 512 × 512 pixels while a small selected ROI is of 125 × 125 pixels. The intensity and composite
lifetime of selected ROI for the noisy, denoised, and averaged images are illustrated in (E–H), respectively. The phasors of the chosen ROI are displayed in
(I–K) for the noisy, denoised, and averaged lifetime images, respectively. Red pixels indicate elevated lifetime values, which indicate noise in the
combined lifetime images. K-means clustering (K = 3) for the noisy, denoised, and averaged lifetime images are displayed in (L–N), respectively. The red
cluster at (L–N) represents the nucleus of the BPAE cell in the selected ROI, where the fluorescence lifetime falls within the 2 ns–2.8 ns range.
Conversely, the blue cluster indicates noise in the fluorescence lifetime image. Excitation wavelength is 800 nm, with the sample power at 5 mW and
pixel dwell-time of 12 μs. FLIM Intensity image is normalized between 0 to 1 as shown in (A). The scale bar measures 20 μm.
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We also conducted imaging on another fixed mouse kidney
sample [prepared slide #3 (F-24630) by FluoCells], where mouse
kidney samples were stained with DAPI (nuclei using blue-
fluorescent DNA stain), Alexa Fluor 488 wheat germ agglutinin
(highlighting elements of the glomeruli and convoluted tubule using
green-fluorescent lectin), and Alexa Fluor 568 phalloidin (abundant
in glomeruli and the brush border using red-fluorescent filamentous
actin) utilizing our Instant FLIM system (Zhang et al., 2021). The
excitation wavelength of the pulse laser was set to 800 nm, and at the
sample, the excitation power measured was 3.3 mW. Emission
spectra for the above-mentioned three fluorophores in fixed
mouse kidney cells can be found at3.

Figure 7A presents the noisy image of the fixed mouse kidney
sample, captured through our specialized two-photon FLIM system,
displayed as a single-channel image with magenta hot false color.

Concurrently, Figures 7B–D demonstrate the composite lifetime of
noisy FLIM data, the denoising effect of the pre-trained ML model
on the noisy FLIM mouse kidney fixed sample data, and averaged
lifetime measurements (averaged over 5 samples within the same
FOV), providing high-SNR images for comparison, respectively.
Furthermore, Figures 7E–H present the ROIs for the intensity,
composite lifetime images of noisy, DnCNN-denoised, and
averaged lifetime images, respectively. Notably, denoised lifetime
images contain fewer red pixels, indicating diminished noise and
precise lifetime values compared to noisy counterparts. Phasors for
the noisy, denoised, and averaged FLIMmeasurements are displayed
in Figures 7I–K, respectively. The results of K-means clustering on
the phasors of the noisy, denoised, and averaged FLIM
measurements are depicted in Figures 7L–N, respectively,
illuminating the effectiveness of the denoising process. The PSNR
values of the fixed mouse kidney noisy and denoised using DnCNN
methods lifetime images are 17.63 dB and 22.10 dB, respectively.
Similarly, the SSIM values of the noisy and denoised using DnCNN
methods lifetime images are 0.190 and 0.355, respectively. From the

FIGURE 7
Phasor representation of a mouse kidney fixed sample was analyzed before and after application of pre-trained ML models and the FLIM images
were acquired using our instant FD-FLIM system (Zhang et al., 2021). Four images are presented: (A) two-photon intensity images, (B) noisy images, (C)
denoised images with our proposedmethod, and (D)mean fluorescence composite lifetime images. Composite lifetime is presented as a Hue Saturation
Value (HSV) representation of intensity and lifetime imagery where the brightness and hue of each pixel correspond to the mapped fluorescence
intensity and lifetime, respectively. The image size is 512 × 512 pixels with a selective ROImeasuring 100 × 100 pixels (marked as yellow box). In (E–H), the
obtained intensity and composite lifetime for the noisy, denoised, and averaged images are displayed. The phasors for the noisy, denoised, and averaged
lifetime images are displayed in panels (I–K), correspondingly. Red pixels indicate elevated lifetime values, indicating noise in composite lifetime images.
Panels (L–N) show K-means clustering (K = 3) for the noisy, denoised, and averaged lifetime images, respectively. The excitation wavelength used was
800 nm with sample power set at 3.3 mW and pixel dwell-time of 12 μs. FLIM Intensity image is normalized between 0 to 1 as shown in (A). Scale bar
equals 20 μm.

3 https://www.thermofisher.com/order/catalog/product/F24630
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PSNR values, there is an improvement in image quality of 4.47 dB
due to DnCNN pre-trained CNNs denoising method. Figure 7.

3.3 Out-of-distribution samples: high-
scattered plant tissues

In our research, deep learning models proficient in training
datasets acquired from FLIM systems depict information as 2D
sections per channel in the 3D volume across specific time frames.
Addressing the challenge of model performance on data that differs
from the training set is crucial, especially for complex structures like
highly scattering plant tissues. The intricate cellulose cell wall
structures in plants cause high optical scattering coefficients,
making depth-resolved imaging challenging for conventional
microscopy systems. Confocal laser scanning microscopy (CLSM)
provides limited depth resolution due to scattering, whereas multi-
photon microscopy (MPM) offers deeper penetration. Given this,
our approach’s validation on plant samples that differ from the
training set is crucial, demonstrating its ability to adapt to new data
and generalize the pre-trained models. To assess our pre-trained ML
models for lifetime denoising, we used our instant FLIM system
(Zhang et al., 2021) for plant tissue imaging. Both phasor axes of
FLIM measurements showed an MPG noise distribution, validating
the application of our pre-trained denoising method to each G and S
image before lifetime extraction. Notably, the pre-trained DnCNN
model denoises images based on single 2D planes, incorporating
information from both sides of the plant structure. To obtain ground
truth, each illumination plane was imaged a minimum of five times,
and the resultant images were averaged to obtain accurate
comparisons. Figure 8.

Bean plant leaves (grown in our laboratory at room temperature
from Ferry-Morse bean seeds) are imaged using our custom-built
MPM-FLIM [InstantFLIM (Zhang et al., 2021)] and presented in
Figures 8, 10, which represent the top and bottom sides of the active
in vivo leaf samples of age less than 10 days. Because plants contain
autofluorescent molecules, such as chlorophyll and flavonoids,
external fluorescent markers or dyes are not needed to image
them. Figure 8A shows the fluorescence intensity image (single
channel in false color of magenta) of the plant leaf at a depth of
30 μm below the upper epidermis layer. Figure 8B shows the
fluorescence lifetime image (single-channel false color in cyan)
showing the spongy mesophyll layer. Figure 8C shows the
application of a median filter to both components (X-axes and
Y-axes) of complex FLIM measurements and the extracted
fluorescence lifetime image of a plant leaf. Figure 8D shows the
pre-trained DnCNN ML model applied to both orthogonal axes (x-
and y-axes) of complex FLIM measurement to produce a denoised
fluorescence lifetime image. Figure 8E shows the ground truth
lifetime image obtained by averaging in the FLIM complex plane
of complex FLIM measurement in the same FOV. Similarly, Figures
8F–I show the smaller field-of-view images of the noisy, median
denoised, DnCNN denoised, and averaged lifetime images,
respectively. To show the fluorophores in the spongy mesophyll
layer, the lifetime histogram of the plant leaf is shown in Figure 9.
Figure 9A shows the noisy lifetime image distribution range of
0.3 ns–1.4 ns and cannot clearly show two-lifetime distributions. In
addition, each histogram image also contains a Gaussian fit curve of
the lifetime image to multiple fluorophore distributions. Figures
9B–D show fluorescence lifetime distributions of applied median
filtered image, pre-trained DnCNN ML model denoised fluorescence
lifetime image, and averaged fluorescence lifetime images, respectively.

FIGURE 8
FLIM images of the in vivo bean plant spongy mesophyll layer: intensity image (A), lifetime images where raw lifetime (B), median filter denoised
lifetime (C), pre-trained DnCNN ML model denoised lifetime (D), and ground-truth (averaged) lifetime image (E), respectively. Likewise, the designated
ROI, indicated within the yellow box, is depicted in panels (F–I) to display the corresponding selected field-of-view. FLIM intensity and lifetime images are
presented in false colors, where each image is a gray-scale image. Excitation wavelength: 800 nm; sample power: 3 mW; pixel dwell-time: 12 μs.
FLIM Intensity image is normalized between 0 to 1 as shown in (A). Scale bar, 5 μm.

Frontiers in Bioinformatics frontiersin.org11

Mannam et al. 10.3389/fbinf.2023.1335413

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1335413


The intrinsic autofluorescence of cytosolic structures ranges from
0.75 ns to 1 ns, and chlorophyll ranges from 0.45 ns to 0.75 ns. Our
pre-trained DnCNN model clearly shows the lifetime distribution of
two fluorescence lifetime decays: chlorophyll and cytosolic structures.
The PSNR values of the plant lifetime images denoised using the
median filtering and DnCNN methods were 19.05 dB and 19.20 dB,
respectively, compared to 17.20 dB for the noisy image. Similarly, the
SSIM values of the lifetime images denoised using the median filtering
and DnCNN methods were 0.265 dB and 0.274 dB, respectively,
compared to 0.162 dB for the noisy image. These results
demonstrate the effectiveness of DnCNN pre-trained CNNs
denoising method in improving the image quality. Figure 9.

Similarly, Figure 10 shows the upper epidermal layer of the bean
plant is imaged using our InstantFLIM system (Zhang et al., 2021).

Figure 10A shows the fluorescence intensity image (single channel in
the false magenta color) of the upper epidermis layer of the bean
plant. Figure 10B shows the fluorescence lifetime image (single-
channel false color image in cyan) of the upper epidermis layer.
Figure 10C shows the application of a median filter to both phasor
axes of the complex FLIM measurements to extract the lifetime
image of a plant leaf. Figure 10D shows the pre-trained DnCNNML
model applied to the FLIM phasor space (G and S images) of the
FLIM measurement, producing the denoised lifetime image.
Figure 10E shows the ground truth lifetime image obtained by
averaging in the FLIM complex plane of the FLIM measurement
in the same FOV. The smaller-field-of-view images of the noisy,
median-denoised, DnCNN-denoised, and averaged lifetime images
are shown in Figure 10F–I, respectively. The intrinsic

FIGURE 9
FLIM images of the in vivo bean plant spongy mesophyll layer: lifetime image distribution with Gaussian fit for the raw image (A), median filter
denoised image (B), DnCNN denoised lifetime using our ImageJ plugin (C), and averaged lifetime image (D), respectively. From the denoised image and
averaged images, two-lifetime distributions can be identified, which are missing in the case of the raw lifetime image distribution.

FIGURE 10
FLIM images of the in vivo bean plant Upper epidermis layer: intensity image (A), lifetime images where raw lifetime (B), median filter denoised
lifetime (C), DnCNN denoised lifetime using our ImageJ plugin (D), and averaged lifetime image (E), respectively. Likewise, the designated ROI, indicated
within the yellow box, is depicted in panels (F–I) to display the corresponding selected field-of-view. FLIM intensity and lifetime images are presented in
false colors, where each image is a gray-scale image. Excitation wavelength: 800 nm; power: 5 mW; pixel dwell-time: 12 μs. FLIM Intensity image is
normalized between 0 to 1 as shown in (C). Scale bar, 5 μm.
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autofluorescence of cell walls ranges from 0 ns to 0.4 ns, and
chlorophyll ranges from 0.75 ns to 1.2 ns. Clearly, our pre-trained
DnCNN model shows the lifetime distribution of two fluorescence
lifetime decays of cell wall structures and chlorophyll. The PSNR
values of the plant upper epidermal-layer lifetime images denoised
using the median filtering and DnCNN methods were 11.55 dB and
11.72 dB, respectively, compared to 11.27 dB for the noisy image.
Similarly, the SSIM values of the lifetime images denoised using the
median filtering and DnCNN methods were 0.285 and 0.345,
respectively, compared to 0.265 for the noisy image. These results
demonstrate the effectiveness of DnCNN pre-trained CNNs
denoising method in improving the image quality. Figure 10.

Once the phasor axes (G and S images) of complex FLIM
measurement data are denoised using the pre-trained DnCNN
model, the denoised phasor is extracted, as shown in Figure 11.
In addition, the phasor segments of the phasor are extracted using
the K-means clustering method. Figure 11A shows the single-
channel gray-scale image in false magenta color intensity of the
in vivo bean plant leaf spongy mesophyll layer. Figure 11B–D show
the single channel gray-scale image in false cyan color raw, DnCNN
denoised, and averaged lifetime images, respectively. Figure 11E–G
show the false-color composite HSV lifetime image, where value
(pixel brightness) represents fluorescence intensity and hue (color)

represents fluorescence lifetime of the raw, DnCNN-denoised, and
averaged lifetime images, respectively. Figure 11H–J show the
phasors of the raw, DnCNN denoised, and averaged phasors,
respectively. Figure 11H shows the phasor with a larger noise
distribution, while the denoised phasor in Figure 11I shows
reduced noise with improved SNR. In addition, the phasors are
divided into two groups to represent the chlorophyll and cytosolic
structures, as shown in red and blue colors, respectively.
Figure 11K–M show clusters of the two fluorophores in the raw,
DnCNN-denoised, and averaged lifetime clusters, where the blue
color pixels represent the chlorophyll and red color pixels represent
the cytosolic structures. Figure 11.

Finally, FLIM lifetime denoising results using the Noise2Noise
pre-trained CNN model are provided in GitHub4. The outcomes
disclosed in this study are available publicly and can be accessed
through the same GitHub repository.

FIGURE 11
FLIM images of the in vivo bean plant spongy mesophyll layer: intensity image (A), lifetime images where raw lifetime (B), DnCNN denoised lifetime
using our ImageJ plugin (C), and averaged lifetime image (D), respectively. FLIM intensity and lifetime images are presented in false colors, where each
image is a gray-scale image. Composite lifetime images are shown in (E–G), respectively, in the HSV format where value (pixel brightness) is mapped as
fluorescence intensity and hue (color) is mapped as fluorescence lifetime. Phasor diagramswith K-means clustering with 2 clusters (k = 2) are shown
in (H–J), respectively. Overlap clusters of the lifetime images are shown in (K–M), respectively. FLIM Intensity image is normalized between 0 to 1 as
shown in (A). Excitation wavelength: 800 nm; power: 3 mW; pixel dwell-time: 12 μs. Scale bar, 5 μm.

4 https://github.com/ND-HowardGroup/FLIM_Denoising_using_Pretrained_
CNNs.git
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3.4 Limitation of pre-trained CNNs on
lifetime image denoising

Our pre-trainedMLmodels consistently performwell on unseen
fluorescence intensity image structures and samples, demonstrating
their ability to generalize and avoid over-fitting. This means they can
effectively denoise fluorescence lifetime images with various
structures and samples (such as fluorescence nanobeads, etc.,)
that differ from those during training. However, when it comes
to noise distribution, denoising lifetime images using pre-trained
CNNs trained on fluorescence intensity images can be challenging
due to the complex noise distribution of fluorescence lifetime
images. Our method addresses this challenge by employing the
complex phasor representation of FLIM images, where each
component of complex FLIM measurement provides a noise
distribution of the Skellam distribution that can be approximated
to Gaussian noise and is compatible with pre-trained CNNs noise
distribution of MPG noise.

Recent FLIM image acquisition methods often produce
multidimensional data (spatial (XYZ), temporal (T), and multiple
channels at different emission filters (λ1, λ2), which are typically
presented in 2D sectional images of complex FLIMmeasurement. The
noise in each 2D sectional image follows the Skellam distribution.
Further performance improvements could be achieved by training
models directly on these 2D images. This would require a large
training dataset, which can be difficult and expensive to acquire,
especially for in vivo imaging. However, this approach has the
potential to significantly improve fluorescence lifetime phasor
denoising. Currently, our approach is limited to processing 3D
sections of FLIM data, meaning that multidimensional FLIM data
requires pre-processing into 3D sections of XYZ (entire volume at
each discrete time interval) or XYT (3D stack of 2D planes at different
time intervals) in each acquisition channel before applying our
method. Following the application of our image denoising method,
the denoised results must be combined as part of a post-processing
step. Finally, it is always recommended to check if the generated
denoised lifetime images have any artifacts using the existing
quantitative metrics such as the phasor position of the
fluorophores to indicate accurate lifetime values.

4 Conclusion

To overcome the challenges of slow data capture (longer time for
imaging), low SNR, and costly setups in fluorescence lifetime
imaging microscopy (FLIM), we introduce Instant FLIM, a
unique, rapid processing FLIM instrument using real-time signal
processing and commercial analog processing devices to provide
fluorescence intensity, lifetime, and phasors for multi-dimensional
FLIM data, including 2-D (XY plane), 3-D (XYZ with Z: depth), or
4-D (XYZT with Z: depth, T: time) in vivo imaging. This paper
demonstrated the utilization of pre-trained deep learning-based
image denoising models to remove noise from complex FLIM
measurements before extracting the sample fluorescence lifetime
and sample phasor plot. The denoised phasor shows a qualitative
improvement in SNR in FLIM images. Subsequent application of
denoised phasor data to K-means clustering segmentation reveals
distinct segments corresponding to different fluorophores. Our

demonstrated method has been rigorously tested on diverse
samples, including in vivo mouse kidney tissue, fixed BPAE
samples, fixed mouse kidney samples, and highly scattering
plant samples, demonstrating its efficacy in enhancing the
detection of key biological structures in FLIM applications.
Overall, the combination of Instant FLIM and pre-trained ML
models for denoising offers a fast and accurate solution for
fluorescence image denoising, yielding high SNR and accurate
segmentation.
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