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Breast cancer is the most prevalent and heterogeneous form of cancer affecting
women worldwide. Various therapeutic strategies are in practice based on the
extent of disease spread, such as surgery, chemotherapy, radiotherapy, and
immunotherapy. Combinational therapy is another strategy that has proven to
be effective in controlling cancer progression. Administration of Anchor drug, a
well-established primary therapeutic agent with known efficacy for specific
targets, with Library drug, a supplementary drug to enhance the efficacy of
anchor drugs and broaden the therapeutic approach. Our work focused on
harnessing regression-based Machine learning (ML) and deep learning (DL)
algorithms to develop a structure-activity relationship between the molecular
descriptors of drug pairs and their combined biological activity through a QSAR
(Quantitative structure-activity relationship) model. 11 popularly known machine
learning and deep learning algorithmswere used to developQSARmodels. A total
of 52 breast cancer cell lines, 25 anchor drugs, and 51 library drugs were
considered in developing the QSAR model. It was observed that Deep Neural
Networks (DNNs) achieved an impressive R2 (Coefficient of Determination) of
0.94, with an RMSE (Root Mean Square Error) value of 0.255, making it the most
effective algorithm for developing a structure-activity relationship with strong
generalization capabilities. In conclusion, applying combinational therapy
alongside ML and DL techniques represents a promising approach to
combating breast cancer.
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1 Introduction

Breast cancer is the most common, lethal, malignant, and highly heterogenic cancer
among cancers worldwide (Di Nardo et al., 2022). Information sourced from the North
American Association of Central Cancer Registries depicted around 300,590 (2800 in males
and 297,790 in females) estimated new cases and 43,700 (530 in males and 43,170 in
females) estimated deaths because of breast cancer, making it the leading cancer in
estimated new cases and top second leading cancer in estimated deaths for females as
shown in Supplementary Table S1 (Siegel et al., 2023). Classified into ductal and lobular
carcinoma, treatment strategies vary based on genomic features, including

OPEN ACCESS

EDITED BY

William C. Ray,
Nationwide Children’s Hospital, United States

REVIEWED BY

Jing Xing,
Lingang Laboratory, China
Sabina Podlewska,
Polish Academy of Sciences, Poland

*CORRESPONDENCE

Shyam Perugu,
shyamperugu@nitw.ac.in

RECEIVED 01 November 2023
ACCEPTED 21 December 2023
PUBLISHED 15 January 2024

CITATION

Karampuri A and Perugu S (2024), A breast
cancer-specific combinational QSAR model
development using machine learning and deep
learning approaches.
Front. Bioinform. 3:1328262.
doi: 10.3389/fbinf.2023.1328262

COPYRIGHT

© 2024 Karampuri and Perugu. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Bioinformatics frontiersin.org01

TYPE Original Research
PUBLISHED 15 January 2024
DOI 10.3389/fbinf.2023.1328262

https://www.frontiersin.org/articles/10.3389/fbinf.2023.1328262/full
https://www.frontiersin.org/articles/10.3389/fbinf.2023.1328262/full
https://www.frontiersin.org/articles/10.3389/fbinf.2023.1328262/full
https://www.frontiersin.org/articles/10.3389/fbinf.2023.1328262/full
https://www.frontiersin.org/articles/10.3389/fbinf.2023.1328262/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2023.1328262&domain=pdf&date_stamp=2024-01-15
mailto:shyamperugu@nitw.ac.in
mailto:shyamperugu@nitw.ac.in
https://doi.org/10.3389/fbinf.2023.1328262
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2023.1328262


EGFR2 activation and genetic mutations (BRCA1, BRCA2, PIK3A)
(Dahan et al., 2023). Therapeutic options, such as radiotherapy,
immunotherapy, hormone therapy, chemotherapy, and targeted
therapies, are tailored to the patient’s profile (Dahan et al., 2023).
Early-stage breast cancer responds to surgery, chemotherapy, and
pre-operative neo-adjuvant therapies, enhancing surgical outcomes
(Hong and Xu, 2022).

While various therapeutic approaches exist, addressing this
complex tumor presents a global challenge for researchers.
Combinational chemotherapy, involving the simultaneous
administration of two drugs, has been explored to impact tumor
progression and metastasis (Farghadani and Naidu, 2022). In a
study by Reyhaneh Farghadani et al., in 2022, curcumin was
investigated for its ability to enhance the biological activity of
existing drugs, leading to reduced tumor size and improved
prognosis. In vitro studies on breast cancer cell lines revealed
increased efficacy of cisplatin, doxorubicin, paclitaxel, and 5-
fluorouracil when combined with curcumin (Farghadani and
Naidu, 2022). Another avenue explored by Hui-Hui Zhang et al.,
in 2016 involved the use of metformin to enhance the efficiency of
various drugs, including 5-fluorouracil, epirubicin,
cyclophosphamide, doxorubicin, and paclitaxel when
administered in combination (Iliopoulos et al., 2011; Soo et al.,
2015; Zhang and Guo, 2016). Combinational chemotherapy is a
promising strategy for breast cancer diagnosis, representing a
growing research area in drug discovery and computational biology.

Quantitative Structure-Activity Relationship (QSAR) is a
data-driven approach in ligand-based drug discovery. It relies
on molecular descriptors—quantitative representations of a
molecule’s structure. These descriptors encompass topological,
geometric, electronic, and physicochemical characteristics. The
primary goal of QSAR is to predict the biological activity of
molecules based on these descriptors, providing valuable insights
for drug development (Ma et al., 2015). This ligand-based
approach aims to correlate the structure of a molecule with its
activity, helping filter out inactive molecules and prioritize
experiments with selected compounds in early drug
development stages (Ma et al., 2015). QSAR models vary
based on the molecular descriptors, including 2-dimensional
QSAR, 3-dimensional QSAR, and 4-dimensional QSAR (Sippl,
2000; Roy et al., 2015; Bak, 2021; Mishra et al., 2021). Molecular
descriptors are the variables that quantitatively represent a
molecule, and these can be Topological descriptors, Geometric
descriptors, Electronic descriptors, physicochemical descriptors,
QSAR descriptors, chemical fingerprints, and Molecular
fingerprints (Soares et al., 2022). In the past decade, artificial
intelligence, particularly machine learning (ML) and deep
learning (DL) has made remarkable strides in drug discovery
(Chen et al., 2018; Smith et al., 2018; Lane et al., 2021; Wu et al.,
2021). ML and DL, recognized as data-driven approaches, play a
significant role in developing Quantitative Structure-Activity
Relationship (QSAR) models for various diseases (Sippl, 2000).
These models, employed for regression-based predictions of
continuous variables like Biological activity (IC50 values),
leverage machine learning and deep learning methods.
Traditional QSAR modeling entails calculating molecular
descriptors for each drug molecule, using the generated data
to train ML algorithms. The trained algorithms can then predict

the biological activity of novel molecules based on structural
information. Performance metrics like R2 (Coefficient of
determination), RMSE (Root Mean Square Error), MSE (Mean
Square Error), and Fold Cross-validation scores are assessed for
validation in regression-based machine learning predictions (Wu
et al., 2021).

QSAR models, integrating Machine Learning (ML) and Deep
Learning (DL), demonstrate versatility across diverse diseases. Wu
et al. (2021) conducted a comparative study on 16 ML algorithms,
identifying rbf-SVM, XGBoost, and rbf-GPR as top performers.
Kleandrova et al. (2020) introduced the first cell-based multi-target
QSAR model for hepatic carcinoma. Additionally, Alejandro et al.
(2020) innovatively applied Perturbation theory-based ML to
predict antisarcoma compound activity, leveraging data from
assay organisms, cell lines, and target proteins (Cabrera-Andrade
et al., 2020). These advancements exemplify the evolving precision
and adaptability of ML and DL in shaping effective QSAR models
for varied diseases.

Jaaks et al. (2022) conducted a comprehensive investigation to
identify effective drug combinations for breast, pancreatic, and
colon cancer cell lines. The outcomes of their study were
meticulously documented in the GDSC2 database. Our approach
stands out as unique by leveraging the GDSC2 Combinations
database, providing distinct insights into the biological activity of
anchor drugs, library drugs, and their combinations across breast
cancer cell lines. Notably, it is worth mentioning that, at the time of
our study, the GDSC2 database had not been utilized by any
researcher for a QSAR study of this nature. Instead of relying on
commercial software, we employed regression-based Machine
Learning (ML) and Deep Learning (DL) algorithms to craft a
Quantitative Structure-Activity Relationship (QSAR) Model for
predicting biological responses. The dataset includes two types of
drugs: Anchor drugs and Library drugs. Anchor drugs are well-
established medications known for their effectiveness on specific
targets, serving as the primary therapeutic agents. On the other
hand, Library drugs, also referred to as supplementary or adjunct
drugs, are used in conjunction with anchor drugs to enhance their
effectiveness. Library drugs are strategically employed to diversify
the therapeutic approaches of combination therapy (Jaaks et al.,
2022). The dataset provides details on combinational biological
activity (Combo IC50) values for drug pairs, target pathways,
effectiveness values of library drugs, and measures of synergy as
indicated by Bliss Emax for anchor drugs and Combo Emax. These
attributes collectively offer insights into the combined impact of
drugs. For a more in-depth understanding, please refer to
Supplementary Table S2.

We calculated molecular descriptors for both the Anchor and
Library drugs using the Padelpy library in Python v3.12.0, with
Combo IC50 as the target variable and other attributes as
independent variables. Using regression-based Machine Learning
algorithms, we developed a structure-activity relationship to
understand interactions and patterns among the drugs’ molecular
descriptors and combined biological activity. Comparative
regression analysis on test and validation sets evaluated model
performance. Notably, our approach of constructing a
combinational QSAR model, considering two drugs, is novel in
comparison to traditional single-drug QSAR models. Details are
provided in the subsequent sections.
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2 Materials and methods

We utilized the GDSC2 (Genomics of Drug Sensitivity in
Cancer) combinations database to acquire breast cancer

data, followed by a series of preprocessing steps. Regression-
based machine learning algorithms, well-known in the field,
were then employed to predict Combo IC50 values for 52 cancer
cell lines. A graphical abstract is represented in Figure 1. We
thoroughly validated and documented the model’s
performance.

2.1 Data collection

The GDSC2 database provides breast cancer-specific data and
comprises information from 52 cell lines. Molecular Descriptors
were calculated using the Padelpy library in Python v3.12.0.

2.2 Data pre-processing

Figure 2 illustrates the process where Principal Component
Analysis (PCA) was applied to reduce dimensionality, effectively
minimizing noise and producing a dataset that retains 95% of the
explained variance from the initial data. Skewness and kurtosis
values were calculated, and outliers were addressed through
Boxcox, yeojohnsons, and logarithmic transformations to
ensure a normal distribution. Following this, data encoding
and standardization were performed using the Scikit-learn
library in Python v3.12.0. This preprocessing aimed to
facilitate subsequent supervised regression-based machine
learning and deep learning predictions.

2.3 Supervised machine learning

We employed eleven well-known regression-based machine
learning algorithms for QSAR model development, including

FIGURE 1
A graphical abstract illustrating the Research.

FIGURE 2
A Complete workflow of developing a combinational QSAR
Model using ML and DL.
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Random Forest (RF), Extra Gradient Boost (XGB), Ridge
Regression, k-Nearest Neighbours (kNN), LASSO Regression,
Elastic Net Regression, CART (Classification and Regression
Trees), Stochastic Gradient Descent Regressor (SGD),
Support Vector Regressor (rbf-SVR), Wider Neural Network
(WNN), and Deep Neural Network (DNN) as shown in
Table 1. The optimized hyperparameters for each algorithm
are outlined in Table 2, and additional details for each
algorithm are provided in the Supplementary Data. The
preprocessed dataset was partitioned into training, testing, and
validation sets in a 60:20:20 ratio using the Scikit-learn library in
Python v3.12.0.

2.4 Model performance evaluation

We validated the model’s performance and interpreted
predictions by assessing key validation scores, including RMSE
(Root Mean Square Error), MSE (Mean Square Error), MAE
(Mean Absolute Error), R2 (Coefficient of Determination),
Explained variance, and employing an eight-fold cross-validation
approach. The SHAP (Shapley Additive Explanations) module in
Python v3.12.0 was also utilized for further interpretability (Wu
et al., 2021). Evaluation of both test and validation datasets using
these metrics ensures the model’s accurate predictions and a well-
fitted performance.

TABLE 1 Summary of validation metrics calculated for all the ML and DL algorithms employed on the test set.

Algorithm MAE RMSE Explained variance R - Square MSE

RF 0.614 0.95 0.88 0.88 0.902

XGB 0.464 0.27 0.92 0.92 0.072

LASSO 0.7856 0.78 0.81 0.81 0.608

ELASTIC NET 1.236 1.01 0.79 0.79 1.02

k-NN 0.745 0.929 0.77 0.77 0.863

SGD-Regression 0.6732 0.503 0.82 0.82 0.253

CART 0.446 0.39 0.83 0.83 0.152

SVR-rbf 0.326 0.28 0.91 0.91 0.078

Ridge 0.4587 0.478 0.74 0.74 0.228

DNN 0.248 0.255 0.94 0.94 0.065

Wide-NN 0.458 0.365 0.86 0.86 0.133

TABLE 2 Summary of the optimized hyperparameters of various ML and DL algorithms.

S. No Algorithm Hyperparameters

1 DNN Input layer with 2516 nodes, Five Hidden layers with 500, 250, 125, and 32 nodes, Activation function = ‘ReLu’, Optimizer = SGD,
Learning rate = 0.001, Loss = MSE, Epochs = 100, Batch size = 64, Patience limit = 10, Validation split = 0.25

2 WNN Input layer with 2516 nodes, Two Hidden layers with 3000 and 2000 nodes, Activation function = ‘ReLu’, Optimizer = Adam, Learning
rate = 0.001, Loss = mean square error, Epochs = 100, Batch size = 64, Patience limit (early stopping protocol) = 10, Validation
split = 0.25

3 XGB Maximum depth of 1, Maximum features of 8, Learning rate of 0.08, 10,000 estimators, Loss = mean absolute error

4 SVR - rbf Kernel = radial basis function, Epsilon value of 0.9, Gamma was set to scale

5 RF 10 leaf nodes, 1000 decision trees, Minimum sample split of 5, Minimum sample leaves of 2, Maximum depth of 10

6 KNN Nearest neighbours count (k) = 5, Uniform weight, Euclidian distance metrics, Leaf size = 10

7 Ridge Alpha = 20

8 SGD L2 regularization with (Lambda) = 0.7, Learning rate = 0.001, Number of iterations with no improvement in validation score = 250,
Maximum number of epochs = 1000

9 LASSO Alpha = 0.5

10 Elastic Net Alpha = 0.5, Lambda = 0.6

11 CART Maximum depth of tree = 50, Minimum sample split = 10, Sample leaf count = 5, Number of features considered at each split to none,
Maximum number of leaf nodes to 100
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3 Results

The dataset underwent thorough preprocessing and detailed
exploratory data analysis. To elucidate the influence of target
pathways across the 52 cell lines under study, we generated
heatmaps depicting the frequency distribution of anchor drug
and library drug target pathways as shown in Supplementary
Figures S1, S2 respectively. Additionally, a comprehensive
correlation heat map is showcased in Supplementary Figure S3.
To reduce dimensionality while preserving crucial information,
Principal Component Analysis was strategically employed.
Initially, with 1444 2D descriptors and 421 3D descriptors, the
dataset underwent meticulous reduction. Dimensionality was
refined to 1000 2D descriptors 376 3D descriptors for anchor
drugs, and 766 2D descriptors and 358 3D descriptors for library
drugs. Corresponding Scree plots for dimensionality reduction were
featured in Supplementary Figure S4.

Combinational QSAR models were established by employing
11 commonly used regression algorithms. To assess prediction
performance, key metrics such as R2, RMSE, MSE, MAE,
Explained Variance and an eight-fold cross-validation were
applied to both the Test and Validation sets. Emphasizing the
significance of R2 and RMSE for evaluating the goodness of fit
and the average magnitude of errors between predicted and actual

values, these metrics were prioritized for comparison with similar
QSAR modeling studies.

Upon analyzing the test dataset results, the DNN algorithm
demonstrated notable performance with an impressive R2 of
0.94 and an associated RMSE value of 0.255, underscoring its
ability to make accurate predictions. Following closely were
Algorithm XGB and rbf-SVR, achieving R2 values of 0.92 and
0.91, along with RMSE values of 0.278 and 0.289, respectively, as
illustrated in Figure 3. Transitioning to the validation set, the DNN
algorithm continued to excel with an R2 value of 0.92, indicative of
an excellent model fit. Wider-NN (Neural network) and XGB (Extra
Gradient Boost) algorithms followed with R2 values of 0.896 and
0.885, respectively, revealing promising results and a commendable
fit, as depicted in Figure 4. Nevertheless, it is essential to note that
algorithms Ridge Regression, Elastic Net, and KNN (K-Nearest
Neighbours) struggled to perform well in both validation and test
datasets. Their lower R2 values of 0.74, 0.79, and 0.77 for the test set
and 0.79, 0.682, and 0.72 for the validation set and higher RMSE
values of 0.478, 1.01, 0.929 on the test set and 0.483, 1.24, and
0.864 on the validation set suggest a sub-optimal prediction.
Validation metrics considered for all 11 algorithms were
tabulated in the Table. 1.

We have employed the SHAP (SHapely Additive explanations)
approach to gain insight into the top 20 essential attributes and their

FIGURE 3
R2 and RMSE values of various machine learning algorithms on the test set.
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impact on driving the predictions. SHAP (Shapley Additive
explanations) scores reveal the key attributes that have positive
(positive SHAP scores) and negative (Negative SHAP scores)
impacts on the model predictions. Accordingly, those descriptors
can be considered while developing similar QSAR models. The top
20 attributes with positive, negative, and overall SHAP values and
their magnitude in contributing to model predictions are shown in
Supplementary Figures S5–S7. Based on our analysis, as shown in
Supplementary Table S3, it became apparent that descriptors related
to the electronic state possess more impact as crucial attributes in the
development of a combinational QSAR model.

Figure 5 depicts the validation set results of the DNN-based
QSAR model, highlighting impressive R2 values for the top six
specific drug combinations selected from a pool of 1200 possible
drug combinations in the dataset. These combinations include
Gemicitabine-MK-226, Gemicitabine-Vorinostat, Luminespib-
MK-1775, Gemicitabine-SCH772985, Gemicitabine-Taselisib, and
AZD7762-AZD6482. MDA-MB-361, HCC1395, and BT-549 cell
lines demonstrated top R2 values, while COLO-824, MRK-nu-1, and
AU565 exhibited a low IC50 value as shown in Figure 6A. Figure 6B
visually compares the distribution of Actual Combo IC50 Values and
Predicted Combo IC50 Values, affirming the QSAR model’s
reliability. Additionally, Supplementary Figure S8 presents the
chemical structures of the highlighted drug combinations (from

Figure 5) with corresponding target and pathway information.
These comprehensive findings support the QSAR model’s
potential in virtual screening of unknown molecules and drug
repurposing, providing a valuable contribution to drug discovery.

4 Discussion

Jaaks et al., 2022 extensively explored effective drug
combinations for breast, pancreatic, and colon cancer cell lines,
documented in the GDSC2 database. Our unique approach leverages
the GDSC2 Combinations database, providing distinctive insights
into the biological activity of anchor drugs, library drugs, and their
combinations in breast cancer cell lines. Rather than relying on
commercial software, we employed regression-based Machine
Learning (ML) and Deep Learning (DL) algorithms to construct
a novel Quantitative Structure-Activity Relationship (QSAR) Model
for predicting biological responses. This pioneering model integrates
the intricate interplay between anchor and library drugs, diverging
from conventional QSAR methodologies (Kausar and Falcao, 2018)
and multimodal deep learning techniques (Vale-Silva and Rohr,
2021; Boehm et al., 2022). 11 distinct ML and DL algorithms sourced
from GDSC2 combinations, underwent rigorous performance
validations to ensure robust predictive capabilities. This

FIGURE 4
R2 and RMSE values of various machine learning algorithms on the validation set.
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innovative approach broadens the scope of QSAR modeling and
contributes to the understanding of drug interactions in
cancer biology.

With an R2 value of 0.94 and RMSE of 0.255 our Combinational
QSAR model outperformed existing models, which typically
considered single drugs and genomic parameters (Speck-Planche
et al., 2011). A comparative study by Junshui et al., in 2014,
evaluating DNN and other ML algorithms for QSAR models,
achieved a top R2 value of 0.82 (Ma et al., 2015). Guided by Wu
et al. a comprehensive assessment of 16 ML models from various
datasets in 2021, our study’s framework was established (Wu et al.,
2021). By incorporating a broader spectrum of cancer cell lines, our
model enhances its generalizability in predicting drug responses

across diverse cancer types. Unlike other studies concentrating on
the biological activity of a single molecule, our focus was on the
combinational activity of two molecules. Through an
unconventional yet strategic comparison, our developed model
distinctly showcases superior performance, addressing a crucial
research gap by providing a robust machine learning-based
QSAR model for predicting combinational drug responses.

Our study employs the SHAP approach to identify crucial
chemical moieties for anti-cancer activity, such as the Geary
Autocorrelation at Lag 5 weighted by I state, Maximum Atom-
type E-State with a focus on oxygen (-O), and the Normalized
Randic-like Eigenvector-based Index from the Detour Matrix. Refer
to Supplementary Table S3. These descriptors align well with

FIGURE 5
Top six regression plots for Anchor—Library drug combinations obtained from DNN-based QSAR model. (A–F) Represent the drug combinations
Gemcitabine—MK-226, Gemcitabine– Vorinostat, Luminespib–MK-1775, Gemcitabine–SCH772985, Gemicitabine–Taselisib, AZD7762—AZD6482,
Gemicitabine–Taselisib, AZD7762—AZD6482 respectively (Negative IC50 values are presented due to logarithmic transformation during the
preprocessing stage, enhancing data representation and clarity in the graph).
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established biological principles. For instance, the Geary
Autocorrelation provides insights into spatial electronic patterns
influencing interactions with specific cellular targets in cancer
progression, and the Maximum Atom-type E-State’s emphasis on
electron-donating capability may impact the modulation of key
enzymes or receptors in anticancer pathways. The Normalized
Randic-like Eigenvector-based Index reflects molecular topology
and connectivity, influencing interactions with crucial cellular
components involved in cancer-related processes. These
interpretations offer a nuanced understanding of the biological
relevance of these descriptors. The chemical molecules
structurally similar as mentioned in Figure 5 are proposed to
possess anti-cancer activity by the QSAR model. Additionally,

our versatile combinational QSAR model, with an R2 value of
0.94 and RMSE of 0.255, revealed top drug combinations with
the highest R2 values targeting key pathways like MTOR/PI3K
signaling, chromatin histone acetylation, DNA replication, ERK/
MAPK signaling, protein stability and degradation, and cell cycle
regulation. These combinations mentioned in Figure 5 and
Supplementary Figure S8 were validated and demonstrated
significant effects on breast cancer cell progression through
modulation of these critical pathways (Guo et al., 2018; Guo
et al., 2020; Miricescu et al., 2020).

Careful consideration of procurement expenses for cell lines and
pharmaceuticals, along with associated maintenance costs in
research laboratories, is essential for researchers. The financial

FIGURE 6
(A) Visualization of the Top 15 Cell Lines: Highest R2 Values and Lowest IC50 Values from the Test Set. (B) Kernel Density Estimation (KDE) Plot:
Distribution of Actual Combo IC50 Values vs. Predicted Combo IC50 Values by the DNN-QSAR Model.
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and temporal complexities of this process underscore its inherent
challenges. In the domains of anticancer drug development and
therapeutic strategy research, predictive models are crucial. They
prove invaluable in early-stage drug development by identifying
non-responsive or less responsive drugs and optimizing resource
allocation in terms of finances, time, and human efforts.
Conventional Quantitative Structure-Activity Relationship
(QSAR) models have their merits in predicting drug responses,
yet the proposed combinational QSAR models offer a distinct
advantage. They enhance our ability to predict the activity of
unknown combinations and forecast responses in drug
repurposing scenarios. While neither conventional nor
combinational QSAR models replace actual wet lab in vitro and
in vivo studies, they play a pivotal role in complementing these
studies, effectively addressing research gaps, and providing
valuable insights.

In conclusion, our endeavor in developing combinational QSAR
models has been shaped by the observation that the dataset within
the repository, while valuable, is comparatively limited when
juxtaposed with other extensive drug databases. Acknowledging
the intrinsic strength of a data-driven approach, we recognize the
potential for enhanced pattern identification and increased accuracy
in predictions with a more expansive dataset. Looking forward, the
future trajectory of this approach holds promise in the integration of
genomic, proteomic, and transcriptomic data through multimodal
deep learning methodologies. This expanded integration seeks to
discern intricate patterns among omics data and drug response data,
thereby enabling more efficient prediction of outcomes.
Furthermore, incorporating various stereoisomers and
conformers derived from existing molecules can broaden the
applicability domain of our models. Leveraging the capabilities of
machine learning and deep learning in the development of versatile
QSAR models, encompassing omics data, drug response data, and
even image data such as tissue section images, stands as a dynamic
strategy. This strategic amalgamation empowers us to efficiently
screen the ever-expanding pool of drug molecules, swiftly
eliminating non-potential candidates in the early stages of drug
discovery, constituting a significant advancement in the field.
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