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Focused ion beam-scanning electronmicroscopy (FIB-SEM) images can provide a
detailed view of the cellular ultrastructure of tumor cells. A deeper understanding
of their organization and interactions can shed light on cancer mechanisms and
progression. However, the bottleneck in the analysis is the delineation of the
cellular structures to enable quantitative measurements and analysis. We
mitigated this limitation using deep learning to segment cells and subcellular
ultrastructure in 3D FIB-SEM images of tumor biopsies obtained frompatients with
metastatic breast and pancreatic cancers. The ultrastructures, such as nuclei,
nucleoli, mitochondria, endosomes, and lysosomes, are relatively better defined
than their surroundings and can be segmented with high accuracy using a neural
network trained with sparse manual labels. Cell segmentation, on the other hand,
is much more challenging due to the lack of clear boundaries separating cells in
the tissue.We adopted amulti-pronged approach combining detection, boundary
propagation, and tracking for cell segmentation. Specifically, a neural network was
employed to detect the intracellular space; optical flowwas used to propagate cell
boundaries across the z-stack from the nearest ground truth image in order to
facilitate the separation of individual cells; finally, the filopodium-like protrusions
were tracked to the main cells by calculating the intersection over union measure
for all regions detected in consecutive images along z-stack and connecting
regions with maximum overlap. The proposed cell segmentation methodology
resulted in an average Dice score of 0.93. For nuclei, nucleoli, and mitochondria,
the segmentation achieved Dice scores of 0.99, 0.98, and 0.86, respectively. The
segmentation of FIB-SEM images will enable interpretative rendering and provide
quantitative image features to be associated with relevant clinical variables.
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1 Introduction

Recent advances in tumor biology have shown that the
plethora of interactions between tumor cells and their
surrounding environment can significantly influence the
behavior of cancer and its response to treatment (Hirata and
Sahai, 2017; Tanaka and Kano, 2018; Galli et al., 2020). A

deeper understanding of the underlying cellular mechanisms
will shed light on how cancer evolves and develops resistance to
therapy (Thakkar et al., 2020). The understanding of these
dynamic interactions can be used to develop novel approaches
to disrupt key inter- and intracellular interactions and facilitate the
design and development of efficient therapeutic strategies to fight
cancer (Baghban et al., 2020).

FIGURE 1
(A) FIB-SEM-to-volume rendering workflow. The FIB source sequentially slices a few nanometers from the sample to expose a fresh surface for
subsequent imaging using the electron beam. An image stack is acquired, and after image alignment and cropping, a small subset of the stack of images
was segmented manually to generate a training set for the deep learning model. Once trained, the deep learning model is used to predict segmentation
masks for the rest of the images in the stack. These predictions are used to create volume renderings for the examination of 3D ultrastructural
properties. (B) Six FIB-SEM datasets and their sizes. The 3D FIB-SEM volumes collected from the biopsy samples Bx1, Bx2, and Bx4 acquired from a patient
with metastatic breast ductal carcinoma, two biopsy samples (PTT and PDAC) acquired from two patients with pancreatic ductal adenocarcinoma, and a
microspheroid prepared using a breast cancer cell line (MCF7). (C) Residual block used in ResUNet. BN stands for batch normalization, and ReLU stands
for rectified linear unit. Xl and Xl+1 are the input and output features for the residual layer l, respectively, and F represents the residual function. (D)ResUNet
architecture. Input size is written on the side of each box. The number of featuremaps in each residual layer is written on top of each box. (E) Illustration of
the net volume and filled volume used in the fenestrated volume percentage measure (3D volume is represented as a 2D image) and (F) illustration of
distances dcc and ds used in proximity of the nucleolus to the nuclear membrane measure.

Frontiers in Bioinformatics frontiersin.org02

Machireddy et al. 10.3389/fbinf.2023.1308708

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1308708


Electron microscopy (EM) provides nanometer resolution views
of intra- and intercellular interactions that are not apparent in
images generated using light microscopy (Johnson et al., 2020). This
complete picture of spatial relationships can reveal potential
therapeutic targets that can be related back to the macroscale
heterogeneity and microenvironment of the tissue. Focused ion
beam-scanning electron microscopy (FIB-SEM) is especially
informative, generating stacks of 2D SEM images that provide
3D information about subcellular features in large tissue volumes
(Giannuzzi, 2004). FIB-SEM imaging proceeds via serial steps of
SEM imaging of a sample surface and FIB removal of a uniform thin
layer of the tissue with a depth comparable to the spatial resolution
in the x-y plane, thereby revealing a new surface to be imaged. This
process is fully automated and ensures that imaged data are
equidimensional in all three axes, which significantly improves
the accuracy of feature recognition within the dataset.

While 3D FIB-SEM images are being generated with an ever
increasing rate in ongoing research and clinical programs, the rate-
limiting step in their analysis is the delineation of the cellular
structures to enable rendering of the images into interpretable
forms. Currently, this is done by experts manually annotating
images and, while effective, is extremely time-consuming, tedious,
and dependent on the skill of the expert. The development of rapid,
robust, and automated machine learning methods to segment
ultrastructural features is acutely needed for the widespread use
of EM in large-scale studies (Perez et al., 2014). The ultrastructure
refers to the structure of the cell and its organelles that are visible
only with high magnification and highest obtainable resolution. The
workflow from FIB-SEM imaging to volume rendering in shown in
Figure 1A and is commonly referred to as volume electron
microscopy (vEM).

2 Related work

Early research on automated EM segmentation focused on
neuronal ultrastructure segmentation of brain tissue. Two-
dimensional U-Net and its variants using residual connection,
such as FusionNet (Quan et al., 2016), fully connected networks
(FCNs) with skip connections (Drozdzal et al., 2016), and M2FCN
(Shen et al., 2017), have been proposed for neuronal membrane
segmentation in EM images to yield large neurite superpixels
combined into 3D neuronal objects using iterative region
agglomeration algorithms. Two-dimensional convolutional neural
networks (CNNs) have the advantage of requiring only 2D ground
truth and having a computationally inexpensive training process
(Ishii et al., 2020). Recent automated neurite reconstruction
methods use 3D CNNs to yield highly accurate 3D boundary
probability maps requiring a simple watershed algorithm for final
segmentation (Zeng et al., 2017; Linsley et al., 2018).

More recently, efforts have been made toward segmentation of
organelles in EM images of non-neuronal tissues. Three-
dimensional U-Net followed by the mutex watershed algorithm
was used to segment nuclei, and the lifted multicut-based approach
was used for cell segmentation to characterize the morphology of
cells in an EM volume of a complete Platynereis worm (Vergara
et al., 2021). Insulin secretory granules and Golgi apparatus
segmented using 3D and 2D U-Net, respectively, helped in

generating a comprehensive spatial map of organelle interactions
in mouse β cells and facilitated our understanding of the supportive
role played by secretory granules in insulin secretion (Müller et al.,
2021). Three-dimensional U-Net was used to segment 35 organelles
from EM images of HeLa, Jurkat, macrophage, and SUM159 cells
(Heinrich et al., 2021). Subcellular structures of liver tissue in mice
segmented using 3D U-Net helped demonstrate substantial
alterations in the hepatic endoplasmic reticulum of lean and
obese mice (Parlakgül et al., 2022). Although the 3D CNNs
exhibit enhanced performance, they necessitate a greater number
of labeled images for training.

The segmentation of individual cells from EM images is an
essential step to perform quantitative cellular analysis. However, the
ultrastructure of tumor cells and the tumor microenvironment is
different from that of the widely studied neuronal and other normal
cells (Coman and Anderson, 1955; Zink et al., 2004; Baba and Câtoi,
2007). The segmentation methodologies designed for the neuronal
cells use cell boundaries as the strongest cue to delineate a cell (Shen
et al., 2017; Linsley et al., 2018; Müller et al., 2021; Vergara et al.,
2021). Due to the lack of clear boundaries separating cells in cancer
tissues, segmentation methodologies designed for neuronal cells
cannot be directly applied for cancer cell segmentation. The
convoluted and intertwined nature of cancer cells and the
presence of filopodium-like protrusions make it even more
challenging (Johnson et al., 2020). Recently, cells were segmented
in EM images of hepatoblastoma patient-derived xenograft tissue.
The method involved labeling cells in every 10th image and using
optical flow to propagate the contour from these labeled images onto
the neighboring images (de Senneville et al., 2021). Propagation-
based methods can only propagate the contour of the cells labeled in
the ground truth images. However, the filopodium-like protrusions
present in cancer cells appear as island-like blobs detached from the
main cell (Supplementary Video S1), and a propagation-based
method cannot track such islands if they are not present in the
ground truth image.

3 Methods

3.1 3D focused ion beam-scanning electron
microscopy dataset collection

Under an Institutional Review Board (IRB)-approved
observational study, three tissue biopsy samples (Bx1, Bx2, and
Bx4) were acquired over three time points of cancer treatment from
a patient with metastatic ER + breast ductal carcinoma, and two
biopsy samples (PTT and PDAC) were acquired from two patients
with pancreatic ductal adenocarcinoma at Oregon Health and
Science University, Portland. The last sample is a microspheroid
prepared using a breast cancer cell line (MCF7). Extensive additional
information about the three biopsies from the breast cancer patient
is available (Johnson et al., 2020; Johnson et al., 2022). The samples
were preserved in Karnovsky’s fixative (2.0% PFA and 2.5%
gluteraldehyde), post-fixed using an OsO4–TCH–OsO4 staining
protocol (Riesterer et al., 2020; Stempinski et al., 2023), and
embedded in EPON resin. Post-fixation staining binds heavy
metals to lipid-rich membranes to provide contrast in EM
imaging. Conductive coating with 8-nm-thick carbon was
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necessary to achieve high-resolution, charge-free, high-contrast, and
low-noise images. A FEI Helios NanoLab 660 DualBeam™
microscope was used to collect high-resolution 3D volumes of
the resin-embedded blocks. Targeted volumes were collected
using a Ga+ FIB source to sequentially slice a few nanometers
from the sample to expose a fresh surface for subsequent
imaging. The slicing/imaging cycle was automated using FEI
Auto Slice and View™ software extended package, while the in-
column detector (ICD) was used for image collection during 3D data
acquisition. Metastatic breast cancer, primary pancreatic tissues, and
the microspheroid were imaged with an isotropic resolution of 4, 6,
and 6 nm, respectively.

3.2 Image preprocessing and ground truth
generation

After data acquisition, images within the stack are translationally
aligned in the x-y plane using an in-house stochastic version of
TurboReg affine transformation (Thevenaz et al., 1998). The
alignment step zero-pads the images in order to maintain a
uniform size, which are subsequently cropped to yield the final
3D image volumes. The registration and edge cropping process
yields a final resolution of 5,634 × 1,912 × 757 for Bx1, 5,728 ×
3,511 × 2,526 for Bx2, 5,990 × 3,812 × 1,884 for Bx4, 6,065 × 3,976 ×
792 for PTT, 6,114 × 3,874 × 1,583 for PDAC, and 6,083 × 3,740 ×
2,208 for MCF7, as shown in Figure 1B. The third dimension refers
to the number of slices in each stack. Intermittently, the brightness
of a few images in the stack varied, increasing the complexity of the
images and making segmentation more challenging. Histogram
equalization was applied to ensure consistency across the stack
and reduce complexity of the images.

The cells and organelles were manually labeled using
Microscopy Image Browser (Belevich et al., 2016). The
availability of ground truth labels over different datasets is shown
in Table 1. Nuclei and nucleoli are labeled on all slices of PTT, Bx1,
and Bx2 datasets and only 19, 16, and 24 slices of Bx4, PDAC, and
MCF7 datasets, respectively. Mitochondria are labeled on all slices of
Bx1 and Bx2 datasets and only 13 and 10 slices of PDAC and MCF7
datasets, respectively. Only the PDAC dataset has all cell membranes
labeled on all slices. For Bx1 and Bx2 datasets, six and 11 cells are
selected, respectively, and labeled completely across all the slices in
the datasets. The neural network employed in Section 3.3 would
encounter confusion if some cells in a training image were labeled as

cells and others as background. To minimize potential confusion
during the training process, we selected 10, 23, and 22 slices from the
Bx1, Bx2, and MCF7 datasets, respectively, and labeled the cell
membranes of all the cells present in these selected slices. Lysosomes
and endosomes are labeled on 13 slices in the Bx2, 13 slices in the
PDAC, and 14 slices in the MCF7 datasets, while only endosomes
are labeled on 10 slices in the Bx1 dataset. Sparse labeling of nuclei
and nucleoli takes 1–2 days, and that of mitochondria, lysosomes,
endosomes, and cell membranes takes approximately 5–10 days
each. Manual labeling of nuclei and nucleoli on all images of
PTT, Bx1, and Bx2 datasets required approximately 50–80 h
each. Manual labeling of mitochondria and cells on all images of
the Bx2 dataset required approximately 8 months each.

3.3 Proposed approach

We aim to segment the cell membranes and five cell
organelles—nuclei, nucleoli, mitochondria, endosomes, and
lysosomes—from 3D FIB-SEM images. As the organelles mostly
appear as distant objects with boundaries, they can be segmented
using a semantic segmentation network.We use ResUNet as the base
network for semantic segmentation, where we combine residual
blocks with the U-Net architecture. The proposed network consists
of an encoding path that extracts features and a decoding path that
upsamples the extracted features to obtain full-resolution
segmentation but uses residual blocks of convolutional layers as
building units (Figure 1D). A residual block consists of two
convolutional layers with a kernel size of 3 × 3, each preceded by
batch normalization and a rectified linear unit (ReLU), along with a
residual shortcut connection (Figure 1C).

The encoding path in the proposed network consists of four
residual blocks. We use a strided convolution in the first layer of the
residual block instead of a pooling layer to downsample the feature
maps. The number of feature maps is doubled along each successive
block in the encoding path to enable richer feature extraction. The
encoding path is followed by a residual block, which acts as a bridge
between the encoding and decoding paths. Corresponding to the
encoding path, the decoding path also consists of four residual
blocks. The decoding path begins with the upsampling of the feature
maps found in the previous level of the decoding path, followed by a
2 × 2 convolution to half the number of feature maps. These feature
maps are then concatenated with the feature maps at the same level
in the encoding path through a skip connection. This concatenation

TABLE 1 Availability of ground truth labels over different datasets. ✓✓denotes all images labeled, ✓denotes images sparsely labeled, and a blank denotes no
images labeled.

Type Dataset Cells Nuclei Nucleoli Mitochondria Lysosomes Endosomes

Breast cancer Bx1 ✓✓ ✓✓ ✓✓ ✓✓ ✓

Bx2 ✓✓ ✓✓ ✓✓ ✓✓ ✓ ✓

Bx4 ✓ ✓

Pancreatic cancer PTT ✓✓ ✓✓

PDAC ✓✓ ✓ ✓ ✓ ✓ ✓

3D-cultured breast cancer cells MCF7 ✓ ✓ ✓ ✓ ✓ ✓
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step helps combine the deep, semantic, coarse-grained feature maps
from the decoder path with high-resolution feature maps from the
encoder path, enabling effective recovery of fine-grained details.
These concatenated feature maps are then passed through the
residual block. The output of the last residual block is passed
through a 1 × 1 convolutional layer, followed by sigmoid
activation to provide the final segmentation mask. In Section 5.3,
we compare the segmentation results of ResUNet with those of
TransUNet, a hybrid CNN–Transformer architecture that leverages
both spatial information from CNN features and global context
from Transformers (Chen et al., 2021), and SETR, a pure
Transformer-based encoder combined with a simple decoder that
achieved state-of-the-art results on several large image segmentation
datasets (Zheng et al., 2021). Leveraging the similarities of structures
contained in a vEM image stack, the neural network is trained on a
small subset of manually labeled 2D images evenly distributed in the
vEM image stack to efficiently segment the rest of the images in the
stack.

As discussed previously, the cell organelles are relatively well
defined and have a clear boundary around them; therefore, they can
be segmented with semantic segmentation networks like ResUNet.
However, cancer cells in electron microscopy images do not always
have clear boundaries separating them; therefore, ResUNet
segments all cells together as one big blob. Furthermore, cancer
cells have filopodium-like protrusions, which are thin, long, finger-
like protrusions from the cell membrane that act like antennas to
probe the surrounding environment. While capturing the FIB-SEM
image, if the filopodium-like protrusions are cut perpendicular to
their length, they appear as island-like blobs detached from the main
cell (Supplementary Video S1). In order to capture the main body
and the filopodium-like protrusions, we propose a multi-pronged
approach combining segmentation, propagation, and tracking
strategies for cell segmentation.

Instead of training ResUNet to segment only the cell interior
region, we train the network to segment the cell boundaries, along
with the cell interior region. To do so, we provide two ground truth
maps to the network, one containing the cell masks and another
containing the cell boundaries, from a small subset of manually
labeled 2D images evenly distributed in the vEM image stack. The
cell mask map is an image with all pixels representing the cell
interior region marked 1. Thus, using ResUNet, we segment the cell
interior, cell boundaries, and the protrusions that appear as island-
like blobs. However, the boundary segmentation from the neural
network alone could not separate adjacent cells with similar
intensity and texture variations. In order to obtain a precise
separation of adjacent cells with similar appearances, the
boundary information from the neural network is combined with
the boundary propagated using optical flow from manually labeled
2D images.

Optical flow provides the flow vectors representing the apparent
motion of individual pixels between two images. We use the
Farneback algorithm as it computes a dense optical flow—a flow
vector for each pixel (Farnebäck, 2003). The Farneback algorithm
generates an image pyramid to estimate displacement at multi-
scales, starting at a coarser level and refining the estimate on finer
levels. The pyramid decomposition enables the algorithm to handle
both large and small pixel motions. The parameter settings of the
algorithm that work best for our images are the number of pyramid

levels = 6, neighborhood size = 5, filter size = 30, pyramid scale = 0.2,
and number of iterations = 3.

We experiment three ways of combining boundary information
from the optical flow and cell interior mask from ResUNet in
separating the cells. First, we directly overlay the optical flow
boundaries on the cell interior mask prediction from ResUNet.
Second, we selectively include cell boundaries propagated using
optical flow only in regions with overlapping cells. In the first two
methods, the propagation of cell boundaries using optical flow was
performed as a separate task independent of the estimate from the
segmentation model. In order to obtain a better continuity of the cell
boundary, instead of propagating the cell boundaries from the
manually labeled image to all the following images, we propagate
it only onto the image immediately following the manually labeled
image. We then use the second method to combine it with the
boundary from the ResUNet output of that image to obtain its cell
segmentation. Optical flow is then applied to these newly estimated
cell boundaries, which have the combined information from
ResUNet and optical flow. This is the third method of using the
boundary information to separate cells. Once we combine the
boundary information using one of these methods, it is then
overlaid on the cell-interior mask segmented using ResUNet.
Individual cells are then separated from the cell-interior mask by
performing watershed (a region-growing-based segmentation
method) (Beucher, 1992; Barnes et al., 2014) using centroids of
cells in the nearest manually labeled image as seeds.

With individual cells and the island-like blobs segmented in each
image, the next step is to track each of these regions across images
and associate the protrusions to their corresponding cells. We use an
overlap-based label propagation technique to obtain the cell
associations. Intersection over union (IoU) is a metric that
measures the overlap between two regions. Here, the IoU metric
given in Eq. 1 is used to track isolated regions across images.

IoU � Area of overlap
Area of union

. (1)

In the first image in the stack, all isolated regions are given
unique tracking labels. For each of the isolated regions in the next
image, IoU is calculated against all the labeled regions in the
previous image. Each isolated region is then assigned the tracking
label of the region in the previous image with which it shares the
highest IoU value. If there is no overlap and a new region is detected,
a new tracking label is assigned to that region, which can then be
tracked in subsequent frames. The individual main cell bodies of the
cells in EM images appear bigger than the island-like blobs. We first
run the tracking algorithm on only the individual main cells by using
the cell IDs in the manually labeled images as the tracking labels.
Once the main cell body is tracked across all the images, we track the
island-like blobs to these cells. As the blobs are tracked across
images, when they meet the main cell body, their label is
modified to that of the main big cell, and therefore, all the
regions associated with that blob (now a protrusion from a cell)
in the previous slices will also have their label modified to that of the
main cell. When a protrusion breaks off from a cell, it still retains the
label of that cell. As there could be hundreds of blobs in one image, it
would be inefficient to compare each blob with every other blob in
the previous image. As the movement of regions between two
successive images is small, the corresponding region, if present in
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the next image, would be in the vicinity of the region in the previous
image and not in other far-off regions of the image. Therefore,
instead of searching for overlapping regions all across the 6,000 ×
4,000 image, we look for a region matching an existing track label in
its local neighborhood of 512 × 512.

Once all cells and organelles are segmented, they can be
rendered to visualize them in 3D, and quantitative image features
can be extracted for further analysis.

3.4 Implementational details

The proposed network is implemented using the Keras
framework (Gulli and Pal, 2017), with TensorFlow (Abadi et al.,
2016) as the backend. The network is optimized by adaptive moment
estimation (Adam) with a 10–4 learning rate, exponential decay rates
for moment estimates β1 = 0.9 and β2 = 0.999, and epsilon = 10–7. It
is trained to minimize the Dice loss function for 5,000 weight
updates. The experiments were performed on a single NVIDIA
Tesla P100 GPU.

3.5 Inference methodology

As the size of an EM image is much larger than that of an image
processed by the network (512 × 512), each image is parsed into
multiple overlapping tiles. Each tile is passed through the network
to predict a probability of belonging to the foreground class for
every pixel. The resulting overlapping segmentation maps are
stitched together by multiplying each map with a 2D tapered
cosine window and adding the result to reduce the edge artifact
at tile borders. In the absence of blending or averaging operations,
the resulting overlapping segmentation maps often exhibit a step
effect-like artifact along the borders of the tiles. Finally, the
resulting segmentation map is thresholded at 0.5, assigning all
pixels with a value greater than or equal to 0.5 to the foreground
class.

4 Quantification and statistical analysis

4.1 Evaluation metrics

The segmentation mask predictions were evaluated using three
metrics: Dice coefficient, recall, and precision. The Dice coefficient
provides a measure of the overlap between the detected output and
the ground truth. It ranges between 0 and 1, where 1 denotes a
perfect overlap and 0 denotes no overlap. The Dice coefficient is
defined as

Dice � 2∑N
i pigi

∑N
i p

2
i +∑N

i g
2
i

� 2TP
2TP + FP + FN

, (2)

where N is the total number of pixels, p is the predicted
segmentation, g is the ground truth, TP is true positives, FP is
false positives, and FN is false negatives. Recall is the fraction of
foreground pixels correctly predicted as foreground, and precision is
the fraction of the predicted pixels that actually belong to the

foreground. If P is the predicted output and G is the ground
truth, recall and precision are represented as

Recall � |P ∩ G|
|G| , (3)

Precision � |P ∩ G|
|P| . (4)

4.2 Morphological and texture features

The segmentation of organelles allows us to characterize
biologically relevant features such as morphology and texture.
Morphology refers to the structure of the organelle. The
morphological measures are designed to capture the size and
shape and include features such as solidity, sphericity, and
circular variance. Solidity quantifies the concavities of a surface
and is calculated as the ratio of the volume of the object to the
volume of the convex hull (smallest encompassing convex polygon)
of the object.

Solidity � Volume
ConvexHull Volume

. (5)

Sphericity is a measure of how close an object resembles a sphere. It
is defined as the ratio of the surface area of a sphere with the same
volume as the object to the surface area of the object.

Sphericity � π1/3 6V( )2/3
A

, (6)

where V is the volume of the object and A is the surface area of the
object (Wadell, 1935). Its value is 1 for a perfect sphere and decreases
as the shape varies from a sphere. Circularity variance provides a
measure of the spread of radii across the volume. Here, a radius
denotes the distance between a point on the contour and the
centroid (geometric center) of the volume. The lower the value,
the tighter the clustering about a single mean.

Circularity variance O( ) � 1
|Surf O( )|μ2r

∑
p∈Surf O( )

‖p − C‖ − μr( )2,
(7)

where Surf is the surface contour of the object O, μr is its mean
radius, and C is its centroid.

In addition to the standard morphological features, we design
two new features to capture the properties of nucleoli in cancer cells.
The nucleolus in cancer cells is characterized by the formation of
fenestrations and movement toward the nuclear membrane.
Fenestrations refer to all the cavities inside the nucleolus. We
design two measures—percentage of volume fenestrated and
proximity of the nucleolus to the nuclear membrane—to capture
the abovementioned properties. The percentage of the fenestrated
volume in the nucleoli is calculated as the ratio of the difference of
filled-in volume and net volume to the filled-in volume. The volume
is filled in by performing a fill-hole operation, as shown in Figure 1E.
This measure is different from solidity as it measures the volume of
cavities within the nucleolus, while solidity measures concavities in
the outer surface.
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Fenestrated volume percentage � Filled volume −Net volume
Filled volume

. (8)

If dcc is the distance between centroids of the nucleus and nucleolus
and ds is the distance between the centroid of the nucleolus and the
nearest point on the surface of the object, the proximity of the
nucleolus to the nuclear membrane measure is calculated as follows:

Proximity to nuclearmembrane � dcc

dcc + ds
. (9)

The distances dcc and ds are shown in Figure 1F. It takes a value of 0
when the nucleolus is at the center of the nucleus and increases as it
moves toward the nuclear membrane.

The texture features are designed to capture the spatial
distribution of intensity patterns and include features from gray-
level co-occurrence matrix (GLCM) (Gallowy, 1975), size zone
matrix (SZM) (Thibault et al., 2013a; Thibault et al., 2013b;
Thibault and Shafran, 2016), and power spectrum (Thibault
et al., 2017). The GLCM examines the spatial relationship
between pixels and defines how frequently a combination of pixel
intensities occurs for a given offset. A GLCM was constructed by
averaging the matrices obtained over 26 different offsets (Thibault
et al., 2017). Four Haralick’s features, namely, homogeneity,
correlation, variance, and contrast, were computed from the GLCM.

Homogeneity � ∑
Ng

i�1
∑
Ng

j�1

p i, j( )
1 + i − j( )2, (10)

Correlation � ∑Ng

i�1 ∑Ng

j�1 i · j( )p i, j( ) − μxμy
σxσy

, (11)

Variance � ∑
Ng

i�1
∑
Ng

j�1
i − j( )2p i, j( ), (12)

Contrast � ∑
Ng−1

k�0
k2 ∑

Ng

i�1
∑
Ng

j�1
δ|i−j|,kp i, j( ), (13)

where p (i, j) is the (i,j)th element of the GLCM, N the number of
gray levels, and μ and σ denote the mean and standard deviation,
respectively. Homogeneity measures the smoothness of the gray-
level distribution in the image. The homogeneity is 1 for a diagonal
GLCM. The correlation measures the joint probability occurrence of
certain pixel pairs and is high if the gray level of the pixel pairs is
highly correlated. Variance provides a measure of dispersion of the
gray-level distribution and is large if gray levels are spread out.
Contrast measures the local variations in the GLCM. The contrast
value is low for smooth, soft textures and high for heterogeneous
textures.

A gray-level SZM provides a statistical representation of the
clusters of gray levels in the image (Thibault et al., 2013a; Thibault
et al., 2013b; Thibault and Shafran, 2016). Each element P (i, j) in
an SZM is equal to the number of zones of size j with gray level i.
Unlike GLCM, SZM is rotation-invariant. Three features, namely,
zone percentage, small-zone high gray-level emphasis (SZHGE),
and the centroid of zone sizes, are extracted from SZM. The zone
percentage measures the coarseness of the texture by taking the
ratio of the number of zones (Nz) to the number of voxels (N) in
the image.

Zone precentage � Nz

N
. (14)

The SZHGE measure highlights zone counts in the left quadrant of
SZM, where small zone sizes and high gray levels are located. The
feature is defined as

SZHGE � ∑Ng

i�1 ∑Ns
j�1 P i, j( )i2
Nz

, (15)

where Ns is the total number of zones, Ng is the number of
discretized gray levels present in the image, Nz is the maximum
zone size of any group of linked voxels, and sij is the number of zones
with a discretized gray level i and size j. The centroid of zone sizes is
calculated as the centroid of SZM.

The power spectrum is a gray-level rotation and intensity-
invariant texture descriptor (Thibault et al., 2017). It describes
the shape and size of structures in an image. It is calculated by
iteratively opening and closing an image with morphological
operators and recording the resulting areas. Morphological
operators are a set of image-processing operators that process
images based on shapes. They apply a structuring element to an
input image, creating an output image of the same size. A structuring
element is a matrix with the size and shape of the object that needs to
be analyzed in the input image. For example, to find a line, the
structuring element represents a line. If n is the size factor for a
structuring element, then the family of morphological openings Γ �
(γn)n≥ 0 and morphological closings Φ � (ϕn)n≥ 0 can help study all
the object sizes present in an image. The analysis of an image f with
respect to an operator, for example, Γ, involves evaluating each
opening of size n with a measurement ∫γn(f). The power spectrum
curve of an image f with respect to Γ and Φ is defined as follows:

PSn f( ) � 1

∫f
∫ γn f( ) − ∫ γn+1 f( ) for n≥ 0
∫ϕn f( ) − ∫ϕn−1 f( ) for n< 0

⎧⎪⎪⎨⎪⎪⎩ . (16)

It defines a probability distribution, and the moments of this
distribution are employed as signature patterns to characterize
textures. A peak in the power spectrum at a given scale n
indicates the presence of many image structures of this scale or size.

5 Results

We applied the proposed segmentation approach on the six
datasets comprising tissues from patients with breast and pancreatic
cancer and a microspheroid prepared using a breast cancer cell line.
Overall, we performed quantitative evaluation of cell, nucleus, and
nucleolus segmentation on three datasets and mitochondrion
segmentation on two datasets. In few datasets, some organelles
were labeled only in a limited number of images, which were all
used for training the segmentation model. In such cases, we present
only qualitative results. For each dataset, a segmentation model was
trained using a small subset of manually labeled images, and the
trained model was used to generate segmentation masks on the rest
of the unlabeled images. We used convolution and attention-based
models for semantic segmentation.
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5.1 Training data

The full resolution of the EM images cannot be analyzed
directly by the network due to the memory restrictions of our
GPU hardware. Therefore, an image crop size of 512 × 512 pixels
is chosen in order to fit a meaningfully large number of images in a

batch. We use a batch size of five in all our experiments, meaning
that five image tiles are used to estimate the error gradient at each
iteration of the network weight update. Using multiple training
examples in a batch for error gradient estimation helps make the
training process more stable. We choose a batch size of five as it is
the maximum number of tiles that could fit in the GPUmemory in

FIGURE 2
Nucleus and nucleolus segmentation performance. (A) Effect of image tile size (context window). Segmentation performances for nuclei (top row)
and nucleoli (bottom row) using different input tile sizes measured by the Dice score (first column), precision (second column), and recall (third column)
on the Bx1 and PTT datasets. The blue bar represents the results of training the network directly on the image tiles of size 512 × 512 pixels from the FIB-
SEM images. The orange bar represents the results of training the network on the image tiles of size 2,048 × 2,048 pixels downsampled to 512 ×
512 pixels, which provide larger contextual information. Each error bar represents 10 separate experiments in which a new model was trained from
scratch using the specified number of training images. (B) Effect of training set size. Segmentation performances for nuclei (top row) and nucleoli (bottom
row) using different training set sizes, measured by the Dice score (first column), precision (second column), and recall (third column) on PTT (blue), Bx1
(orange), and Bx2 (green) datasets. For each dataset, the performance was evaluated over training set sizes of 7, 10, 15, 25, and 50 in order to find the
minimum number of images required to generate accurate segmentation. Each error bar represents the mean and standard deviation of results obtained
from 10 separate experiments in which a new model was trained from scratch using the specified number of training images.
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our case. The nuclei occupied 15%–35% of the pixels in each
image, and a random selection of five 512 × 512 tiles per image
ensured that there was enough representation of the nucleus in a
batch. Mitochondria, endosomes, lysosomes, and cell bodies also
displayed good representation in five tiles as they were well
distributed in the image. However, nucleoli are smaller and
sparser, occupying less than 1% of a full image. As a result, if
sampled randomly, a large number of tiles would need to be
considered in order to form a batch with enough nucleolus
representation, which would exceed the GPU memory. To
ensure that the model encounters sufficient representation of
nucleoli during training, the batch size is still maintained at
five, but the tiles are selected such that at least four out of the
five randomly selected tiles contain no less than 100 pixels related
to the nucleolus. Horizontal and vertical flips are randomly
applied as data augmentation steps.

5.2 Deep learning models can accurately
segment intracellular organelles

We primarily used the convolution-based ResUNet as the
segmentation model. To train the segmentation model, a sparse
subset of training images (typically between 7 and 50 slices) was
randomly selected from the 3D image stack and used to tune the
network weights by minimizing the difference between the
ground truth segmentation and the network-generated
segmentation on these training slices. Once trained, the
network was used to segment the rest of the slices in the stack
that were not used for training, and performance in terms of the
Dice score, precision, and recall was calculated. We randomly
selected the input images 10 times, and the mean performance
metrics over the 10 runs was reported. Figure 2B shows the
performance metrics for nucleus and nucleolus segmentation in

FIGURE 3
Nucleus and nucleolus volume renderings and nucleolus segmentation results. (A) Volume renderings showing the 3D structure of ground truth
masks and predicted segmentation masks for PTT, Bx1, and Bx2 datasets. (B) Volume rendering showing the 3D structure of predicted segmentation
masks for the Bx4 dataset. (C) Representative qualitative results showing input images (first column), ground truth (second column), and predicted
nucleoli (third column) for PTT (first row), Bx1 (second row), and Bx2 (third row) datasets. (D) Volume renderings of the fenestrations in the nucleoli of
PTT, Bx1, Bx2, and Bx4 datasets.
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PTT, Bx1, and Bx2 datasets (nucleus results in the top row, and
nucleolus results in the bottom row). Depending on the datasets
and the training set size, overall Dice scores of 0.95–0.99 and
0.70–0.98 were achieved for nucleus and nucleolus segmentation,
respectively. In addition to the nucleoli boundary, the model
accurately segmented the fenestrations within the nucleoli
(Figure 3C). Dice scores of 0.86 and 0.76 were obtained in
segmenting mitochondria from Bx1 and Bx2 datasets,
respectively. Segmentation performances of endosomes and
lysosomes were evaluated qualitatively (Figure 4) as they are
labeled only on a few slices that are used to train the segmentation
model. Figure 3A displays the comparison between volumes
rendered from manual annotations and those from predicted
segmentation, with nucleoli nested inside the nuclei for PTT,
Bx1, and Bx2 datasets. Figure 3B displays the volume rendered
from the predicted segmentation for the Bx4 dataset as it does not
have ground truth labels for the entire stack. Figure 3D displays
the volume rendering of the fenestrations in the nucleoli of PTT,
Bx1, Bx2, and Bx4 datasets. The 2D image slices overlaid with
ground truth and predicted segmentation for PTT and
Bx4 datasets are shown in Figure 5, and for Bx1, Bx2, PDAC,
and MCF7 datasets, they are shown in Figure 4. They illustrate
the accuracy of model segmentation compared to the ground
truth annotation.

5.3 Larger context improves segmentation
performances

The cancer cells in EM images are relatively large. A tile of size
512 × 512 pixels typically includes only a small section of the cell (for
example, a small part of the nucleus) and therefore does not contain

enough spatial context. We hypothesize that providing better
contextual information regarding the surroundings of the
organelles could lead to improved segmentation. In order to
incorporate a more global context while subjected to GPU
memory restrictions, we extracted tiles of size 2,048 × 2,048
pixels and downsampled them to 512 × 512 pixels and trained
segmentation models on these downsampled tiles. We also
conducted experiments using tiles of sizes 1,024 × 1,024 and
3,072 × 3,072 pixels and found that tiles of size 2,048 × 2,048
pixels produced superior segmentation results. We also compared
the segmentation performance of fully convolutional ResUNet with
the more recent TransUNet and SETR, where the global context is
captured by transformers with a self-attention mechanism for the
segmentation of nuclei.

Providing a larger context during training improved all three
metrics in nucleus (Figure 2A, top row) and nucleolus (Figure 2A,
bottom row) segmentation. The information provided by the larger
context seemed to outweigh any information loss due to
downsampling. Furthermore, using a larger tile size enabled
faster processing of an entire EM image, as fewer tiles were
required to reconstruct the final result. The performance of
TransUNet and SETR was on par or slightly lower than that of
ResUNet and did not provide any added advantage in segmentation,
as shown in Figure 6.

5.4 A small training set is adequate, and a
larger training set brings further
improvement

We varied the number of manually labeled full images used for
training by selecting 7, 10, 15, 25, or 50 training images evenly

FIGURE 4
Cell and organelle segmentation results on Bx1, Bx2, PDAC, and MCF7 datasets. Qualitative results showing input images (first row) overlaid with
nucleus (yellow), nucleolus (red), mitochondrion (pink), endosome (white), lysosome (black), and cell segmentation (random colors) on ground truth
masks (second row) and predicted segmentation masks (third row) for (A) Bx1 (B) Bx2, (C) PDAC, and (D) MCF7 datasets.
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distributed across the image stack. The models were trained on tiles
of size 2,048 × 2,048 pixels downsampled to 512 × 512 pixels. The
model performed well with only seven training images, with an
overall Dice score of 0.95–0.99 for nuclei (Figure 2B, top row) and a
Dice score of 0.70–0.98 for nucleoli (Figure 2B, bottom row),
depending on the datasets. The performance continued to
improve with more training images for all three metrics for both
nuclei and nucleoli, reaching a Dice score in the range of
0.97–0.99 for nuclei and 0.80–0.99 for nucleoli with 50 training
images. Even with 50 training images, it is still a very small training
set, representing only 2%–5% of all the images in the stack. This
illustrates that it is possible to train a reliable model with sparse
manual labeling for vEM segmentation. The performances for the
Bx2 dataset were lower than that for the other two datasets as it was a
larger image stack exhibiting significant variability among the nuclei
and nucleoli within the dataset.

5.5 Cell segmentation

A multi-pronged approach combining segmentation,
propagation, and tracking strategies is used for segmenting cells,
as described in Section 3.3. We trained ResUNet to segment the cell-
interior mask and boundaries of all cells in the EM images. ResUNet
provided precise cell-interior mask segmentation. However, the
boundary segmentation from ResUNet could not separate
adjacent cells that looked alike (Figure 7D; Figure 8D). Optical
flow was used to propagate the cell boundaries across images. We
observed that, as we moved farther from the ground truth image, the
accuracy of the propagated boundary decreased. Furthermore, each
filopodium-like protrusion of a cancer cell, resembling a separate
island-like blob detached from the cell body, extends across only a
few images within the stack. Therefore, optical flow cannot track
such islands if they are not present in the ground truth image and

FIGURE 5
Nucleus and nucleolus segmentation results on PTT and Bx4 datasets. (A) Representative qualitative results showing input images (top row) overlaid
with nucleus (green) and nucleolus (red) ground truth masks (middle row) and predicted nucleus (yellow) and nucleolus (pink) segmentation masks
(bottom row) for the PTT dataset. (B) Representative qualitative results showing input images (top row) overlaid with predicted nucleus (yellow) and
nucleolus (pink) segmentationmasks (bottom row) for the Bx4 dataset. All 19 slices from the Bx4 dataset that had nucleolus labels were employed in
the training of ResUNet, resulting in the possibility of conducting only a qualitative comparison. Numbers in the lower right-hand corner of images
indicate the slice position of the image in the full image stack. Scale: horizontal image width = 25 μm.
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also cannot detect the start and end of such islands (Figures 7E, 8E).
We combined the strengths of ResUNet and optical flow by taking
the boundary segmentation from ResUNet and adding to the
boundary propagated by optical flow in regions where ResUNet
could not predict the boundary (in the presence of similar adjacent
cells). By doing so, we retained the precise boundary segmentation
from ResUNet while benefiting from the cell separating ability of the
optical flow estimate. As mentioned in Section 3.3, we used different
approaches of combining the segmentation and optical flow
boundary estimates. First, we directly overlaid the optical flow

boundaries on the cell-interior mask prediction and separated
cells using the watershed algorithm (Figures 7F, 8F). We
observed that as optical flow does not move the boundary
accurately, it resulted in a step effect in the final 3D
reconstruction of segmentation. Therefore, we selectively include
cell boundaries propagated using optical flow only in regions with
overlapping cells. This helps retain the accurate cell boundaries from
the segmentation model while separating overlapping cells (Figure 9;
Figures 7G, 8G). In order to obtain a better continuity of the cell
boundary, we propagate the combined cell boundary estimate of the

FIGURE 6
Nucleus segmentation performance using ResUNet, TransUNet, and SETR. Segmentation performances for nuclei using different input tile sizes
measured by the Dice score (first column), precision (second column), and recall (third column) on the PTT, Bx1, and Bx2 datasets. The lighter bar
represents the results of training the network directly on the tiles of size 512 × 512 pixels from the FIB-SEM images. The darker bar represents the results of
training the network on image tiles of size 2,048 × 2,048 pixels downsampled to 512 × 512 pixels, which provide larger contextual information.

FIGURE 7
Cell segmentation results on the Bx1 dataset. Red boxes represent regions where the cells could not be separated accurately, and blue box
represents regions where the cell protrusions are not segmented accurately. Representative qualitative results showing (A) input image, (B) ground truth
segmentation (a few cells are not labeled in the ground truth), (C) segmentation of cells using a cell-interior mask alone, (D) segmentation of cells using a
cell-interior mask and boundary predictions from the segmentation model, (E) segmentation of cells using optical flow alone, (F) segmentation of
cells by overlaying boundaries propagated using optical flow on the cell-interior mask obtained from the segmentation model to separate cells, (G)
segmentation of cells by selectively combining the optical flow boundary estimate with the boundary estimated from the segmentation model, and (H)
segmentation of cells by propagating boundaries estimated in the previous frame using optical flow and combining with the boundary estimated from the
segmentation model for the Bx1 dataset.
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FIGURE 8
Cell segmentation results on the Bx2 dataset. Red boxes represent regions where the cells could not be separated accurately, and blue boxes
represent regions where the cell protrusions are not segmented accurately. Representative qualitative results showing (A) input image, (B) ground truth
segmentation (a few cells are not labeled in the ground truth), (C) segmentation of cells using a cell-interior mask alone, (D) segmentation of cells using a
cell-interior mask and boundary predictions from the segmentation model, (E) segmentation of cells using optical flow alone, (F) segmentation of
cells by overlaying boundaries propagated using optical flow on a cell-interior mask obtained from the segmentation model to separate cells, (G)
segmentation of cells by selectively combining the optical flow boundary estimate with the boundary estimated from the segmentation model, and (H)
segmentation of cells by propagating boundaries estimated in the previous frame using optical flow and combining with the boundary estimated from the
segmentation model for the Bx2 dataset.

FIGURE 9
Volume rendering of a cell from the Bx2 dataset. Volume rendering of the (left to right) (A) ground truth, (B) cell segmented by using the watershed
algorithm on the cell-interior mask from ResUNet, and (C) cell segmented by using the watershed algorithm on the cell-interior mask with boundary
information from both ResUNet and optical flow.
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previous image instead of the optical flow estimate alone (Figures
7H, 8H). All three methods of combining the segmentation and
propagation boundary results improved the overall cell
segmentation performance compared to using the segmentation
or propagation method alone, as shown in Table 2 and Figure 9. In
the PDAC dataset, the cells mostly had an extracellular matrix
between them, and therefore, the cell-interior mask segmentation
from ResUNet could result in good separation of cells, as shown in
Table 2. However, in cases where filopodium-like protrusions came
into contact with each other, the combined method with the
propagation of the boundary using optical flow based on the
boundary estimate of the previous image produced better
separation of the filopodium-like protrusions.

Finally, we track the islands to themain cell bodies by calculating
the intersection over union measure for all regions detected in
consecutive images and associating regions with maximum
overlap. As movement of regions between frames is minute, an
overlap-based measure works well in tracking protrusions and cells

in EM images. Volume renderings showing the FIB-SEM volume
and the predicted cell and organelle segmentations for PDAC and
MCF7 datasets are shown in Figures 10B, D and Supplementary
Videos S2, S3. Segmentation of cells enables quantitative cellular
analysis, where we can localize organelles to a cell and estimate their
variations in density, size, and number among different cells. Figures
10E–H show the volume occupied by the predicted organelles for
each cell in each dataset.

The training of the segmentation model took approximately 4 h,
and prediction and splitting of the cells took approximately 2–3 h.
The tracking of protrusions to main cells took a longer time as each
image has to be processed serially, and the time also varied
depending on the number of islands present in each image. It
took approximately 1 min to process each image in the tracking
of protrusion steps. Complete cell segmentation of Bx1, PDAC, Bx2,
and MCF7 took approximately 1, 1.5, 2, and 2 days, respectively.
This is a huge reduction where it takes months to manually segment
cells in these datasets.

TABLE 2 Cell segmentation performance measured using the Dice score in Bx1, Bx2, and PDAC datasets.

Bx1 Bx2 PDAC

Segmentation alone Mask 0.900 0.704 0.889

Mask + border 0.927 0.841 0.888

Propagation alone Optical flow 0.936 0.881 0.888

Segmentation + propagation Mask + optical flow (OF) 0.952 0.902 0.888

Mask + border + OF (selective) 0.950 0.900 0.888

Mask + border + OF (propagate through frames) 0.952 0.894 0.888

FIGURE 10
(A–D) Volume renderings showing the FIB-SEM volume and the predicted cell and organelle segmentations in PDAC and MCF7 datasets. (E–H)
Volume occupied by the predicted organelles for each cell in each dataset.
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5.6 Quantitative characterization of nucleus
and nucleolus morphology and texture

The segmentation of nuclei and nucleoli allowed us to
characterize biologically relevant features such as their
morphology and texture. Figure 11 shows some of the
morphological features we extract for nuclei (Figure 11A) and
nucleoli (Figures 11B, C). The solidity feature, measuring the
concavity of a surface, captures the nuclear envelope
invaginations. The higher level of invaginations in Bx2 and
Bx4 than in PTT, Bx1, PDAC, and MCF7 (Figure 3A) is reflected
by their lower solidity value (Figure 11A). Similarly, the relatively
smooth envelope of nucleoli in PTT is reflected by its higher solidity

value (Figure 11B). The solidity of the nucleolus is calculated by
filling the holes in the volume to exclude the effect of the volume
fenestrated by pores and quantify only the overall change in shape.
The sphericity and circular variance features measuring the
roundness of an object captured shape irregularities in nuclei and
nucleoli, which are common characteristics of cancer cells.
Additionally, for the nucleolus, we calculated the percentage of
volume fenestrated by pores. Its values were high for the PTT
and Bx4 datasets as a result of the complex structure of pores
within the nucleoli. Finally, varying levels of proximity of nucleoli to
the nucleus membrane were also observed. This observation is
consistent with published studies which suggest that nucleoli in
cancer cells often move toward the nuclear membrane and form

FIGURE 11
Morphological features extracted from nuclei and nucleoli. Solidity, sphericity, and circular variance measures for (A) nuclei and (B) nucleoli in PTT,
Bx1, Bx2, and Bx4 datasets. (C) Percentage of the fenestrated volume in nucleoli and the proximity of nucleoli to the nuclear membrane for all datasets.
Each dot represents the value of the feature for a nucleus or nucleolus.

Frontiers in Bioinformatics frontiersin.org15

Machireddy et al. 10.3389/fbinf.2023.1308708

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1308708


intranuclear canalicular systems between the nuclear membrane and
nucleolus (Baba and Câtoi, 2007). Accordingly, the proximity of the
nucleolus to the nuclear membrane feature captured the more
centered positioning of nucleoli in the PTT dataset and the close
proximity of nucleoli to the nuclear membrane in the Bx2 dataset.
While most of the nuclei contained one nucleolus, several nuclei
contained 2–6 nucleoli (Figure 11C).

Figure 12 shows the texture features extracted for nuclei
(Figure 12A) and nucleoli (Figure 12B). We used three classic
methods, GLCM, SZM, and pattern spectrum, to derive a set of
texture features shown in Figure 12. These features capture the sizes
of groups of voxels of similar gray-level intensities and can
characterize the granularity of the chromatin structure in nuclei.

These texture features can capture the differences between the tissue
samples and can be potentially used for downstream analysis.

6 Discussion

We present here a framework for the segmentation of the cellular
ultrastructure of cancer tissues from 3D FIB-SEM images, enabling
rendering of the ultrastructure into interpretable forms and extraction
of quantitative features. We used a ResUNet architecture to segment
cells, nuclei, nucleoli, mitochondria, lysosomes, and endosomes, and
evaluated the performance of the model on five human cancer biopsy
samples acquired at OHSU and a microspheroid prepared using a

FIGURE 12
Texture features extracted fromnuclei and nucleoli. GLCM features (top row), pattern spectrum, and SZM features (bottom row) for (A) nuclei and (B)
nucleoli in PTT, Bx1, Bx2, and Bx4 datasets. Each dot represents the value of the feature for a nucleus or nucleolus.
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breast cancer cell line. The ResUNet architecture was trained with
different sizes of training datasets to evaluate the number of manually
labeled images required for accurate segmentation. It was observed
that the number of manually labeled images required greatly
depended on the variability of the structure across the dataset. As
the Bx2 dataset exhibited significant structural variations in nuclei and
nucleoli compared to the Bx1 or PTT datasets, there was greater
improvement in the Dice score with the increase in the number of
images used during training. As there was less variability in Bx1 and
PTT datasets, as few as seven labeled images were enough to train an
efficient model. Even if 50 images had to be labeled, it constitutes a
mere 2% of the Bx2 dataset and significantly reduces the labeling
workload for the remaining 98% of the dataset. Furthermore, using
image tiles of size 2,048 × 2,048 pixels downsampled to 512 × 512
pixels improved segmentation results compared to using images of
512 × 512 crops directly, as images with larger crops provided a
greater context, which appeared to increase the segmentation
performance. We demonstrated that ResUNet provided nucleus
segmentation with Dice scores of 0.99, 0.99, and 0.98 and
nucleolus segmentation with Dice scores of 0.98, 0.93, and 0.80 for
PTT, Bx1, and Bx2 datasets and mitochondrion segmentation with
Dice scores of 0.86 and 0.76 for Bx1 and Bx2 datasets, respectively.We
presented a multi-pronged approach combining segmentation,
propagation, and tracking strategies to segment cells in EM
images. Combining propagation and segmentation methods helped
accurately segment cells even in the presence of adjacent cells with
similar intensities and texture variations. In the PDAC dataset, the
cells mostly had an extracellular matrix between them, and therefore,
using segmentation alone could result in good separation of cells.
However, in cases where filopodium-like protrusions came into
contact with each other, the combined method with the
propagation of the boundary using optical flow based on the
boundary estimate of the previous image produced better
separation of the filopodium-like protrusions. The two extreme
cases are when all cells in the dataset are either separate or closely
packed, touching each other. When all cells are separate with an
extracellular matrix between them, a segmentation method alone can
result in good cell segmentation; when all cells are closely packed and
adjacent cells look alike, only propagation-based methods can
separate them. However, in most of the cancer datasets, only parts
of the cells lie adjacent to another cell, and therefore, an approach
combining the merits of segmentation and propagation methods is
beneficial. The filopodium-like protrusions in cancer cells are an
important feature in understanding the interactions of cancer cells,
and therefore, it is necessary to segment them accurately. We
demonstrated a tracking mechanism that can track the ends of
filopodium-like protrusions that appear as island-like blobs
detached from the main cell in few images and correctly associate
them with their respective main cells.

Structures in 3D data collected via FIB-SEM exhibit high
variability due to several factors, including the sample quality,
tissue type, sample preparation techniques, microscope settings,
and imaging pixel resolution (Navlakha et al., 2013). A small
subset of the whole dataset contains enough information to
capture most of the variability of a given structure with respect
to the dataset, and we demonstrated that ResUNet trained with
sparse labels generated segmentationmasks for the rest of the images
in the stack. Due to intensity variations caused by acquisition

parameters and the variability of features among datasets, the
generalizability of the segmentation models is currently limited.
In order to have an automatic segmentation framework which does
not necessitate sparse manual labeling for every new dataset, it is
necessary to have a model that has enough representative training
data. Our initial trials to segment individual 3D volumes by sparsely
labeling each volume is a step toward building a dataset large enough
to capture the variability among different organelles and the
variability caused by different image acquisition settings.

Segmentation of cells and cellular ultrastructures allowed us to
extract quantitative features from the datasets. We also demonstrate
the feasibility of morphology and texture quantification in nuclei
and nucleoli. These quantitative features can be extracted efficiently,
robustly, and reproducibly. While it is beyond the scope of our work,
we anticipate linking them to clinically relevant variables such as
patient drug response in the future. This method can be extended to
other cellular structures, enabling deeper analysis of inter- and
intracellular state and interactions. The proposed segmentation of
EM images fills the gap that limited the application of modern EM
imaging in research and clinical practices. It will enable
interpretative rendering and provide quantitative image features
to be associated with the observed therapeutic responses.
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