
Deep learning-based automated
pipeline for blood vessel
detection and distribution analysis
in multiplexed prostate
cancer images

Grigorios M. Karageorgos1*, Sanghee Cho1,
Elizabeth McDonough1, Chrystal Chadwick1, Soumya Ghose1,
Jonathan Owens1, Kyeong Joo Jung2, Raghu Machiraju2,
Robert West3, James D. Brooks4, Parag Mallick5 and Fiona Ginty1

1GE Research, Niskayuna, NY, United States, 2Department of Computer Science and Engineering, The
Ohio State University, Columbus, OH, United States, 3Department of Pathology, Stanford University
School of Medicine, Stanford, CA, United States, 4Department of Urology, Stanford University School of
Medicine, Stanford, CA, United States, 5Canary Center for Cancer Early Detection, Department of
Radiology, Stanford University School of Medicine, Stanford, CA, United States

Introduction: Prostate cancer is a highly heterogeneous disease, presenting
varying levels of aggressiveness and response to treatment. Angiogenesis is
one of the hallmarks of cancer, providing oxygen and nutrient supply to
tumors. Micro vessel density has previously been correlated with higher
Gleason score and poor prognosis. Manual segmentation of blood vessels
(BVs) In microscopy images is challenging, time consuming and may be prone
to inter-rater variabilities. In this study, an automated pipeline is presented for BV
detection and distribution analysis in multiplexed prostate cancer images.

Methods: A deep learning model was trained to segment BVs by combining
CD31, CD34 and collagen IV images. In addition, the trained model was used to
analyze the size and distribution patterns of BVs in relation to disease progression
in a cohort of prostate cancer patients (N = 215).

Results: The model was capable of accurately detecting and segmenting BVs, as
compared to ground truth annotations provided by two reviewers. The precision
(P), recall (R) and dice similarity coefficient (DSC) were equal to 0.93 (SD 0.04),
0.97 (SD 0.02) and 0.71 (SD 0.07) with respect to reviewer 1, and 0.95 (SD 0.05),
0.94 (SD 0.07) and 0.70 (SD 0.08) with respect to reviewer 2, respectively. BV
count was significantly associated with 5-year recurrence (adjusted p = 0.0042),
while both count and area of blood vessel were significantly associated with
Gleason grade (adjusted p = 0.032 and 0.003 respectively).

Discussion: The proposed methodology is anticipated to streamline and
standardize BV analysis, offering additional insights into the biology of prostate
cancer, with broad applicability to other cancers.
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1 Introduction

Prostate cancer is a heterogeneous multi-focal disease,
presenting variations in underlying genetic mutations and
biology, tumor size and growth patterns (Tolkach and
Kristiansen, 2018), (Boyd et al., 2012). Such variations result in
differences in aggressiveness and response to therapy (Wallace et al.,
2014). Comprehending the underlying biology and progression
mechanisms of prostate cancer is important for determining
diagnostic and personalized treatment strategies (Wallace
et al., 2014).

Digital pathology image analysis algorithms have shown great
promise in elucidating the pathophysiology of prostate cancer
(Goldenberg et al., 2019). Advances in machine learning and
computer vision have significantly enhanced the capability of
these algorithms to perform detection, segmentation, labelling
and classification of multiple histological features associated with
the molecular and spatial characteristics of diseases (Gupta et al.,
2019). For example, analysis of hematoxylin and eosin (H&E)
images, including analysis of color, texture and morphological
features (Tabesh et al., 2007), does not require any additional
molecular or biomarker stains. Various conventional machine
learning (ML) techniques, including support vector machine
(SVM), k nearest-neighbor (kNN) and Gaussian classifiers have
been employed to automatically distinguish between H&E images
with and without tumor, as well as perform Gleason grading, which
is a well-established methodology for classifying prostate cancer
stages (Bostwick, 1994). More recently, deep learning approaches
(DL) have been proposed for Gleason grading of prostate biopsy
images and demonstrated accurate staging compared with
pathologists’ assessment, and good generalization capabilities in
large datasets obtained from different institutions (Bulten et al.,
2020; Nagpal et al., 2020; Kott et al., 2021).

Angiogenesis plays a key role in cancer progression (van
Moorselaar and Voest, 2002; Mucci et al., 2009; Li and Cozzi,
2010). The formation of blood vessels (BV) facilitates delivery of
nutrients and oxygen that are vital for the development of solid
tumors, while the use of antiangiogenic treatment has shown
potential to impede tumor advancement, albeit with varying
levels of success (Folkman, 2006), (Ioannidou et al., 2021).
Moreover, angiogenesis can promote the spread of cancer cells to
other parts of the body through the vasculature, resulting in
metastasis (Fukumura and Jain, 2007). Therefore, gaining a
deeper comprehension of the vasculature and surrounding
biology holds the potential to yield improved prognostic
indicators and treatment strategies. Manual identification of BV
in H&E images is challenging, time consuming and may suffer from
inter-rater variabilities. To address those challenges, DL-based
approaches for BV detection and classification in H&E
histopathology images of lung adenocarcinoma (Vu et al., 2019)
(Yi et al., 2018), oral cancer (Fraz et al., 2018), gastric cancer (Noh
et al., 2023), pancreatic cancer (Kiemen et al., 2022) and kidney
tissue (Bevilacqua et al., 2017), have been previously proposed.
While many studies have focused on analysis of blood vessels in
H&E images, immunostaining of CD31 (endothelial cell protein)
and CD34 (vascular endothelial cell protein and neo angiogenesis)
provide higher specificity for BV identification (Miyata et al., 2015).
In addition, collagen IV immunostaining which is present in

vascular basement membranes can provide complementary
information on identification of BV (Gross et al., 2021). Recent
advancements in multiplexed imaging allow staining of multiple
biomarkers in a single sample, allowing integration of colocalized
and co-expressed proteins and spatial analysis of
surrounding biology.

In this study an automated pipeline for BV detection and
distribution analysis in pathology images for prostate cancer
staging is presented using a combination of CD31, CD34 and
collagen IV. A deep-learning model was trained with a limited
dataset consisting of 29 patient core images, and BV were segmented
by combining 1) all three markers; 2) CD31 and CD34; 3)
CD31 alone. The most robust performance was found using all
three markers, while the highest false positive rate was obtained by
using CD31 alone. The three-marker model was used to analyze the
size and distribution patterns of BVs in relation to disease
progression in a cohort of prostate cancer patients (N = 215).
Blood vessels count and size were significantly associated with
Gleason grade, while patients with highest BV counts had
significantly higher risk of recurrence.

2 Materials and methods

2.1 Patient cohort

This study was performed in accordance with ethical
guidelines for clinical research with the approval of the
Institutional Review Board of Stanford University (IRB: 11612).
All patients included in this study (N = 215) were aged between
45 and 78 years (average 64.5 years) and underwent surgery for
histologically proven prostate cancer between 1985 and 1997.
Patient’s exclusion criteria were as follows: postoperative
mortality within 30 days; a limited follow-up period of less than
3 years in cases without recurrence; synchronous multiple cancers;
No patient received preoperative chemotherapy or radiotherapy.
Average follow-up was 95.5 (standard deviation (SD) 50.9) months
and 5-year recurrence rate of 21%. Three tissue microarrays
(TMAs) were constructed with up to four 0.6-mm-diameter
pathologist selected cancer regions and reference/fiducial cores.
The dataset consisted of a total 849 cores from patients with
prostate cancer diagnosis (from 226 patients, and up to four
cores per patient). After excluding cases with missing outcome
data, image artefacts, we analyzed 749 cores from 215 patients.
Summary statistics for clinical and demographic data are shown
in Table 1.

2.2 Multiplexed immunofluorescence
imaging of TMAs

TMAs underwent multiplexed immunofluorescence (MxIF)
imaging on a calibrated Cell DIVE imager (Leica Microsystems,
Issaquah, WA, United States of America) using a 20 × 0.75 NA
objective, with a resulting pixel size of 0.325 µm/pixel and 16-bit
images (no pixel binning). Automated software enabled system
calibrations using a multi-function calibration plate and
automated image processing allowed for field flattening,
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autofluorescence (AF) removal, and image registration. The Cell
DIVE imager has an SSI light engine with five independently
controlled light sources. Light is delivered to the sample through
a 1.5 mm fiber optic cable that provides uniform illumination
across the specimen. Exposure times for each channel were
determined for each biomarker based on a visual assessment
of fluorescent intensity and set to achieve ~75% of the dynamic
range of the camera without saturating any of the pixels; exposure
times ranged as follows: DAPI, 20 m; Cy2, 100 m; Cy3,
20–1000 m; Cy5, 15–1500 m; and Cy7, 400–1500 m. Focus is
determined using a hardware laser autofocuser that is part of
microscope (Gerdes et al., 2013).

A total of 50 proteins were imaged, and the analysis for this paper
focused on four of those including CD31, CD34, collagen IV, and
nuclear marker DAPI. All antibodies were characterized using a
previously published protocol (McDonough et al., 2020). In brief,
TMA slides were de-paraffinized and rehydrated, underwent a two-
step antigen retrieval, andwere blocked with serum overnight. Prior to
antibody staining, tissue was DAPI stained and image in all channels
of interest to collect background autofluorescence. Following this,
tissuewas stainedwith up to three Antibodies per cycle for 1 h at room
temperature using a Leica BOND-MAX autostainer and reimaged to
capture antigen-specific signal. After imaging of the stained sample,
tissues underwent a dye inactivation step to remove the dye signal and
were re-imaged tomeasure background fluorescence intensity. Images
were processed for illumination correction, registered across all
rounds using DAPI, and autofluorescence subtracted. These cycles
were repeated until all targets of interest were imaged.

2.3 Data pre-processing for blood vessel
segmentation

Samples with low, medium, and high average staining intensity of
CD31 and CD34 were randomly selected across the three TMAs ((N =
30; 10 cores per TMA). The selected cores were annotated by either one,
or two expert biologist, using the manual annotation tools provided by
open source software QuPath (Bankhead et al., 2017), and a script was
applied to export annotation coordinates for the deep learning
algorithm. Manual annotation was carried out based on the
CD31 images, by also cross-checking other available markers,
including CD34, collagen IV, and nuclear marker DAPI. One core
was excluded from analysis due to insufficient quality of BV annotations,
leading to twenty-nine cores with a total of 1,327 annotated BVs.

The data pre-processingmethodology is depicted in Figure 1. Images
of CD31, CD34 and collagen IV were scaled within a range of [0 1] based
on their minimum andmaximum intensities and concatenated to form a
3-channel RGB image. Concatenation was performed to combine BV
information from multiple stains, thus reducing the impact of random
variation or outliers that may be present in a single image. Independent
annotated patient core images (N=23)were selected to form the training/
validation dataset, while the remaining images (N = 6) were held out to
test the generalization capability of the model. The six cores in the test
dataset included two cores from each of the three TMAs. To enhance the
robustness of the model performance assessment, the six cores in the test
dataset were also annotated by a separate expert biologist, obtaining thus
two separate ground truth segmentation masks. The inter-observer
variability between the two annotators was calculated in terms of

TABLE 1 Summary of patient demographics.

Biochemical Recurrence (N = 55) No Recurrence (N = 160) Total (N = 215)

Ethnicity

African American 1 (1.8%) 0 (0.0%) 1 (0.5%)

Asian 4 (7.3%) 2 (1.2%) 6 (2.8%)

Caucasian 47 (85.5%) 133 (83.1%) 180 (83.7%)

Unknown 3 (5.5%) 25 (15.6%) 28 (13.0%)

Age

Mean (SD) 63.946 (6.358) 64.541 (6.517) 64.389 (6.467)

Range 43.397–76.721 45.195–78.671 43.397–78.671

T stage

T2 15 (27.3%) 124 (77.5%) 139 (64.7%)

T3 37 (67.3%) 36 (22.5%) 73 (34.0%)

T4 3 (5.5%) 0 (0.0%) 3 (1.4%)

N stage

N-Miss 1 6 7

N0 46 (85.2%) 153 (99.4%) 199 (95.7%)

N1 8 (14.8%) 1 (0.6%) 9 (4.3%)

Grade.group

1 1 (1.8%) 39 (24.4%) 40 (18.6%)

2 29 (52.7%) 96 (60.0%) 125 (58.1%)

3 25 (45.5%) 24 ((15.0%) 49 (22.8%)

4 0 (0.0%) 1 (0.6%) 1 (0.5%)

Follow up Time (Month)

Mean (SD) 42.810 (48.298) 113.591 (50.847) 95.484 (58.888)

Range 0.500–223.733 5.000–291.800 0.500–291.800

The bold values indicate the type of data in the respective cells of the table.
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average number of annotated vessels per core. Each training/validation
image was divided to 128 × 128 × 3 patches with no overlap. Due to the
overrepresentation of pixels with negative values in the training dataset
(i.e., regions negative for CD31 staining), 80% of negative image patches
were discarded, while positive patches were augmented by a factor of four
by performing 90 ° patch rotations. The augmentation process resulted to
a total of 24,744 patches, which were divided into training and validation
datasets with a split of 22,270/2,474. The same division and augmentation
strategy was also performed on the ground truth binary segmentation
masks to maintain the information on the position of vessels.

To determine whether including all three markers (CD31, CD34 and
collagen IV) improves the reliability of the BV segmentationmethod, two
additional datasets were formed with either 2-channel patches of size
128 × 128 × 2 resulting from concatenation of CD31 and CD34 images,
or grayscale patches of size 128 × 128 × 1 including only the
CD31 images. The control dataset was derived from the same images
and using the same augmentation strategy, as the RGB patches.

2.4 Deep learning model architecture

AU-netmodel was used to learn the segmentation task, as shown in
Figure 2 (Ronneberger et al., 2015). TheU-net architecture comprises of
an encoder network that captures increasingly higher-level features
from an input image. The encoder is followed by a decoder that
up-samples these features to reconstruct a segmentation map. Each
layer consists of 3 × 3 convolutions, followed by rectified linear unit
activation and dropout regularization with a dropout rate of 0.3.
Down-sampling is carried out via 2 × 2 max-pooling operator. To
gradually increase the spatial dimensions and reduce the number of
channels of the feature maps to the original size, transpose convolutions
are used in the decoding stage.

Skip connections are employed at various scales that concatenate
the encoder output at each down-sampling layer to the respective
up-sampling layer in the decoder. The purpose of the skip-

connections is to propagate features from the same scale to each
decoding layer, facilitating learning of global and local contextual
information. A softmax function is applied at the final up-sampling
stage of the U-net, to convert the output into probability scores that
indicate the likelihood each pixel belonging to each class (Negative
class: No presence of blood vessels; Positive class: Presence of blood
vessels). The argmax operator is finally applied to assign each pixel
to a class based on the probability scores.

2.5 Model training and testing

Three models were trained by using either the 3-channel RGB
(CD31, CD34 and collagen IV), or the 2-channel comprising CD31 and
CD34, or the grayscale image patches including just the CD31 staining.
Each model was trained using the Adam optimizer, with a batch size of
32, learning rate of 0.0001, and the sparse categorical cross entropy
(CCE) as loss function. Early stopping was used with a patience of seven
epochs, and a maximum of 100 epochs. The pixel classification
accuracy, defined as (TP + TN)/(TP + TN + FP + FN) was
monitored during the training process, both in the training and
validation datasets. The weights of the model with highest validation
accuracy were saved and used to infer the model in the test dataset. The
model architecture and training was implemented in the deep learning
library Keras/Tensorflow (Oreilly, 2023), (Abadi et al., 2016). The
training process was carried out on an NVIDIA Tesla V100 SXM2
(NVIDIA, Santa Clara, CA, United States of America) graphics
processing unit (GPU).

Model inference was carried out on each core image in the test
dataset, by dividing them in 128 × 128 patches with a 75% horizontal
and vertical overlap. The output probability resulting by each patch
was converted to a binary mask patch by setting each pixel to either
0 or 1 based on the argmax of the respective probability scores. The
resulting binary mask patches were stitched together to reconstruct the
total segmentation mask, by averaging in the overlapping regions. To

FIGURE 1
Dataset formation for BV segmentation. An RGB image is formed by concatenating the CD31, CD34 and collagen IV multiplexed images. The
resulting RGB image is divided into 128 × 128 × three patches which are fed into a U-net to generate the respective patches of the segmentation mask.
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make the segmentation reconstruction more robust to false positives,
all pixels with an average value <1 were set to 0. In other words, a pixel
is assigned to the positive class, only if it is consistently classified as
1 across all patches. To remove noisy artifacts and distortions resulting
from patch stitching, the reconstructed mask was subjected to
morphological opening. Finally, morphological closing was carried
out to fill holes in the vessel segmentation mask. A disk with radius of
three pixels was used as morphological structuring element. The total
time taken for the model to reconstruct the total segmentation mask
for a single core was equal to 108.9 s.

2.6 Model accuracy assessment

Using the manually annotated images, the pixel-wise agreement
between the ground truth (MGT) and generated (MGen) segmentation
masks was evaluated in the test dataset against each of the two ground
truth annotations, in terms of dice similarity coefficient (DSC),
as follows:

DSC � 2* MGT ∩ MGen| |
MGT| | + MGen| | (1)

In addition, the vessel detection capability of the model was
assessed by calculating the precision (P) and recall (R):

P � TP
TP + FP

,R � TP
TP + FN

(2)

Where TP, FP and FN stand for True Positives, False Positives
and False Negatives, respectively. Vessels inMGen presenting overlap
with vessels in MGT were classified as TP, while those without
overlap were marked as FP. Vessels present in MGT that were not
identified in MGen were considered considered as FN.

2.7 Blood vessel size and distribution analysis

Blood vessels were automatically segmented using the best
performing model in all 749 cores that met the inclusion criteria,
resulting to a total of 40749 segmented objects were segmented from
758 cores. Vessel size (number of pixels) of each segmented area
were extracted for each blood vessel. To remove any image artefact,
For blood vessels larger than 6000 pixels, visual inspection was
performed to filter out potential artifacts which corresponds to
625um2 and 4% of all segmented objects. This includes
1656 objects involving 621 cores—ultimately reviewing 80% of
the samples. From this process, 139 segmented objects were
filtered out from the analysis out of 1656. Subsequently, standard
summary statistics and histograms were generated for vessel size as
well as core-level vessel count/total area. To evaluate the associations
with Gleason grade and patient outcomes, core-level data on the
vessel counts and total area was aggregated and averaged and
divided into tertiles (low/medium/high vessel count groups).
ANOVA analysis was applied to compare differences in vessel
counts and total area between the Gleason grade groups. p-values
were adjusted using the Benjamin-Hochberg method for multiple
hypothesis tests. Kaplan-Meier plots were generated to evaluate the
recurrence rate differences among these three groups.

3 Results

3.1 Vessel segmentation performance

Figures 3A–L demonstrate four example CD31 images
corresponding to different subjects in the test dataset. The
ground truth annotations are overlaid in white outlines. The

FIGURE 2
U-net consisting of four down-sampling and four up-sampling layers, which is trained to learn the BV segmentation task.
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green, cyan and magenta outlines illustrate the true positive, false
positive and false negative predictions that were generated by each
trained segmentation model. Figures 3A–L, illustrate the generated
segmentation masks, provided by the RGB (CD31, CD34, collagen
IV), 2-channel (CD31 and CD34) and grayscale (CD31) models,
respectively. Good agreement was found between ground truth and
generated segmentation masks, particularly in the case of the RGB
model. In the case of the 2-channel and grayscale models, a higher
number of FP and FN predictions is present.

The maximum training and validation accuracies observed
during the training process were equal to 97.80 and 96.84,
respectively, in the case of the RGB model, 97.84 and 96.05,
respectively, in the case of the 2-channel model and 97.66 and
95.54, respectively, in the case of the grayscale model. Table 2
summarizes the performance metrics for each of the six patient
image cores in the test dataset by using the models trained on RGB,
2-channel and grayscale patches, respectively, with respect to each of
the two annotators. The DSCwas on average higher in the case of the

FIGURE 3
(A–C), (D–F), (G–I) and (J–L) Four example CD31 images corresponding to different subjects in the test dataset. The ground truth annotations are
overlaid in white outlines. The green, cyan and magenta outlines illustrate the true positive, false positive and false negative predictions that were
generated by each trained segmentation model. (A,D,G and J) Generated segmentation masks, provided by the RGB (CD31, CD34, collagen IV). (B,E,H
and K) Generated segmentation masks, provided the 2-channel (CD31 and CD34) model. (C,F,I,L)Generated segmentation masks, provided by the
grayscale (CD31) model.
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RGB (Annotator 1: 0.71 (SD 0.07); Annotator 2: 0.70 (SD 0.08)), as
compared to the 2-channel (Annotator 1: 0.67 (SD 0.11); Annotator
2: 0.68 SD (0.07)) and grayscale (Annotator 1: 0.67 (SD 0.08);
Annotator 2: 0.70 (SD 0.05)) models, indicating improved pixel-
wise similarity between MGT and MGen. In addition, the RGB model
marked increased precision and recall (Annotator 1: 0.93 (SD 0.04)
and 0.97 (SD 0.02); Annotator 2: 0.95 (SD 0.05) and 0.94 (SD 0.07)),
compared to the 2-channel (Annotator 1: 0.91 (SD 0.08) and 0.94
(SD 0.05); Annotator 2: 0.92 (0.07 SD) and 0.90 (SD 0.07)) and
grayscale (Annotator 1: 0.81 (SD 0.09) and 0.97 (SD 0.02);
Annotator 2: 0.82 (SD 0.12) and 0.97 (SD 0.02)) models,
demonstrating superior blood vessel detection capability when
combining information from CD31, CD34 and collagen IV. The
average vessel counts per core, provided by Annotator 1 and
Annotator two was equal to 42.67 and 38.33, respectively. The
precision was particularly low in the case of the grayscale model
(CD31 alone), indicating that a single marker renders the model
prone to false positive predictions.

3.2 Vessel size and distribution analysis

Based on the superior performance of the RGB model in the test
set, it was applied to the remaining samples. Figures 4A–C shows the
histogram of the blood vessel size, blood vessel counts per core, and
total blood vessel area per core. The average segmented blood vessel
size was 102 μm2. On average, there were 53 blood vessels per core,
with a total area of 0.076 mm2. Figure 4D shows the box plot
representations of the BV area and total count with respect to
the Gleason grade group. In average, patients with Gleason grade
3 + 3 had 49 blood vessels (SD = 17) with size of 7111 um2

(SD = 2345) while Patients with Gleason grade 3 + 4 had
51 blood vessels (SD = 17) with size of 7795 um2 (SD = 2762)
and patients with Gleason grade 4 + 3 and 4 + 4 had 60 blood vessels
(sd = 32) with size of 9514um2 (SD = 5014). ANOVA analysis
showed that both the blood vessel count and area is significantly
associated with grade group (adj.p = 0.032 and 0.005 respectively as
depicted in Figure 4D). Figure 4E demonstrates the Kaplan-Meier
analysis on the association of the blood vessel counts and size to
patient outcome, biochemical recurrence. A significantly higher risk
of biochemical recurrence is indicated as the count of blood vessels
increases (adj.p = 0.0042), while there was no significant association
between the outcome and the blood vessel area.

4 Discussion

In this study, an automated pipeline was developed for blood
vessel detection and distribution analysis using multiplexed images
of CD31, CD34 and collagen IV. These markers were selected based
on specificity for endothelial cells (CD31 and CD34) and blood
vessel basement membrane (collagen IV). While CD31 has been
historically used for blood vessel analysis, our hypothesis was that
combining three markers expressed or colocalized with blood
vessels, would achieve a higher level of segmentation accuracy. A
U-net was trained by using different combinations of the three
markers, demonstrating that the use of three markers had higher
accuracy than CD31 and CD34, or CD31 alone, which was prone to
a higher false positive rate. In the absence of all three markers, the
proposed pipeline can still use combination of two markers, or just
CD31, which still provided acceptable blood vessel detection
capability. Using the three-marker combination, we found

TABLE 2 Performance metrics summary for the RGB, 2-channel and grayscale models.

Annotator 1 Annotator 2

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

RGB DSC 0.70 0.68 0.79 0.61 0.68 0.80 0.72 0.61 0.79 0.74 0.60 0.75

Precision 0.95 0.91 0.98 0.91 0.86 0.98 0.95 0.91 0.97 1.00 1.00 0.88

Recall 0.98 0.94 0.98 0.97 1.00 0.98 0.96 0.83 1.00 0.97 0.88 1.00

FP 3 3 1 3 3 1 3 3 2 0 0 5

FN 1 2 1 1 0 1 2 6 0 1 3 0

2-channel DSC 0.66 0.63 0.77 0.47 0.70 0.78 0.68 0.57 0.78 0.72 0.62 0.72

Precision 0.93 0.76 0.97 0.91 0.90 1.00 0.90 0.79 0.97 1.00 0.95 0.90

Recall 0.96 0.87 0.92 0.94 1.00 0.98 0.91 0.79 0.93 0.91 0.83 1.00

FP 4 8 2 3 2 0 6 7 2 0 1 4

FN 2 4 5 2 0 1 5 7 4 3 4 0

grayscale DSC 0.70 0.67 0.82 0.55 0.73 0.67 0.76 0.62 0.72 0.75 0.70 0.65

Precision 0.90 0.73 0.76 0.82 0.71 0.93 0.90 0.59 0.75 0.92 0.90 0.84

Recall 0.98 0.93 0.98 0.97 1.00 0.98 0.96 0.94 0.98 1.00 0.95 1.00

FP 6 23 18 7 6 3 6 20 19 3 2 7

FN 1 2 1 1 0 1 2 2 1 0 1 0

Frontiers in Bioinformatics frontiersin.org07

Karageorgos et al. 10.3389/fbinf.2023.1296667

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1296667


significant differences between blood vessel counts by Gleason grade
and patients with the highest counts had significantly higher risk of
biochemical failure within 5 years. This provides a more robust and
efficient approach for vessel analysis in prostate biopsy samples with
a standardized workflow.

The proposed pipeline can be extended for analysis of blood
vessel distribution in diverse cancer types. Given the distinctive
variations in BV patterns across various tissues and cancer
categories, it is anticipated that the proposed segmentation model
may necessitate re-training or fine-tuning on histopathology images
of the specific pathology. A study involving adaptation of the
developed technique is presented in section 2 of the
Supplementary Material, where the same segmentation deep
learning model is trained and tested on a separate cohort of
colorectal cancer patients. In addition, the proposed deep
learning model can be potentially adapted to operate as part of
image analysis workflows and libraries of existing open source
bioimage analysis software, such as QuPath (Bankhead et al., 2017).

Combining information from CD31, CD34 and Collagen IV
staining provided BV segmentation and detection capabilities of the
DL model, as compared to using just CD31 and CD34, or CD31.
This result suggests that these staining techniques can provide
complementary information on the presence and location of
blood vessels, enhancing thus the performance of the
segmentation algorithm. In addition, using multiple

histopathology images is expected to render the model less prone
to artifacts caused by improper sample preparation, staining
artifacts, or noise introduced by the imaging equipment.

Deep learning-based methods have been previously proposed
for BV detection and classification in H&E histopathology images of
lung adenocarcinoma (Vu et al., 2019) (Yi et al., 2018), oral cancer
(Fraz et al., 2018), gastric cancer (Noh et al., 2023), pancreatic cancer
(Kiemen et al., 2022) and kidney tissue (Bevilacqua et al., 2017).
Some studies have also analyzed additional markers obtained by
CD34 and/or CD31 staining for BV analysis in samples of lung
cancer (Yi et al., 2018) and colorectal cancer (Kather et al., 2015). In
the present study, the rationale for using these particular markers is
that immunostaining of CD31 (endothelial cell protein) and CD34
(vascular endothelial cell protein and neo angiogenesis) have been
reported to enable accurate assessment of microvessel density in
prostate cancer subjects (Miyata et al., 2015). In addition, collagen
IV immunostaining which is present in vascular basement
membranes can provide complementary information on
identification of BV (Gross et al., 2021). Ongoing efforts include
training the presented model using standard H&E images and
comparing its performance in BV detection against the proposed
three-marker model.

Due to the limited availability of images with ground truth BV
annotations, patch-based processing, combined with simple data
augmentation by applying image rotation by multiples of 90 °.

FIGURE 4
(A–C) illustrate the histogram of the (A) blood vessel size, (B) blood vessel counts per core, and (C) total blood vessel area per core. (D) Box plot
representations of the BV area and total count with respect to the grade group. (E) Kaplan-Meyer analysis.
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Appropriate data augmentation transforms were employed for training
the model. We experimented with additional augmentation strategies,
incorporating random contrast and affine transforms, and calculated
the performance metrics in the test dataset for each model, as shown in
Supplementary Table S1. However, such transforms compromised the
generalization capabilities of the model. A possible explanation is that
the features of vessels in microscopy images do not present high
intricate variations, therefore a very simple transformation can prove
more beneficial. Using more complex transformations can potentially
introduce variations that do not reflect the actual distribution
of the data.

The full slide segmentation masks were reconstructed by
stitching the generated binary patches and averaging in the
overlapping areas, which may introduce distortions and spatial
variations in the quality of the final reconstructed segmentation.
Obtaining additional ground truth annotations is expected to
further improve the generalization capability of the model.
However, manual segmentation can be time consuming and
expensive. Semi-supervised learning techniques, such as co-
training (Hady and Schwenker, 2008), can make use of the
abundant available un-labeled images to leverage information
about the data structure and distribution, therefore enhancing the
training process and the model performance.

A limitation of the model performance assessment in the test
dataset arises from the fact that the ground truth annotations were
derived by manually drawing polygons that outlined the approximate
shape of the BVs. This limitation is expected to compromise the
reliability of the dice similarity coefficient calculation, which received
relatively lower values, due to the absence of exact vessel delineation in
the ground truth segmentation masks. However, the trained model
marked excellent precision and recall, which was expected given that
object detection tasks are less dependent on the exact object geometry.
Ongoing efforts involve utilization of semi-automated algorithms,
such as the segment anything model (SAM) (Kirillov et al., 2023), to
refine the manual segmentation maps and produce accurate ground
truth BV annotations.

Using the segmented blood vessels, we carried out analysis
investigating how blood vessels is associated with the Gleason
grade as well as biochemical recurrence. We found that higher the
grade, the patient tends to have more vessels in count and area. We
also found significant associations between the blood vessel count and
biochemical failure/disease recurrence. In future analyses, we plan to
evaluate the spatial relationships between blood vessels and
surrounding cell response. In addition, identifying different types
of blood vessels, such as capillaries, veins and arteries can potentially
provide valuable information in prostate cancer progression. A future
step of this study would involve incorporating additional biomarkers
in the proposed pipeline to detect different types of blood vessels and
correlate each one of them with the Gleason score.

Another matter warranting further exploration is potential
fragmentation of tissue resulting from the sectioning plane. This
can result in vessels appearing as disconnected structures in
microscopy images, which may be counted as separate BVs,
overestimating thus the BV density. To mitigate this limitation,
morphological closing was applied on the generated segmentation
masks, which is expected to connect fragmented BV components that
are in proximity. However, in cases where the fragments are highly
disjointed, the accuracy of BV count may be compromised. Ongoing

efforts would involve automated detection of structures that may have
been affected by fragmentation to correct for any potential bias.

In this study, the U-net architecture was employed, which is a
well-established DL architecture for medical image segmentation.
More recently, DL models including vision transformers (ViT)
(Dosovitskiy et al., 2021), denoising diffusion probabilistic
models (DDPM) (Ho et al., 2020), or zero-shot approaches such
as the segment anything model (SAM) (Kirillov et al., 2023) have
demonstrated excellent performance in semantic segmentation (Wu
et al., 2023), (Ranftl et al., 2021) and object detection (Li et al., 2022),
(Chen et al., 2022) tasks. Ongoing efforts would involve training
multiple models for the given segmentation task, to determine the
optimal deep learning architecture.

5 Conclusion

In conclusion, a pipeline was introduced for automated detection
and analysis of blood vessel distribution in histopathology images of
the prostate. A deep learning model was trained using various
combinations of immunostaining images, demonstrating excellent
capability to accurately identify blood vessels in prostate biopsy
samples. Furthermore, the trained model was utilized to derive
features based on vessel size and distribution in a larger cohort of
prostate cancer patients, which were in turn analyzed with respect to
the disease progression. The presented methodology is expected to
improve the efficiency and standardization of biopsy sample analysis,
potentially leading to better understanding of the pathophysiology,
diagnosis and staging of prostate cancer.
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