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Antibodies are generated with great diversity in nature resulting in a set of
molecules, each optimized to bind a specific target. Taking advantage of their
diversity and specificity, antibodies make up for a large part of recently developed
biologic drugs. For therapeutic use antibodies need to fulfill several criteria to be
safe and efficient. Polyspecific antibodies can bind structurally unrelated
molecules in addition to their main target, which can lead to side effects and
decreased efficacy in a therapeutic setting, for example via reduction of effective
drug levels. Therefore, we created a neural-network-based model to predict
polyspecificity of antibodies using the heavy chain variable region sequence as
input. We devised a strategy for enriching antibodies from an immunization
campaign either for antigen-specific or polyspecific binding properties,
followed by generation of a large sequencing data set for training and cross-
validation of the model. We identified important physico-chemical features
influencing polyspecificity by investigating the behaviour of this model. This
work is a machine-learning-based approach to polyspecificity prediction and,
besides increasing our understanding of polyspecificity, it might contribute to
therapeutic antibody development.
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1 Introduction

Antibodies produced by B lymphocytes are a crucial part of the adaptive immune system.
They are large proteins recognizing certain structures in their cognate antigen, and specific
antibodies are generated during a germinal center reaction in secondary lymphoid organs
[reviewed in (Victora and Nussenzweig, 2012)]. Antibody binding tags a pathogenic
structure, ultimately leading to its neutralization and/or elimination by a complex
interplay of several immune cells and pathways.

Genes encoding antibodies contain variable segments which through gene segment
rearrangements, iterative somatic mutations and subsequent selections of antigen-binding
antibodies enable the creation of a large variety of antibodies recognizing virtually any
potentially hazardous infectious invader from a limited set of genes. Due to this versatility,
antibodies specific against almost any desired antigen can be created and thus have been
developed as research tools and for therapeutic purposes. Antibodies or B cell receptors, as well as
T cell receptors (TCRs), are adaptive immune receptors (AIRs), and nature must balance to have

OPEN ACCESS

EDITED BY

Huixiao Hong,
United States Food and Drug
Administration, United States

REVIEWED BY

Victor Greiff,
University of Oslo, Norway
Yariv Wine,
Tel Aviv University, Israel

*CORRESPONDENCE

Szabolcs Éliás,
sz.e@outlook.com

Francesca Ros,
francesca.ros@roche.com

RECEIVED 31 August 2023
ACCEPTED 06 November 2023
PUBLISHED 08 April 2024

CITATION

Éliás S, Wrzodek C, Deane CM, Tissot AC,
Klostermann S and Ros F (2024),
Prediction of polyspecificity from
antibody sequence data by
machine learning.
Front. Bioinform. 3:1286883.
doi: 10.3389/fbinf.2023.1286883

COPYRIGHT

© 2024 Éliás, Wrzodek, Deane, Tissot,
Klostermann and Ros. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Bioinformatics frontiersin.org01

TYPE Original Research
PUBLISHED 08 April 2024
DOI 10.3389/fbinf.2023.1286883

https://www.frontiersin.org/articles/10.3389/fbinf.2023.1286883/full
https://www.frontiersin.org/articles/10.3389/fbinf.2023.1286883/full
https://www.frontiersin.org/articles/10.3389/fbinf.2023.1286883/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2023.1286883&domain=pdf&date_stamp=2024-04-08
mailto:sz.e@outlook.com
mailto:sz.e@outlook.com
mailto:francesca.ros@roche.com
mailto:francesca.ros@roche.com
https://doi.org/10.3389/fbinf.2023.1286883
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2023.1286883


a diverse repertoire enabling any unknown pathogen to be recognized,
yet maintaining sufficient specificity (Rappazzo et al., 2023).
Understanding, describing and experimentally studying these
features including undesired features such as polyreactivity, also
known as polyspecificity, are a key challenge to the field (Rappazzo
et al., 2023), especially given the growing potential of antibodies and
TCRs as drugs or in cell therapies.

In recent years, there is an increasing number of clinically
approved therapeutic antibodies used to treat different diseases
from cancer to autoimmune disease, and more antibodies as well
as multispecific antibody formats are expected to come in the future
(Elgundi et al., 2016). Antibodies usable as drugs must fulfill certain
favorable biophysical properties such as high solubility and stability
paired with low potential for aggregation, and several unfavorable
properties have been associated with their hydrophobicity (Tsai and
Nussinov, 1997; Chennamsetty et al., 2009).

Binding to the target antigen is a crucial feature of an antibody,
however, this binding has to be specific, and unspecific binding to other
antigens such as self-antigens could even contribute to autoimmune
diseases. So-called polyspecific antibodies bind to a variety of different
structurally unrelated antigens and due to potential off-target effects are
a concern for therapeutic antibody development [reviewed in (Dimitrov
et al., 2013)]. Nevertheless, there is incomplete knowledge about which
properties make an antibody polyspecific, and prediction of such
attributes would be highly desirable to improve the design and
development of therapeutic antibodies.

While polyspecific antibodies may fulfill important roles in
providing broadly neutralizing protective function against
pathogens (Ochsenbein et al., 1999; Zhou et al., 2007; Planchais
et al., 2019), they have also been suggested to be related to unwanted
autoreactive antibodies in autoimmune diseases such as in systemic
lupus erythematosus (Mietzner et al., 2008; Zhang et al., 2009). An
important source of polyreactive antibodies in vivo are so-called
B1 cells with innate-like properties (Prieto and Felippe, 2017).

Opposed to polyspecific antibodies present in the pre-immune
repertoire, immunization and adaptive response to an antigen lead to an
increase of specificity and affinity over time due to affinity maturation,
that is the process of somatic hypermutation followed by selection of
clones producing high-affinity antibodies. Accordingly, polyreactive
antibodies are often encoded by germline genes or genes with
limited somatic hypermutation (Baccala et al., 1989; Sequeira et al.,
1992). Complementarity-determining regions (CDRs) are the most
variable part of an antibody and crucially determine the antigen
binding site. Especially the CDR3 loop in the heavy chain (Deng
and Notkins, 2000), together with some germline-like segments,
plays the main role in determining whether an antibody displays
polyreactivity (Ichiyoshi and Casali, 1994). The immature light chain
has also been shown to contribute to polyspecificity (Witsch et al.,
2006). Furthermore, computational design has revealed that antibodies
designed to be polyspecific are likely to be similar to germline
repertoires, while those designed to be specific are likely to be
similar to affinity-matured antibodies (Willis et al., 2013).

These observations support the concept that antibody
maturation leads to increased specificity (Oppezzo et al., 2004).
Indeed, early human B cell precursors were described to have more
polyreactive clones (Wardemann et al., 2003). Different
experimental screening assays have been developed to determine
polyspecificity such as binding assessment to sets of structurally

divergent antigens (for example, baculovirus particle, DNA,
flagellin, albumin, LPS) by ELISA- or flow-cytometry-based
assays (Wardemann et al., 2003; Xu et al., 2013; Jain et al., 2017).

A recent thorough study on human antibodies across
developmental stages of B cells has used such polyspecificity
assays along with methods to test for other “undesirable”
properties of antibodies, and has determined that affinity
matured human antibodies show reduced polyreactivity and
hydrophobicity as compared to antibodies derived from naïve
B cells (Shehata et al., 2019). Nevertheless, this study remains
limited to a few hundred antibodies from human subjects in the
absence of interventional immunization with a model antigen.

To overcome these limitations, we designed experiments to
immunize transgenic rabbits with different model antigens
followed by next-generation sequencing (NGS) analysis of the
pre-immune and immune antibody repertoire. We combined this
design with binding assays to the model antigen or a mixture of
typical antigens for polyspecific antibodies, followed by machine-
learning-based modeling using the heavy chain variable region
sequences. To enable this, we took advantage of transgenic
rabbits displaying a common immunoglobulin light chain.

When following a supervised machine learning approach it is
assumed that there is a statistical relationship between certain input
(features) and output (categorical or quantitative) variables, and that
this relationship can be learned by models that are trained on
representative data, and that these models can in turn predict the
values of the output variable of interest from new input data. A subset of
machine learning methods, collectively referred to as “deep learning,” is
based on using model architectures consisting of several layers with
units in them, that share some aspects of networks of neurons in the
brain, thereby referred to as (deep) neural networks. The advantage of
neural networks is that their ability to learn and predict is less dependent
on the feature engineering process as compared to other types of
machine learning algorithms, instead, neural networks can learn the
important features by virtue of several data transformation steps.
However, this typically requires large amounts of data.

Here, we specifically designed enrichment methods resulting in a
large number of antibody sequences obtained by NGS, making it
feasible to use deep learning algorithms using neural networks.
Machine learning approaches have recently been applied to predict
certain antibody properties [reviewed in (Miho et al., 2018; Graves
et al., 2020; Marks and Deane, 2020)]; however, predicting a highly
complex property such as polyspecificity has rarely been approached
computationally. As opposed to previous low-throughput
experimental assays to determine features of polyspecific antibodies,
our unprecedented approach allowed us to predict polyspecificity and
to determine features contributing to polyspecificity in a data-driven
manner, which provides useful information to improve strategies for
therapeutic antibody design in the future.

2 Methods

2.1 Experimental methods

2.1.1 Transgenic rabbits
For immunization, Roche proprietary transgenic rabbits

expressing a humanized antibody repertoire were used (Ros
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et al., 2020). Transgenic rabbits comprising a common human light
chain are reported in WO2017/072208A1.

2.1.2 Immunization
For each antigen, three rabbits were immunized with either human

serum albumin (HSA), recombinant Fc-fused human TNFα or
recombinant Fc-fused human TWEAK. Before the start of
immunization blood was drawn for control (preimmune) blood
samples. Animals were pre-stimulated with adjuvant and blood was
taken after 7 days for adjuvant samples. For the first immunization with
antigen, 400 µg protein was mixed with adjuvant and administered
intradermally. One and 2 weeks later booster immunizations with
200 µg antigen mixed with adjuvant were given first intramuscular
and then subcutaneously. Over a course of 3 months additional
booster immunizations (each with 200 µg antigen) were given in a
similar fashion every 4 weeks. For each immunogen and immunization
step all animals were immunized at the same time of the day. Blood for
immunized samples was taken ~7 days post antigen immunizations,
starting from the third antigen immunization onwards. For each
immunogen and immunization step all blood samples were collected
at the same time of the day, except for the 5th immunization, in which
case blood samples were distributed over 3 days (1 animal per day) to
allow for collection, B cell isolation, sorting and screening in a timely
manner. Blood samples were used as a source of antigen-specific B cells
in the B cell enrichment and the B cell cloning processes. The applied
protocol was established during platform development in which titers
were monitored regularly during the immunization period (see also,
Seeber et al., 2014).

2.1.3 Cell isolation and enrichment (panning)
For the isolation of peripheral blood mononuclear cells (PBMCs),

blood samples containing EDTA were diluted two-fold with PBS, and
were density centrifuged on LympholyteMammal (Cedarlane, CL5120)
in Leucosep tubes (Greiner Bio-One, 227290). For enrichment of
antigen-binding B cell clones (panning), a solution of the given
antigen or polyantigen mix was prepared in carbonate buffer (0.1 M
sodium bicarbonate, 34 mM disodiumhydrogencarbonate, pH 9.55) at
a concentration of 2 μg/ml, and 2 ml/well of this solution was incubated
on 6-well plates overnight at 4°C. Before enrichment, the coated plates
were washed three times with PBS. In case of the antigens this solution
contained only the given antigen, and in case of the polyantigens this
solution contained the mix of the polyantigens (each at 2 μg/ml). The
antigens used for the HSA, TNFα and TWEAK immunization groups
were HSA (SIGMA, A9731), TNFα (Peprotech, 300-01A) and TWEAK
(Peprotech, 310-06), respectively. Themix of polyantigens for the TNFα
and the TWEAK immunization groups contained the following:
Cardiolipin (SIGMA, C1649), dsDNA (Roche Diagnostics GmbH,
Mannheim, Germany, 11467140001), KLH (SIGMA, H7017),
Insulin (SIGMA, I0516), Lysozyme (SIGMA, L6876), LPS (SIGMA,
L4516), Flagellin (InvivoGen, tlrl-epstfla-5), HSA (SIGMA, A9731).
The mix of polyantigens for the HSA immunization group contained
the same polyantigens except HSA. In order to eliminate monocytes
binding to plastic (thereby occupying enrichment surface) as well as
B cells that potentially bind plastic, PBMCs were incubated prior to
enrichment in a cell culture flask for 1 h at 37°C (5%CO2) in cell culture
medium (medium composition is described in (Seeber et al., 2014)).
Then, non-binding cells were recovered, centrifuged and resuspended
in cell culture medium and plated on the coated 6-well plates at 1.5 ml/

well. For enrichment of (poly)antigen-binding B cells, these
plates were incubated for 1 h at 37°C (5% CO2). To remove
cells not binding the (poly)antigen, the supernatant was
removed and the wells were washed with PBS. To collect the
enriched cells binding the (poly)antigen, the plates were
incubated with 0.5 ml trypsin solution per well for 5 min at
37°C (5% CO2), and washed twice with 1 ml medium.

2.1.4 Next-generation sequencing
2.1.4.1 RNA isolation

Total RNA from frozen cells was isolated using High Pure RNA
Isolation Kit (Roche Diagnostics GmbH, Mannheim, Germany)
according to the manufacturer’s instructions. RNA was eluted in
50 µL Elution Buffer, stored at −80°C, and handled on ice for
further steps.

2.1.4.2 cDNA synthesis
cDNA was produced by reverse transcriptase using an

anchored-oligo(dT)18 primer from the Transcriptor High Fidelity
cDNA Synthesis Kit (Roche Diagnostics GmbH, Mannheim,
Germany). 20 µL RNA was used for a reverse transcriptase-
reaction, for a final volume of 40 μL. 20 µL RNA, 2 µL oligo(dT)
and 0.8 µL water were incubated for 10 min at 65°C and cooled down
on ice. 8 µL Reaction Buffer, 1 µL RNase Inhibitor, 4 µL dNTPs, 2 µL
DTT and 2.2 µL Transcriptase were added to the reaction solution
and incubated at 50°C for 30 min, then 85°C for 5 min and finally
cooled down on ice. Of each RNA sample two cDNA samples were
prepared in parallel. The relative amount of specific rabbit IgG
cDNA per sample was measured by ddPCR (BioRad) analysis.
cDNA was stored at -20 °C until further processing.

2.1.4.3 PCR amplification
From each cDNA sample, the variable regions of the heavy

chain (VH) were amplified. A rabbit Fc PCR was generated: the
forward primer was binding at the beginning of the leader region
of VH (ATGGAGACTGGGCTGCGCTGGCTTC) while the
reverse primer at the beginning of the constant region of the
rabbit heavy chain CH1 (GGGAAGACTGATGGAGCCTTAGGT
TGCC). PCR was done using AccuPrime Pfx SuperMix (Thermo
Fisher) according to manufacturer’s instructions on a Veriti 96
Well Thermal Cycler (Applied Biosystems). The amount of
cDNA template used in each PCR reaction was adjusted
according to ddPCR results, in order to provide each reaction
mix with the same amount of specific IgG cDNA copies.

PCR conditions for NGS are shown in Table 1.

TABLE 1 PCR conditions for NGS.

T° Time Cycles

94°C 4 min 1x

94°C 20 s 27x

68°C 20 s

68°C 45 s

68°C 4 min 1x

4°C ∞ 1x
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For each PBMC sample, two technical PCR replicates were made
(derived from two cDNA replicates). Each PCR NGS template was
generated from a pool of 8 (50 µL each) PCR reactions in order to
achieve enough amount of template without raising PCR cycles. After
amplification the aliquots were pooled and purified using the
NuceloSpin Gel and PCR Clean-up kit (Macherey-Nagel), following
the manufacturer’s instructions. DNAwas eluted with 30 µL NE buffer.

2.1.4.4 Library preparation
The DNA amplicons need specific indexes for Next-Generation

Sequencing on the Illumina platform. Therefore sequencing-ready
libraries were generated using the TruSeq Nano DNA Library Prep
Kit for NeoPrep (Illumina) on the NeoPrep (Illumina) featuring the
precision of digital microfluidics. All steps were done following
manufacturer’s instructions without the step for DNA fragmentation.
The SC550 for 550 bp inserts was used, since the amplicons have
approximately a length of 450 bp. Normally 60 ng DNA in
maximum of 15 µL (or filled up with H2O) was used and then
mixed with the SC550 and DMB solution and further processed
using six PCR cycles as recommended by the manufacturer. For
samples with lower concentration, 15 µL of the sample were used
while increasing the number of PCR cycles (up to nine cycles).
Validation and normalization was not performed by the NeoPrep
system. Libraries were then diluted to a concentration of 4 nM. DNA
concentrations were measured by Qubit Fluorometer (Invitrogen) using
the dsDNA BR Assay Kit or dsDNA HS Assay Kit.

MiSeq sample loading: Reagent cartridge was thawed according to
the manufacturer’s protocol. 4 nM libraries were pooled (16 per
sequencing run), denatured and diluted according to the
manufacturer’s protocol to a final concentration of 13 pM. PhiX
control was equally processed. At the end, 875 µL denatured 13 pM.
library pool and 125 µL denatured 13 pM. PhiXweremixed, resulting in
12.5% PhiX in total. 600 µL were loaded into the appropriate reservoir
of the cartridge. The run was started according to the MiSeq System
Guide. MiSeq Reagent Kit v3 (600 cycles) was used for paired-end
sequencing on the MiSeq (Illumina).

2.1.5 Fluorescence-activated cell sorting (FACS)
For sorting of single B cell clones that express transgenic IgG, cells

after antigen-enrichment (panning) were stained with anti-rabbit IgG-
Fc-FITC (goat, AdB serotec, polyclonal) and anti-human IgΚ-APC
(mouse, BD Pharmigen, monoclonal) in PBS [containing normal goat
serum (Vector labs) and normal mouse serum (Southern Biotech) for
blocking] for 30 min at 4°C in dark. Cells were then centrifuged and
washed twice with ice-cold PBS. Cells were stained with 5 μg/ml
propidium-iodide (BD Pharmigen) to identify live cells. Human IgG
positive live B cells were sorted using a Becton Dickinson FACSAria
with a FACSDiva software (BD Biosciences).

2.1.6 ELISA
Rabbit IgG titer quantification of primary B cell supernatants was

performed according to previously published standard methods (Seeber
et al., 2014; Schrade et al., 2019). In brief, amix of biotinylatedmouse anti-
rabbit IgG antibody and anti-rabbit IgGHRP conjugatewas incubated for
90min at room temperature on 384-well streptavidin-coated microtiter
plates togetherwith primary B cell supernatants diluted in PBS containing
0.5% BSA and 0.05% Tween-20. Next, the plates were washed repeatedly
with PBS containing 0.2% Tween-20, HRP substrate solution was added
to the plates and absorbance at 370 nm was measured.

Antigen and polyantigen binding ELISAwas performed similarly to a
previous publication (Schrade et al., 2019). In brief, for the binding assay
the same antigens and mix of polyantigens were used as for cell
enrichment (panning). 384-well plates were coated using these (poly)
antigens at 2 μg/ml in PBS at 4°C overnight. Plateswerewashed repeatedly
with PBS containing 0.1% Tween-20 between steps. Plates were blocked
by incubation with PBS containing 2%BSA and 0.2%Tween-20 for 1 h at
room temperature. Samples, i.e. primary B cell supernatants (primary
screening) or solutions of purified recombinantly expressed antibodies
with normalized IgG concentration (1 μg/ml, secondary screening) were
diluted in PBS containing 0.5% BSA and 0.05% Tween-20, and were
added to the coated and blocked plates, followed by a 1 h incubation at
room temperature. A secondary anti-rabbit-IgG antibody (HRP
conjugated) was added and incubated for 1 h at room temperature.
HRP substrate solution was added and absorbance was measured at
370 nm to determine samples containing binding antibodies.

2.1.7 PCR amplification of cognate VH and VK and
recombinant expression

Total RNA preparation from B cells lysate (resuspended in RLT
buffer, Qiagen, 79216) and cDNA synthesis were performed as
described previously by Seeber et al. (Seeber et al., 2014).

The cDNA of the immunoglobulin heavy and light chain variable
regions (heavy chain here called VH, kappa light chain here called VK)
was amplified with the AccuPrime Supermix (Invitrogen, 12344-040)
using the primer pairs rbHC.up and rbHC.do for the heavy chain and
BcPCR_FHLC_leader.fw and BcPCR_huCkappa.rev for the light chain.
All forward primerswere specific for the signal peptide (of respectivelyVH
and VK), whereas the reverse primers were specific for the constant
regions (of respectively VH and VK). The PCR conditions for the heavy
chainswere as follows:Hot start at 94°C for 5min; 35 cycles of 20 s at 94°C,
20 s at 70°C, 45 s at 68°C, and a final extension at 68°C for 7min. The PCR
conditions for the VKs were as follows: Hot start at 94°C for 5min;
40 cycles of 20 s at 94°C, 20 s at 52°C, 45 s at 68°C, and a final extension at
68°C for 7min. PCR products were cleaned using the NucleoSpin Extract
II kit (Macherey-Nagel, 740609250) according tomanufacturer’s protocol.

Primer sequences for the PCR amplification of cognate VH and
VK are shown in Table 2.

TABLE 2 Primer sequences for the PCR amplification of cognate VH and VK.

Primer Sequence

rbHC.up AAGCTTGCCACCATGGAGACTGGGCTGCGCTGGCTTC

rbHC.do CCATTGGTGAGGGTGCCCGAG

BcPCR_FHLC_leader.fw ATGGACATGAGGGTCCCCGC

BcPCR_huCkappa.rev GATTTCAACTGCTCATCAGATGGC
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For recombinant expression of monoclonal antibodies, PCR-
products coding for VH or VK were cloned as cDNA into
expression vectors by the overhang cloning method (Haun et al.,
1992; Li and Elledge, 2007) and transiently co-transfected into
HEK293 cells as described in Seeber et al. (Seeber et al., 2014). Two
variants of the basic expression plasmid were used, one plasmid
contained the rabbit IgG constant region and a second plasmid
contained a human kappa-1 LC constant region designed to accept
respectively the VH and VK regions. After purification by Protein A
column standard protocols supernatants were further analyzed for
antibody content and specificity.

2.2 Computational methods

2.2.1 Data preprocessing
Paired-end sequencing reads were generated by Illumina MiSeq

in fastq format. Quality control of sequencing reads was performed
using FastQC (Andrews, 2010). Overlapping paired-end reads were
merged using FLASH (Magoč and Salzberg, 2011) leading to one
sequence (from each paired-end read) containing the antibody
variable domain. An in-house developed algorithm (Klostermann,
2015) was used to extract the part of sequences that consist of exactly
the variable domain as defined by the WolfGuy numbering scheme
(Bujotzek et al., 2015). Subsequently, an output table was generated
(as CSV file) containing the whole variable domain sequence and the
individual antibody CDRs and framework regions, as well as the
most similar germline-encoded gene segment (information not used
as a feature for the model), identified by alignment to the IMGT
germline reference sequences (Lefranc et al., 2005).

2.2.2 Data partitioning for cross-validation and
subsampling

For estimation of predictive performance and hyperparameter
tuning, four types of data partitioning were used. For 10-fold cross-
validation with random split, data was partitioned to 10 sets (folds) that
were chosen randomly, of which, one was used as validation set and the
rest as training set in a given round of cross-validation. For 10-times
repeated subsampling, data was split into 10% validation set and 90%
training set chosen randomly, and this was repeated 10 times
independently (resulting in training sets with probable overlaps
across the 10 rounds of subsampling). For blocked cross-validation
using antigens or animals as grouping variable, data was partitioned to
three or nine sets (folds) based on the immunization antigens or the
animals, respectively, of which one set was used as validation set and the
rest as training set in a given round of cross-validation. For all data
partitioning methods, all possible overlaps between training and
validation set (for example if a given antibody clone can be found
in the immune repertoire of multiple animals) were explicitly
eliminated, resulting in disjoint training and validation sets. Both for
training and for validation, duplicates were also explicitly eliminated, i.e.
unique sequence-sets were used.

2.2.3 Feature encoding
For all analysis using the amino acid sequence of the VH region in

this study, the VH sequences were represented in an aligned form using
theWolfGuy numbering scheme (Bujotzek et al., 2015). Alignment gaps
were represented by dots in the sequence. In total, two types of feature

encoding was used in this study: (i) one-to-one mapping of letters in the
VH sequence to integers was used for dimensionality reduction by
UMAP only, and (ii) encoding of physico-chemical amino-acid features
using a transformation by principal component analysis (PCA)was used
for dimensionality reduction by UMAP as well as to generate input
features for the classifier (i.e. feature encoding for the supervised learning
part). For the encoding of physico-chemical amino-acid features, the
feature set named “aaindex1” describing physico-chemical properties of
amino acids was downloaded from https://www.genome.jp/aaindex/
(Kawashima et al., 2007). By parsing this feature set, matrix M was
generated with rows corresponding to amino acids and columns to
physico-chemical features. PCA was performed on the column-scaled
and column-centered M matrix by singular value decomposition. The
first six principal components were used for feature encoding (of the
total of twenty), that explain 79% of the variance. The principal
component values corresponding to all possible amino acids were
scaled and centered for each of the first six principal components.
Each aligned VH sequence was encoded to a numeric feature vector by
replacing each amino acid by its value on principal components 1-6
(scaled and centered), resulting in feature vectors of length 882 [147
(aligned sequence length) × 6 (number of principal components)].
Alignment gaps (dots) were encoded by replacing themwith zero, and in
case there were X-s (i.e. undetermined amino acids) these were encoded
by median imputation, i.e. replacing them with the median value of all
amino acids on the given principal component (scaled and centered).
The feature corresponding to position i in the original VH sequence and
principal component j from the transformation of physico-chemical
descriptors is represented at element (((j-1) × 147)+i) of the resulting
feature vector. This encoding resulted in a representation of the amino
acid sequence that retains positional information in the VH region and
contains relevant physico-chemical information in a compressed form.

2.2.4 Dimensionality reduction by UMAP
The feature-encoded VH sequences were used as input to the

Uniform Manifold Approximation and Projection for Dimension
Reduction (UMAP) (McInnes et al., 2018) algorithm (unsupervised
dimensionality reduction). The UMAP implementation available in the
uwot package was used (implemented in R and C++). An appropriate
distance metric was chosen for each feature-encoding method
(Hamming distance for the one-to-one mapping from letters to
integers; Euclidean distance for the encoding using PCA of physico-
chemical properties). The following hyperparameter settings were used
for UMAP when using the one-to-one mapping from letters to integers
as feature-encoding method: n_neighbours = 1890 (3.5% of the number
of observations), n_components = 2, metric = “hamming”, n_epochs =
500, spread = 4.75, min_dist = 0.65, fast_sgd = F. The following
hyperparameter settings were used for UMAP when using the
encoding using PCA of physico-chemical properties as feature-
encoding method: n_neighbours = 3780 (7% of the number of
observations), n_components = 2, metric = “euclidean”, n_epochs =
500, spread = 5.75, min_dist = 0.15, fast_sgd = F. A random subset of the
entire data set was used forUMAPby randomly sampling 500 clones per
experimental condition, where a given experimental condition
corresponds to a certain animal, antigen, time-point and enrichment.

2.2.5 Model architecture
For building neural networks, the Keras library was used with

the TensorFlow backend. For the input layer of the model, the

Frontiers in Bioinformatics frontiersin.org05

Éliás et al. 10.3389/fbinf.2023.1286883

https://www.genome.jp/aaindex/
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1286883


feature-encoded VH sequences were used (see previous section).
The final model is a neural network containing three fully connected
hidden layers (with 6, 3, and 2 units, respectively) each followed by a
batch normalization layer, an Exponential Linear Unit (ELU)
activation layer (alpha = 1), and a dropout layer (dropout rate =
0.5). For the output, a fully connected layer with a single unit and
sigmoid activation function was used.

2.2.6 Training
Binary cross-entropy loss was used as an objective function to be

minimized during training. As an optimizer, the Adam optimizer
was used (Kingma and Ba, 2017). For the final model a learning rate
of 6 × 10−7 was used, with a batch size of 128 applying a balanced
minibatch sampling such that in each round of the back-
propagation the same number of observations were drawn
randomly from both classes (64 antigen-specific, 64 polyspecific
clones), and the training was performed for 10 epochs.

2.2.7 Performance evaluation
Several performance metrics were considered collectively for the

evaluation of cross-validation and subsampling, namely: binary
cross-entropy loss, area under ROC curve, F1, MCC, sensitivity
and specificity. The following hyperparameters were optimized:
model architecture i.e. number of layers and number of units in
each layer, learning rate, batch size, dropout rate. Results from the
blocked cross-validation using antigen-based data partitioning were
considered as the main performance indicator.

2.2.8 Variable importance calculation
Variable importance was calculated using the method described by

Fisher and others (Fisher et al., 2019). The variable importance was
estimated using a subsampling and permutation approach. In one
round of the subsampling procedure, 3000 clones were resampled
randomly such that the two classes are balanced (i.e. sampling
1,500 antigen-specific and 1,500 polyspecific clones). The VH
sequences of these clones were encoded to the features used by the
model, and the probability of polyspecificity was predicted by themodel
using the feature values corresponding to these observations (clones) in
an unpermuted and a permuted fashion (permutation of values across
observations was performed for each feature separately). Using the
probability values predicted by the model and the true labels available
from the data, the binary cross-entropy loss was calculated for the
unpermuted case and the permuted cases. The ratio of the permuted
and unpermuted loss values was considered as a measure of variable
importance (dropout loss ratio). In each round of resampling, the
permutation of feature values and the calculation of dropout loss ratio
was repeated three times, and the mean of the calculated dropout loss
ratio was considered as the result of a given resampling. The resampling
procedure was repeated 1,000 times resulting in 1,000 dropout loss ratio
values per feature. For visualization in the figures, the mean of these
values was used. To estimate the statistical significance of the
importance of each feature, one-tailed p-values were calculated using
the dropout loss ratio as test statistic using a non-parametric approach.
The null hypothesis was defined as the case that the loss calculated with
permutation of the feature values is less than or equal to the loss
calculated without permutation of the feature values, and therefore the
dropout loss ratio is less than or equal to one (implying that the given
feature is not important for the model’s prediction). The p-value was

calculated as the fraction of resampling rounds where the dropout loss
ratio was less than or equal to one. Following the calculation of p-values
for each feature, False Discovery Rates (FDR) were calculated from the
p-values using the Benjamini and Hochberg procedure (Benjamini and
Hochberg, 1995) to correct for multiple testing across the features. In
addition to calculating importance of features used by the model, a
back-calculation of importance was also performed to quantify the
importance of the physico-chemical features that were used for the
PCA-based feature encoding. The back-calculation was carried out
separately for each initial physico-chemical feature (prior to
transformation by PCA) and for each position at the VH sequence.
For this, the dropout loss ratio of each feature used by the classifier (each
corresponding to a given position and principal component) and the
loadings (weights in the linear combination) of each initial physico-
chemical input feature on the first six principal components were used.
The following equation was used for the back calculation with i and j
referring to the principal components:

back–calculated importance � ∑
6

i�1
dropout loss ratioi ×

loadingi

∑
6

j�1
loadingj

Subsequently, applying the same calculation procedure as for the
features directly used by the model, the means of the back-calculated
importance values were used for visualization, and FDR was
considered as a measure of statistical significance.

3 Results

Despite the detrimental impact of polyspecificity in the
development of therapeutic antibody-based drugs, currently there
is no method available that can predict polyspecificity from the
sequence of the antibody. Accordingly, the antibody features
influencing polyspecificity are poorly understood. Prior structural
calculations can predict binding to some extent but are
computationally expensive and not applicable to large-scale. To
predict polyspecificity and to gain insight into the key features
affecting it, herein we pursued a large-scale data-driven approach
using next-generation sequencing data of antibody VH domains in
an immunization model including specificity-based enrichment of
binders combined with deep learning.

3.1 Identification of polyspecific antibody
clones using binding enrichment

We considered polyspecificity prediction as a binary classification
problem, statistically modeling the relationship between the specificity
and the sequence of antibodies. In this setup, the binary target variable
to be predicted is the specificity of an antibody, with “polyspecific” and
“antigen-specific” being the two classes, and the predictors are features
derived from the amino acid sequence of the heavy chain variable
region. In order to train machine-learning-based models using this
setup, antibody sequence data (features) and the corresponding binding
specificity (labels) are needed. Therefore, we generated a suitable data
set using immunization of transgenic rabbits with different model
antigens, followed by enrichment of immune cells based on their
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FIGURE 1
Distribution and similarity of polyspecific and antigen-specific antibody clones in relation to experimental design parameters. (A) Schematic
representation of the experimental design. The left panel shows the timelines for immunization, sampling and enrichment. On the right panel, details for
enrichment are shown. Red denotes antigen which is either HSA, TNFα or TWEAK depending on the group of animals. Blue represents polyantigen
mixture, which was amixture of Cardiolipin, dsDNA, KLH, Insulin, Lysozyme, LPS, Flagellin, and (except for the HSA group) HSA. For each of the three
antigen groups, blood samples from three animals per group were taken at each timepoint. (B) Similarity of antibody clone sequences is visualized using
UMAP for dimensionality reduction. Sequences encoded to integers were used as input with Hamming distance as similarity metric. (C) Visualization as in
(B). Sequences encoded to PCA-based physico-chemical feature vectors were used as input with Euclidean distance as similarity metric. (D)Distribution
of polyspecific and antigen-specific clones across time-points and animals shown as percent of all unique sequences per animal. Individual lines
represent separate animals. Immunization groups are represented as follows. Red: HSA, green: TNFα, blue: TWEAK.
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binding specificity in order to assign specificity labels to the
correspondingly derived sequences.

To generate antigen-specific and polyspecific antibodies, we used
three different model antigens for immunization: human serum
albumin (HSA), tumor necrosis factor alpha (TNFα), and TNF-
related weak inducer of apoptosis (TWEAK) with one antigen per
animal and three animals per antigen. We collected samples for RNA-
seq of the antibody heavy chain variable region (immunoglobulin VH
region) at four time points after immunization with the antigen (bleed
1-4; ~1 month between each time point; Figure 1A and Supplementary
Figure S1A). This design largely covers the time course of the adaptive
immune response from early until late (affinity matured) antibodies in
our sampling. In this way, we identified ~52 million unique VH
sequences in total. Per sequencing sample, 256882 (mean; SD =
131395) unique protein sequences were obtained, and lysates from
each experimental condition were split into two sequencing samples
(technical duplicates) from which the resulting data was pooled before
further analysis. We also collected samples from the pre-immune and
bleed 0 time points, respectively, to identify clones present in the naïve
immune repertoire (pre-immune, time point before any immunization)
or clones that arise as a consequence of applying the immunization
adjuvant alone (bleed 0). Clones observed at these time points, as well as
clones that were shared between any of the three immunization groups
(antigens) regardless of time point, are likely independent of the
immunization and therefore were excluded from the supervised
machine learning model training and cross-validation. Instead, this
set of clones was considered separately as a test (holdout) set.

In order to identify B cell clones producing antigen-specific or
polyspecific antibodies (i.e. expressing such B cell receptors), we enriched
the binding B cell population (at bleed 1, 2, and 4) using the panning
technique (Wysocki and Sato, 1978) separately for (i) the antigen that
was used for the immunization and (ii) a set of polyantigens that we
carefully selected for the panning procedure with a high likelihood to
reflect immunoglobulin and not cellular unspecific binding, and have
been described in the literature to be frequently bound by polyspecific
antibodies (Wardemann et al., 2003;Mouquet et al., 2010; Andrews et al.,
2015; Bunker et al., 2017; Prigent et al., 2018; Planchais et al., 2019). We
defined antibodies to be antigen-specific if they bind only the antigen,
and polyspecific if they bind both the antigen and, in addition,
structurally unrelated molecules (polyantigens; Supplementary Figure
S1A). Therefore, we assigned specificity labels to the antibody clones
such that clones enriched by the antigen only belong to the antigen-
specific class and those enriched by both the antigen and the set of
polyantigens belong to the polyspecific class. In parallel, we collected data
from the non-enriched cell population as a representation of the B cell
repertoire of the given animal at the respective time point. To also assign
time labels to the antibody clones, each clonewas assigned the time point
at which it was first observed.

To generate a large amount of data from millions of antibody
clones in parallel, bulk (cell population) sequencing is more suitable
than single cell sequencing. However, with a bulk sequencing
approach, it is not possible to identify the pairs of heavy and
light chain (VH and VL sequences) that belong to the same
antibody clone. Therefore, we focused our analysis on the VH
region, which plays a key role in antibody-antigen binding and
provides the largest diversity owing to its genetic make up. In order
to eliminate the variability in terms of binding that is caused by the
different VL regions across antibody clones, and to keep the binding

contribution of the VL region as a constant factor, we immunized
rabbits transgenic for the human immunoglobulin locus expressing
the same VL region (common-light chain) across antibody clones.

3.2 Polyspecific antibodies are rare and do
not have a distinct set of VH regions

With our approach (Supplementary Figures S1A, B), we assigned
~15 million and ~0.134 million unique VH sequences to the antigen-
specific and polyspecific classes, respectively. To get an unbiased view of
the generated data set, we applied a dimensionality reduction approach
for data exploration. We sampled the same number of clones
(500 clones) randomly from each experimental condition and
applied Uniform Manifold Approximation and Projection (UMAP)
(McInnes et al., 2018) to project the clones to a two-dimensional space
based on their sequence, visualizing the similarity between clones. We
carried out this procedure applying two different feature-encoding
methods prior to UMAP, and accordingly, two different distance
metrics for UMAP: (i) for sequence similarity we encoded the
aligned amino acid sequences using a one-to-one mapping from
letters to integers and used the Hamming distance as distance
metric (Figure 1B), and (ii) for similarity in terms of physico-
chemical properties, we encoded the aligned amino acid sequences
to PCA-based physico-chemical descriptors and used Euclidean
distance as a distance metric (Figure 1C and Supplementary Figure S2).

Interestingly, at the overall repertoire level and when visualizing
similarity properties accordingly, we observed an animal specific
pattern which was preserved over time (Supplementary Figures S3A,
B). This was also confirmed using Jaccard index of shared VH and
CDR3 sequences as a similarity metric (Supplementary Figure S5).
The adjuvant alone had no profound effect on the repertoire
distribution as evident from the comparison of preimmune and
time 0 time points (Supplementary Figures S3A, B).

The polyspecific clones did not form a separate cluster from the
antigen-specific clones, indicating that they are not majorly distinct, at
least when considering their VH region as a whole (Figures 1B, C,
Supplementary Figures S3C, D). This corroborates the concept that
prediction methods must capture a large complexity of antibody
features, as polyspecific antibodies did not share easy-to-detect
paramount features that other antibodies lack. Furthermore, in each
animal, the number of polyspecific clones was much lower than the
number of antigen-specific clones (with an average polyspecific:antigen-
specific antibody ratio of 1:113), highlighting also the efficiency of
antigen immunization. Furthermore, most polyspecific clones were first
observed at early time points in the immune response (bleed 1–2) in
contrast to antigen-specific clones (bleed 4; Figure 1D, Supplementary
Figures S3C, D), which supports the notion that antigen-specificity is
increased throughout affinity maturation (Shehata et al., 2019).

3.3 Neural-network-based prediction of
polyspecificity

In order to train a model predicting polyspecificity, the specificity
label was used as target variable and the features resulting from
encoding the VH sequence were used as predictors (see above and
methods section). The polyspecific class was considered as positive class
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and the antigen-specific class as negative class. Because polyspecific
antibodies were much rarer than specific antibodies, this class
imbalance was corrected for during model training. We chose a
neural-network-based approach to predict polyspecificity in order to
be able to model complex non-linear relationships.

To estimate the prediction performance of our modeling setup, we
applied cross-validation with various ways of data splitting as well as
subsampling, and used several performance metrics. Using 10-fold
cross-validation with random data splitting, the models were able to
predict polyspecificity with an area under ROC curve of 0.800 (mean;
SD = 0.005), sensitivity of 0.763 (mean; SD = 0.049), and specificity of
0.690 (mean; SD = 0.041) (applying a probability cutoff of 0.5). The
10 times repeated subsampling resulted in an area under ROC curve of
0.792 (mean; SD = 0.010), a sensitivity of 0.748 (mean; SD = 0.057), and
specificity 0.689 (mean; SD = 0.045) (Figure 2).

To also estimate the prediction performance using a more
stringent data splitting scenario, we also quantified these
performance metrics using a blocked cross-validation approach,
whereby data is split into folds based on a grouping variable. In this
case the splitting variable was either the animal or the antigen
(immunization group) that the clone originates from, resulting in a
9-fold or 3-fold cross-validation, respectively (9 animals, three
antigens). Cross-validation with animal-based data splitting
resulted in an area under ROC curve of 0.668 (mean; SD =
0.062), a sensitivity of 0.624 (mean; SD = 0.162), and specificity
of 0.605 (mean; SD = 0.094). Cross-validation with antigen-based
data splitting resulted in an area under ROC curve of 0.634 (mean;
SD = 0.020), a sensitivity of 0.487 (mean; SD = 0.070), and specificity
of 0.677 (mean; SD = 0.058) (Supplementary Figure S6).

In order to estimate the model performance in a setting where
polyspecificity is defined unambiguously for each individual clone by
a separate measurement, instead of enrichments on the clone-
population level, we generated a data set for this purpose. To this
end, single cells were sorted from bleed 3 and the primary
supernatants were screened by ELISA for IgG antibodies that bind
the immunization antigen or the set of polyantigens. For a selected set
of antibody clones, the IgG molecules were recombinantly expressed
and subjected to a secondary screening using the same (normalized)
IgG concentration to confirm binding to the antigen as well as to the
set of polyantigens. In this way, we identified several antigen-specific
clones that bind exclusively the antigen, as well as several clones that
bind exclusively the polyantigen mix. However, we detected only a
very low number of polyspecific clones (HSA group: four clones,
TNFα group: four clones, TWEAK group: 0 clones) that bind both the
antigen and the set of polyantigens (Figure 3A), which is in line with
the observed low prevalence of polyspecific clones especially
considering affinity matured clones (Figure 1D). Nevertheless, we
tested whether our model would predict a higher probability of
polyspecificity for the clones that we determined to be polyspecific
compared to those identified as antigen-specific. In the HSA group,
where the OD values were in a similar range with respect to the
antigen-binding axes for the polyspecific and antigen-specific clones,
the predicted probabilities of polyspecificity were higher for the clones
labeled as polyspecific than for those labeled as antigen-specific,
matching the expectation (Figures 3A, B). However, in the TNFα
group, the predicted probability of polyspecificity was not higher for
the polyspecific than for the antigen-specific clones (Figure 3B), which
may be due to overall lower OD values on the antigen binding axes for

the polyspecific clones (Figure 3A). Overall, this data set of selected
clones might be too limited in size to assess the performance of our
model. Applying a higher OD threshold on the antigen binding axes
could result in a more precise assignment of polyspecificity labels, and
at the same time, would leave only the HSA group containing any
polyspecific clones. Although the performance estimates may be
inaccurate due to the small sample size, calculated performance
metrics were as follows: Sensitivity 1 and 0, Specificity 0.47 and
0.67, area under ROC curve 0.73 and 0.28, balanced accuracy 0.73 and
0.33 for the HSA and TNFα groups, respectively.

As an additional test set to estimate themodel performance, we also
used the NGS-derived VH sequences that were excluded from the
training set (because they were observed before immunization with the
antigen and/or because they were shared between any of the
immunization groups). The “antigen-specific” or “polyspecific” labels
were assigned to these sequences based on the enrichments in the same
way as for the training set, and several performance metrics were
quantified using these labels and the model’s predictions. All the
different metrics showed a performance greater than randomly
expected across most of the sequence sets (Supplementary Figure S7).

3.4 Identification of relevant features
influencing polyspecificity

Next, we intended to determine which physico-chemical features
are crucial contributors to polyspecificity of antibodies. To this end, we
investigated the importance of each feature for our model using the
permutation-based variable importance calculation approach (Fisher
et al., 2019). This method is based on the assumption that, if a given
feature is important, then permuting its values across observations will
worsen the model’s ability to correctly predict, and therefore will lead to
an increased loss function output. Therefore, using the NGS-based data
set of polyspecific and antigen-specific VH sequences that was used for
the training of the neural network, we calculated the ratio of the loss
using the permuted and unpermuted values (dropout loss ratio) of each
feature. The permutation was carried out for each feature on 1,000 sets
of sequences obtained by subsampling. Themean dropout loss ratio was
considered as a summarized measure of variable importance, and FDR
was used to assess statistical significance. The features we used as input
for this analysis were the same features as those used for the training of
the model, i.e. they correspond to the combinations of amino acid
positions in the VH sequence and principal components from the
transformation of physico-chemical variables. Most of the features that
were found to be significantly important for themodel’s predictionwere
located in the Framework3 region, followed by the CDR3 region
(Supplementary Figure S8).

In order to interpret the importance of each position expressed
in terms of the initial physico-chemical features prior to
transformation by PCA, we carried out a back-calculation using
the dropout loss ratios and the loadings on the principal
components, resulting in importance values that correspond to
the combinations of amino acid positions and the initial physico-
chemical properties (for example charge or hydrophobicity at a
given position). This analysis revealed that a few properties are more
important than the rest and they can be grouped based on the
positions at which they are important (Figure 4A). We focused on
the ten most important physico-chemical properties that we defined
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as those ranked in the first ten when ranking the physico-chemical
properties in descending order based on their maximum importance
across all positions. For example, accessible surface area (Radzicka
and Wolfenden, 1988), average flexibility indices (Bhaskaran and
Ponnuswamy, 1988) and average weighted degree (Kakraba and
Knisley, 2016) showed high importance, to which the CDR regions
significantly contributed (Figure 4B).

To test if there are any emergent physico-chemical properties of
antibodies that correlate with the prediction of our model, we used
independent published data sets. We considered two data sets, from
the publications of Jain, Shehata and their colleagues (Jain et al.,
2017; Shehata et al., 2019), since in these studies the sequence and
numerous experimentally measured physico-chemical properties of
the antibodies were provided, making them suitable for this analysis.

First, the VH sequences from these data sets were encoded into the
features that our model uses by converting them to an aligned
representation (with the alignment gaps) and recoding the amino
acid letters to the corresponding PCA transformed physico-
chemical properties. These feature-encoded sequences were used
as input to our model to predict the probability of polyspecificity of
these clones. Then, the association between the predicted
polyspecificity probability and the measured properties was
quantified using Spearman’s rank correlation coefficient as a
measure of association. To eliminate observations that contain no
information, observation pairs with any missing values or zeros were
excluded from the correlation calculation. Most measured physico-
chemical properties only weakly correlated with the predicted
probability of polyspecificity individually, with some actually

FIGURE 2
Performance estimation of models predicting antibody polyspecificity using cross-validation and subsampling. (A) Performance metrics are shown
as a summary of a 10-fold cross-validation with random splitting or random subsampling repeated 10 times as indicated. (B) ROC curves resulting from
the same setup and data as in (A).
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displaying a negative correlation with the predicted probability of
polyspecificity in both data sets (HIC retention time and PSR score;
Figures 5A, B, Supplementary Figures S9, S10). While individual
properties did not unequivocally coincide with predicted
polyspecificity, it is plausible that a combination of measured
physico-chemical properties could do so. Indeed, when clustering
antibodies based on a subset of these properties, most antibodies that
were predicted to be polyspecific clustered together, indicating that
multiple physico-chemical properties in combination might have a
role in polyspecificity (Figure 5C).

Furthermore, we investigated whether the predicted probability of
polyspecificity would be different between antibodies originating from
B cell clones at different stages of maturation, i.e. from naive to affinity
matured clones, using the data set from Shehata and others (Shehata
et al., 2019). Consistent with the notion that affinity maturation
increases specificity, the predicted probability of polyspecificity was
generally lower for affinity matured clones compared to naive or early
clones (Figure 5D) (Shehata et al., 2019).

In summary, we characterized polyspecific antibodies using a
novel strategy of combining the outcome of B cell enrichments by

FIGURE 3
Performance testing of model predicting polyreactivity using screening data from bleed 3. (A) Transformed OD values, using a log2(OD + 0.05)
transformation, are shown from ELISA for binding to the mix of polyantigens and the immunization antigen in each immunization group. The specificity
labels assigned to each clone are indicated by the colors. (B) Probability of polyspecificity predicted by themodel for antibody clones assigned to antigen-
specific or polyspecific classes using screening data from bleed 3.
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different (poly)antigens with sequencing data of these antibodies in
the course of an immune response. Subsequently, we created a
neural-network-based model that predicts the probability of
polyspecificity from the VH sequence, and identified features that
may influence the polyspecificity of antibodies.

4 Discussion

We developed a neural-network-based model using NGS data,
specifically immunoglobulin VH sequences, that could predict
polyspecificity of antibodies as confirmed by cross-validation. This
unique and novel approach uses a large-scale data-driven method to

predict polyspecificity using machine learning techniques. With our
method, we achieved a sensitivity of around 75% and a specificity of
around 70% along with an area under ROC curve of around 80%, which
appears as a sound predictive power, given the complexity of the task as
well as the limitation of the input to solely the VH sequence. Since there
was a class imbalance in the data (few polyspecific and many antigen-
specific antibodies), we used a balanced minibatch sampling in the
training of the model to obtain a model that is not affected by the
class imbalance. Of note, the abovementionedmetrics are not sensitive to
class imbalance. These values were obtained using a random subsampling
or cross-validation with random split, as most commonly done in the
machine learning field. Another commonly usedmetric that incorporates
precision is the F1 score, which is sensitive to class imbalance. The

FIGURE 4
Feature importance for polyspecificity prediction. (A) Importance of amino acid physico-chemical features is shown along positions in the VH
region. Importance for polyspecificity prediction is indicated by values above 1. (B) Importance is shown per position for amino acid physico-chemical
features that were selected as the 10 highest ranked features when considering themaximum importance value across positions per feature for ranking in
a descending order. Dots represent the mean values across resampling rounds and stars indicate statistical significance based on FDR (* indicates
FDR < 0.1; ** indicates FDR < 0.05).
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FIGURE 5
Association between physico-chemical properties of antibodies and predicted probability of polyspecificity using published data sets. (A, B)
Spearman correlation between measured physico-chemical properties and the predicted probability of polyspecificity using the data set from Jain et al.
(A) and Shehata et al. (B). (C) A subset of physico-chemical properties (rows) were selected from (A), based on evaluating distances in the feature space
along with the predicted probability of polyspecificity, and were used for clustering the individual antibodies (columns). Antibodies are annotated
based on their predicted probability of polyspecificity, as depicted by the color scale. (D) Probability of polyspecificity predicted by the model for
antibodies at different maturation stages using the data set from Shehata et al. Significance was calculated by logistic regression. ns denotes not
significant; ** denotes p-value < 0.005.
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F1 score calculated using our model was around 0.042 and 0.031, using
cross-validation with random split and random subsampling,
respectively. These F1 score values are better than the baselines of
0.017 and 0.013, respectively, that would be expected by a random
classifier, with the given class imbalance and the given sampling. To
challenge our modeling setup with a more realistic and stringent data
splitting into training and validation data, we also applied splitting by
animal or antigen (Supplementary Figure S11), which more realistically
reflects the application of the model to a new and unrelated data set of
interest. One assumption of training and validation inmachine learning is
that the training and validation data come from the same distribution.
Even though this assumption does not apply when splitting the data for
cross-validation based on animals or antigens, creating a conceptually
difficult learning and prediction task, our method was still predictive for
polyspecificity, albeit with lower performance as compared to the random
split.

In addition, we compared the prediction of our model with
available sequence data sets of antibodies related to polyspecificity
readouts. One common feature we found associated to
polyspecificity in these published data sets was hydrophobicity, and
indeed this feature is also correlated with other undesirable properties of
therapeutic antibodies, such as aggregation and precipitation (Tsai and
Nussinov, 1997; Chennamsetty et al., 2009). Interestingly, in the case of
broadly neutralizing antibodies against HIV, polyspecificity involves
hydrophobic interactions and conformational plasticity (Prigent et al.,
2018). It is noteworthy that hydrophobicity was associated with
polyspecificity across different data sets despite the fact that different
species, immunization antigens and assays (non-specific polyreactivity
enrichment antigens) were used for determining polyreactivity, that are
not directly comparable. Interestingly, in another recent study using
camelid antibody fragment (nanobody) libraries with enrichment of
polyreactive nanobodies on insectmembranes and subsequentmachine
learning to predict features associated with polyreactivity,
hydrophobicity was not strongly predictive of polyreactivity (Harvey
et al., 2022). Thus, the type of antibody and the type or mixture of
antigen(s) used may result in different features correlating with
polyspecificity. For example, a certain antigen used for
immunization or coating in binding assays might lead to a different
outcome based on the properties of a certain specific antigen that may
not be shared with all other antigens used to determine polyspecificity
and hence may differ depending on the detailed antigen mixtures and
cutoffs used in binding assays. Given these considerations about the
influence of the specific antigen of interest, obtaining a single universally
true prediction about the polyreactivity of all antibodies remains a
challenge, and availability of more data sets of polyspecific antibodies
may help improving models and identifying universally important
features of polyspecificity in the future.

While certain physico-chemical properties may allow for
predicting the probability of an antibody sequence to be
polyspecific, much remains to be understood about the specific
properties determining this characteristic. Adding to the
complexity, it has been proposed that there might be several
mechanisms, thereby several subtypes, of polyspecificity, such as
the mechanisms of induced fit, conformational isomerism, rigid
adaptation, or differential ligand or epitope positioning [reviewed
in (Dimitrov et al., 2013; Regenmortel, 2014)]. In our enrichment
experiments, we used a set of polyantigens in order to capture as many
mechanisms of polyspecificity as possible using one assay. Despite

containing several molecules for enrichment, this assay might only
capture certain mechanism(s) of polyspecificity, butmost likely not all
possible mechanisms. The difference in terms of assay components
that are used to determine polyspecificity might provide an
explanation for the discordance between different readouts (such
as the weak inverse correlation between our model’s prediction of
polyspecificity and the PSR assay from (Jain et al., 2017; Shehata et al.,
2019)).

Regarding specific amino acids overrepresented in polyspecific
antibodies, different conclusions have been made in the literature. For
example, polyreactive antibodies have been suggested to have long
H3 regions that are rich in tyrosine and tryptophan (Aguilera et al.,
2001). However, using synthetic phage display libraries, tyrosine content
has been shown to correlate with specificity, while content of arginine
(that is positively charged at physiological pH) correlated with
polyspecificity (Birtalan et al., 2008). The length of CDRs was shown
to correlate with hydrophobicity and aggregation, and positively or
negatively charged residues in the CDR H2 region were beneficial for
developability of antibodies. In detail, (i) tryptophan-rich CDR H3 loops
were associated with binding promiscuity (measured by PSR assay),
hydrophobicity and self-aggregation, (ii) a high frequency of aliphatic
amino acids in the CDR H3 region was suggested to contribute to
polyreactivity, and (iii) glycine frequency in the CDR H3 region was
associated with hydrophobicity (Lecerf et al., 2019). In another study,
epitopes of polyreactive antibodies have been described as proline-rich,
and since proline is often present in loops and turns (solvent-exposed
sites), itmight contribute to a conformation-influencing factor in epitopes
of polyreactive antibodies (Tchernychev et al., 1997). It has been proposed
that polyspecificity is driven by conformational flexibility and less specific
intermolecular interactions (Mohan et al., 2009). Although it has been
thought that affinity maturation (that coincides with decreased
polyspecificity) results in loss of conformational flexibility and thereby
higher specificity, a systematic computational study could not confirm
such loss of flexibility (Regenmortel, 2014; Jeliazkov et al., 2018).

It is important to consider that antibody properties like
polyspecificity also depend on external factors, hence the specific
biochemical and physical environment used in experimental assays
can also influence the results and comparability between studies. In
this regard, polyspecificity has been shown to be dependent on chemical
conditions and not the antibody inherently, i.e. antibodies polyspecific in
conventional buffers lost their polyspecificity in serum (Chu et al., 2008).
As another example, so-called cryptic polyspecificity can be acquired after
exposure to protein-modifying conditions, such as those at sites of
inflammation, and common mechanisms depending on the particular
modifying condition have been observed (Dimitrov et al., 2010). In this
context, a cryptic polyspecific antibody has been shown to acquire
binding ability to distinct epitopes on gp120 after exposure to heme
(Dimitrov et al., 2014). Furthermore, temperature can affect the
properties of antibodies. Somatic hypermutation inversely correlates
with promiscuity and self-association, but positively correlates with
thermodynamic stability (Lecerf et al., 2019). Interestingly, lowering
the temperature decreased the specificity of a mature, specific
antibody but did not affect it in case of the polyspecific antibody
(Oppezzo et al., 2004). In addition to differences in thermal stability,
polyreactive antibodies were shown to be cleared from the circulation
faster thanmonoreactive antibodies and aremore likely to be deposited in
organs,mainly in the liver (Sigounas et al., 1994). Shehata and others have
also confirmed that clearance of human antibodies correlated with their
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degree of polyspecificity as determined by other assays (Shehata et al.,
2019).

A potential factor contributing to polyspecificity could be V gene
usage, however, in B1 lymphocytes that are known to be more
polyspecific, the V gene usage was not different in polyreactive
antibodies from the general V gene distribution (Bhat et al., 1997).
This was also shown to be true for the whole antibody repertoire (not
limited to B1 cells), and instead glycosylation was suggested as a
potential factor explaining polyreactivity (Fernández et al., 1997a;
1997b). Another interesting aspect is the 3D structure of antibody
paratopes in the context of polyspecificity however, current methods
for structural modeling are computationally expensive and therefore
usually not applicable to large data sets.

Nevertheless, recent advances in machine learning have greatly
improved opportunities to predict features correlating with desired
and undesired properties of antibodies [reviewed in (Makowski et al.,
2023a)]. For example, in an exciting recent application of machine
learning, scientists mutated sites in a clinical-stage antibody followed
by sorting for high versus low specificity binding. Deep learning
models trained on these data enabled identification of co-optimal
levels of specificity and target antigen affinity (Makowski et al., 2022).
In a following study, interpretable machine learning leveraging
structural features of clinical-stage antibodies was implemented to
improve affinity and specificity of several clinical stage antibodies
(Makowski et al., 2023b). Such novel methods may accelerate
development of therapeutic antibodies in the future.

In conclusion, here we provide a new conceptual framework and
method for predicting polyspecificity of antibodies based on the
sequence of their heavy chain variable regions, which may in the
future be exploited to improve developability, specificity and safety
of therapeutic antibodies.
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