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Hi-C is one of the most widely used approaches to study three-dimensional
genome conformations. Contacts captured by a Hi-C experiment are
represented in a contact frequency matrix. Due to the limited sequencing
depth and other factors, Hi-C contact frequency matrices are only
approximations of the true interaction frequencies and are further reported
without any quantification of uncertainty. Hence, downstream analyses based
on Hi-C contact maps (e.g., TAD and loop annotation) are themselves point
estimations. Here, we present the Hi-C interaction frequency sampler
(HiCSampler) that reliably infers the posterior distribution of the interaction
frequency for a given Hi-C contact map by exploiting dependencies between
neighboring loci. Posterior predictive checks demonstrate that HiCSampler can
infer highly predictive chromosomal interaction frequency. Summary statistics
calculated by HiCSampler provide a measurement of the uncertainty for Hi-C
experiments, and samples inferred by HiCSampler are ready for use by most
downstream analysis tools off the shelf and permit uncertainty measurements in
these analyses without modifications.
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1 Introduction

Over the past two decades, scientists have increasingly realized the importance of the
three-dimensional (3D) genome structure in cellular activity (Dixon et al., 2012; Rao et al.,
2014; Tang et al., 2015; Bonev and Cavalli, 2016; Bonev et al., 2017; Beagan and Phillips-
Cremins, 2020). It plays a major role in the enhancer–promoter interaction (Han et al.,
2020) and cellular differentiation (Zheng and Xie, 2019). Yet, understanding the 3D genome
organization remains in its early stage. Although fluorescence in situ hybridization-based
high-resolution imaging techniques help us localize selected genomic regions, they are
unable to capture chromosome-wide images (Bintu et al., 2018). Until recently, only
techniques like Hi-C (Lieberman-Aiden et al., 2009) have permitted the analysis of the
whole-genome structure by detecting pairwise genomic fragment interactions. In a Hi-C
experiment, DNA fragments in close proximity are ligated and identified through massively
parallel sequencing. The number of ligated fragments spanning two genomic regions is
stored in a matrix known as a contact map. A Hi-C experiment can only capture a small
portion of chromosomal contact pairs. The contact map is, thus, a poor estimation of the
chromosomal interaction frequency without a measure of uncertainty. Several probabilistic
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models have been proposed to combat this uncertainty by modeling
Hi-C contact pairs with various distributions (Ay et al., 2014;
Varoquaux et al., 2023) in different tasks (i.e., 3D structure
inference and significant contact detection).

A key challenge in analyzing Hi-C data is to infer the unbiased
interaction frequency matrix, given the Hi-C contact map. There are
three widely used approaches: (i) removing bias in the contactmap via
locus coverage normalization (Rao et al., 2014); (ii) modeling bias in a
generalized linear model and finding the bias by solving a Poisson or
negative binomial regression (Hu et al., 2012); and (iii) removing bias
implicitly via matrix balancing (Rao et al., 2014). We then use the
normalized Hi-C contact map in downstream analysis. Researchers
usually group consecutive fragments into a fixed-size bin to reduce the
sparsity of Hi-C contact maps and perform the analysis at low
resolutions. Alternatively, deep learning approaches like HiCPlus
(Zhang et al., 2018), HiCNN (Tong and Wang, 2019), and
RefHiC-SR (Zhang and Blanchette, 2023) have been proposed to
predict a dense high-resolution contact map based on the low-
coverage input. Meanwhile, statistical modeling, for instance, HIFI
(Cameron et al., 2018), infers the high-resolution contact map by
exploiting neighboring information. However, these normalized and
enhanced contact maps are point estimations. Many downstream
analyses, such as loop and TAD annotation, inherent this uncertainty.

Hi-C is designed to measure whole-genome pairwise interaction
frequencies. Hi-C data yield a sparse and noisy observation of the
true interaction frequency matrix. Many efforts have been made to
better utilize Hi-C contact maps by modeling the observed contact
statistically. Generally, the number of observed contacts for a given
locus pair is modeled as a random variable that follows a distribution
(e.g., Gaussian, Poisson, negative binomial, or zero-inflated negative
binomial distribution) with estimated parameters or the hidden state
(Rousseau et al., 2011; Hu et al., 2012; Xu et al., 2016a; Xu et al.,
2016b; Carty et al., 2017; Carty et al., 2017; Varoquaux et al., 2023).
Importantly, neighboring locus pairs are generally assumed to be
conditionally independent. In contact map normalization,
HiCNorm (Hu et al., 2012), for example, assumes the Hi-C
contact follows a Poisson or negative binomial distribution and
estimates distribution parameters using a generalized linear model.
It aims at removing a proportion of observed contacts that biases
could explain. It uses a linear regression to model three primary
sources of biases (fragment length, mappability, and GC content)
and reports normalized contact as the residual.

Probabilistic modeling of Hi-C contact is also relevant in
significant interaction detection. For instance, HiC-DC (Carty
et al., 2017) uses a zero-inflated negative binomial log-linear
regression to model the zero inflation and overdispersion pattern
observed in Hi-C datasets. In addition to approaches that model the
interacting pair independently, as neighboring Hi-C contact pairs
are highly correlated, HMRFBayesHiC (Xu et al., 2016a) and
FastHiC (Xu et al., 2016b) exploit this structural dependence in
modeling Hi-C contact maps as a negative binomial distribution.
Both models assume that model parameters for each pixel in the Hi-
C contact map are determined by its corresponding binary hidden
state. The hidden states are defined as an Ising model, with one
indicating significant contact. HIFI (Cameron et al., 2018), as a
contact map enhancement approach, utilizes a similar structural
dependence and uses continuous hidden states to represent true
interaction frequencies. In 3D genome inference, BACH (Hu et al.,

2013) and HSA (Zou et al., 2016) modify the Poisson regression
model described in HiCNorm by adding the spatial distance derived
from the predicted 3D structure as a new covariate. MCMC5C
(Rousseau et al., 2011) models the contact frequency as a Gaussian
distribution with parameters derived from the spatial distance.

Here, we introduce HiCSampler, a Markov random field (MRF)
model that provides posterior inference of the Hi-C interaction
frequency for Hi-C read count data through Markov chain Monte
Carlo (MCMC) sampling (Robert et al., 1999). HiCSampler models
the interaction frequencies by taking their structural dependencies
into consideration and approximates their posterior distribution by
producing a collection of interaction frequency matrix samples.

2 Materials and methods

2.1 Overview of HiCSampler

We model the observed Hi-C contact counts oij for the contact
pair (i, j) as a sample drawn from a Poisson distribution Pois
(oij|λ = bijtij) conditional on systematic bias bij, as well as the
unobserved random variable tij, the true relative interaction
frequency. b, representing the nuisance variation in Hi-C
observations due to the sequencing efficiency and mappability,
is an observed matrix computed as the outer product of the locus-
specific bias vector �b. �b captures variation due to one-dimensional
features such as the fragment effective length, mappability, and GC
content; it is estimated with ICE (Imakaev et al., 2012). The true
relative contact frequencies t are dominated by structural features
such as the genomic distance, topologically associating domains,
and loops. We encode these priors on t as local potentials ϕ(tij) and
pairwise potentials ϕ(tij, ti′j′) in a Markov random field T . ϕ(tij)
encourages tij to come close to the genomic distance-dependent
expectation gij. gij is predicted by a generalized linear model fitting
with read counts, bias, and genomic distance between contact
pairs. ϕ(tij, ti′j′) penalizes sharp changes between neighboring
contacts and is used to model local structural constraints on
contact frequencies. Variances reflecting the uncertainty of
distance-based expectation and the smoothness of the true
interaction frequency are estimated from the Hi-C data. We
approximate the posterior distribution of the latent variable tij
by conducting adaptive MCMC sampling (Givens and Jennifer,
2012) on p(tij|bij, oij, T \tij).

2.2 Modeling biases

The observed read count deviates from the contact probability
due to the existence of biases introduced by sequencing such as the
effective fragment length, GC content, and mappability. Bias
correction methods producing a normalized contact map (and a
bias vector) are routinely used in Hi-C contact map analysis. Among
these normalization methods, ICE (Imakaev et al., 2012) produces a
normalized interaction frequency matrix onorm and bias vector �b via
iterative correction under the assumption of equal visibility of each
region. To model the effect of sequencing bias, we incorporate the
learned bias �b into our model directly since the bias and true
interaction frequency satisfy oij ~Pois (bibjtij).
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We prefer a two-phase approach where biases are first estimated
using existing approaches and then used in the sampling of t, rather
than a joint sampling approach, because the former enables easy,
flexible, and accurate bias estimation from the whole contact
map. This also makes HiCSampler easier to include into existing
Hi-C data analysis pipelines.

2.3 Modeling Hi-C contact using Poisson
regression

We first describe a Poisson regression approach to model Hi-C
contact frequencies by assuming independence among neighboring
pixels in Hi-C contact maps, which is used to define the local
potential of our Markov random field. As previously discussed, the
Hi-C contact frequency for a given locus pair (i, j) is mainly affected
by the genomic contact distance and various biases. We model the
Hi-C contact as oij ~Pois (bibjgij). gij is described with a log-linear
model Eq. 1:

ln gij( ) � w0 + B |i − j|( ). (1)

Similar to HiC-DC (Carty et al., 2017), we model the relationship
between the normalized contact frequency and genomic distance
|i − j| as a basis spline function B with knots defined as 0, 25%, 50%,
and 75%, and 100% of the maximum genomic distance in the
analysis. This B-spline allows our model to better capture the
relationship between genomic distance and interaction frequencies.

Defining uij = bibjgij, we can derive an equivalent model oij ~Pois
(uij), and uij is described as Eq. 2

ln uij( ) � w0 + B |i − j|( ) + ln bibj( ), (2)

where w0 is the intercept term. We train the model based on 10% of
contact pairs randomly sampled from the contact map with a
maximum likelihood estimation. The expectation of diagonal-
wise normalized true interaction frequency gij can be calculated
as gij � ew0+B(|i−j|) with the learned parameters by setting bibj = 1.

2.4 Markov random field modeling of the
true interaction frequency

An MRF is an undirected graph, where each node is associated
with a random variable, and edges denote dependencies between
random variables. In the context of Hi-C contact modeling, we
define two types of random variables for a given contact pair (i, j): tij
represents the true interaction frequency and oij represents the
number of observed contacts. oij is conditionally independent of
O\ij, given tij, and p (oij|tij) ~ Poisson (λ = bibjtij). Similar to
HMRFBayesHiC (Xu et al., 2016a) and HIFI (Cameron et al.,
2018), we model the interaction frequency as a Markov random
field on a second-order neighborhood system. However, the second-
order neighborhood approach shows potential to obscure domain
boundaries. Following HIFI (Cameron et al., 2018), for a given
contact pair (i, j) and its neighboring contact pair (i′, j′), if there is a
sharp horizontal or vertical transition characteristic of a domain
boundary, we remove the contact pair (i′, j′) from the Markov
blanket of the contact pair (i, j). To identify sharp transitions, we

performed a Kolmogorov–Smirnov test to detect significant changes
between interaction frequencies residing on one side of a potential
boundary to those on the other side. As neighboring contacts are
correlated, we define the pairwise potential as Eq. 3

ϕ tij, ti′j′( ) � e

log tij( )−log ti′j′( )( )
2

σ2
ij . (3)

In addition, we defined the local potential as Eq. 4

ϕ tij( ) � e

log tij( )−log gij( )( )2
ω2
ij . (4)

Hence, the joint distribution of the interaction frequency t is Eq. 5

p t( )∝ ∏
i,j

ϕ tij( ) ∏
i,j( )~ i′,j′( )

ϕ tij, ti′j′( ). (5)

We infer the posterior distribution via MCMC sampling according
to Eqs 6, 7

p t|o( )∝p o|t( )p t( ), (6)
� ∏

i,j

p oij|tij( )p t( ). (7)

Hyperparameters σ2 and ω2 encode our beliefs on the strength of
dependencies between neighborhoods and with relative genomic
distance, which are dataset-dependent, and can be estimated from
observations. Given that ICE normalized the Hi-C contact map as a
point estimation of the interaction frequency matrix, we estimated ω2

ij

as the variance of normalized interaction frequencies with genomic
distances equal to |i − j|. σ2ij is estimated as the variance of pairwise
differences among normalized interaction frequencies within a 17 × 17
square centered at (i, j). In our experiment, we observed that at a
resolution of 5 kb, HiCSampler demonstrates a comparable
performance across a wide range of window sizes (i.e., from 3 × 3
to 21 × 21), with 17 × 17 yielding the best fit on the test set. To analyze
Hi-C data at other resolutions, users can split the data into training and
test sets and select the window size that yields the highest likelihood on
the test set via a grid search over a range of window sizes. In this
estimation, σ2ij ≠ σ2i′j′ causes ϕ(tij, ti′j′) to differ from ϕ(ti′j′, tij). To fix it,
we use max(σ2ij, σ2i′j′) as the variance of pairwise potential instead.

In HiCSampler, MRF serves as the prior in our model, allowing
us to capture the frequently observed local smoothness and
interaction frequency decay in Hi-C contact maps. Furthermore,
our empirical Bayes approach empowers HiCSampler to model the
non-stationary mean and variance in interaction frequencies across
a Hi-C contact map. Recognizing the substantial impact of the prior
distribution on the posterior distribution, we conducted
experiments exploring alternative priors, including 1) uniform
prior; 2) Gaussian prior modeling interaction frequency decay;
and 3) a modified MRF with a fixed σ2. These investigations
enhance our understanding of the sensitivity of the model to
different prior specifications.

2.5 MCMC sampling

MCMC is a strategy to iteratively draw samples from a given
distribution. Compared with other sampling techniques, it only

Frontiers in Bioinformatics frontiersin.org03

Zhang et al. 10.3389/fbinf.2023.1285828

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1285828


requires the knowledge of an object’s probability up to a constant.
MCMC actually consists of a group of algorithms, all of them
conducting the sampling by constructing a Markov chain with a
unique stationary distribution equivalent as the target distribution.
HiCSampler uses the Metropolis–Hastings-within-Gibbs algorithm
(Robert et al., 1999), the most popular MCMC method for high-
dimensional data sampling.

The original Gibbs sampler involves sampling from the
conditional distribution P (tij|t\ij, o), which is impractical in our
model. Hence, we utilize a one-step Metropolis–Hastings algorithm
as a single Gibbs update during sampling (Robert et al., 1999). We
denote the proposal distribution as p(tij* |tij) and the
Metropolis–Hastings acceptance ratio as
A(tij, tij* ) � min{1, p(tij* |t\tij* ,o)p(tij |t\tij ,o)}, and Eq. 8

p tij|t\tij, o( )∝ ϕ tij( )Pois oij; tij( ) ∏
i′,j′( )~ i,j( )

ϕ tij, ti′j′( ). (8)

We initialize the true interaction frequency matrix twith uniformly
distributed random numbers in [0,1]. We then sampled from the
Markov chain by iterative sampling true interaction frequencies. We
start to collect samples after the chain converges to the stationary
distribution (mixing), as described below.

2.5.1 Adaptive proposal and auxiliary variables
We set the proposal distribution p(tij* |tij) for each contact pair as a

Gaussian distribution centered at the current value. The determination
of the Gaussian variance is challenging as both overly narrow and overly
wide distributions make the sampler inefficient. We propose an
adaptive approach by enabling the sampler to automatically tune the
variance of the proposal distribution during the burn-in period. We
initialize the variance to 1 for each proposal distribution and then adjust
the variance periodically to maintain the acceptance rate around 0.234,
which is the optimal acceptance rate under general conditions (Roberts
et al., 1997). After the burn-in period, the variance is fixed to prevent the
chain from deviating from the target distribution (Robert et al., 1999).

Since a true interaction frequency tij is a non-negative random
variable, proposing candidates from the Gaussian distribution may
result in unnecessary negative proposals. We introduce an auxiliary
variable uij such that tij � euij to increase the acceptance rate of
HiCSampler. In practice, we draw new samples on uij space and
transform it into tij by the one-dimensional change in the variable.

2.5.2 Assessing mixing
The first iterations of MCMC (burn-in) are dependent on the

initialization and do not represent proper samples from the target
distribution; thus, they are discarded. However, the determination of
the length of the burn-in is difficult, and although several
approaches exist, none of them provide entirely reliable
diagnostics. Following the practice in MCMC5C (Rousseau et al.,
2011), we run in parallel two independent and randomly initialized
chains. We define the difference between two interaction frequency
matrices as the root mean square error (RMSE) for corresponding
contact pairs, and track the inter- and intra-chain interaction
frequency differences from samples collected every k iterations
(k = 50). We claim that the chains mixed after K iterations (K ≥
10k) if the mean for inter- and intra-chain RMSEs from the past
10 collected samples is within 10% of each other.

The samples collected from MCMC after the burn-in phase are
considered independently distributed. However, consecutive draws
are dependent according to theMarkov property. This is called auto-
correlation in the literature. To alleviate it, we collect samples every k
iterations. The mean and variance are further calculated at the end of
the sampling.

2.5.3 Speed optimization
Within oneMetropolis–Hastings step, the evaluation of pairwise

potentials contributes most to the computational workload as it
requires accessing eight neighboring entries and computing eight
different Gaussian functions. To speed up the overall calculation, a
natural strategy is to parallelize conditionally independent
Metropolis–Hastings steps. Parallel programming has served as a
routine in scientific computing for decades, and it is proved to be
efficient in many MCMC-based applications. As shown in Eq. 8, to
sample tij from the posterior distribution, we only need to access
random variables inside its Markov blanket, along with the
observation oij. This means we can simultaneously sample
conditionally independent interaction frequencies with the
described sampling algorithm. For a given n × n contact map, we
developed a shared-memory multi-threaded algorithm, in which
each thread conducts element-wise sampling on a m × m submatrix
(m = 200 and m ≪ n).

Although our parallel implementation speeds up the sampling
procedure linearly, conducting inference on a whole contact map at
a high resolution still encounters a heavy computational burden. To
further speed up HiCSampler by eliminating unnecessary
computations, we limit the computation to contact pairs that are
within a given maximum genomic distance (i.e., 5 Mb). Despite this,
the inference remains computationally intensive. For example, it
requires 15 GB memory and 5.1 h to produce 500 samples for
human chromosome 14 at a resolution of 5 kb using 10 parallel
threads on an i7-8700 CPU. Our optimized HiCSampler can analyze
Hi-C contact maps at a resolution of 5 kb on a desktop computer;
however, applying it to analyze data at a higher resolution, such as
micro-C XL data, is still challenging and requires users to perform
the analysis on a dedicated server with a large number of
CPU threads.

2.6 Hi-C dataset

We downloaded the processed Hi-C datasets for the
GM12878 cell line generated by Rao et al. (2014) from the GEO
data repository (accession number: GSE63525). We extracted cis-
interacting read pairs and saved them as tab-separated values for
analysis. We performed contact map normalization using ICE
(Imakaev et al., 2012; Servant et al., 2015).

3 Results

3.1 Probabilistic modeling and Bayesian
inference of Hi-C data

The outcome of a Hi-C experiment is a read count matrix o,
whose rows and columns correspond to pre-specified genomic loci,
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where oi,j is the number of contacts (i.e., read pairs) mapped to the
locus pair (i, j). In this work, we only consider intra-chromosomal
contacts and handle each chromosome individually. The matrix o
depends probabilistically on the unobserved true relative interaction
frequency matrix t, where ti,j is defined as the proportion of ligation
products made of fragments i and j in the Hi-C library. Note that as
the number n of read pairs sequenced increases to infinity, and with
sequencing biases corrected appropriately, the normalized oi,j
converges to ti,j. However, since the sequencing coverage is low
in practice, the normalized oi,j is a relatively poor estimate of ti,j.
HiCSampler (Figure 1) aims to infer the posterior distribution of t
based on observation o: Pr [t|o] ∝ Pr [o|t] Pr [t]. Assuming that a
proper prior probability distribution Pr [t] and conditional
probability distribution Pr [o|t] are available, this represents the
richest possible description of our knowledge of t, given o.
HiCSampler takes the Hi-C contact map, bias vector inferred
with ICE normalization (Imakaev et al., 2012; Servant et al.,
2015), and model parameters as input and outputs a set of
interaction frequency matrices {s1, . . ., sn} sampled from Pr [t|o]
using the MCMC (Robert et al., 1999) method (Figures 1A, B). Each

of the samples is a possible interaction frequency matrix resulting
from the Hi-C contact map observed. To measure the uncertainty of
interaction frequency in a Hi-C experiment, we summarize sampled
interaction frequency matrices as the mean, variance, and dispersion
index matrices (Figure 1C). The interaction frequency samples can
also be used as input to off-the-shelf Hi-C analysis tools, e.g., to
estimate the variability of TAD and loop annotations (Figure 1D).

The MCMC process is time-consuming. Here, we focused on
analyzing a randomly picked genomic region enriched with
topologically associating domains (chr14:50–60 Mb) to evaluate
HiCSampler. We applied HiCSampler to infer 10,000 posterior
samples for a Hi-C contact map that contains 300 million read
pairs derived from GM12878 cells (Rao et al., 2014).

3.2 HiCSampler infers posterior distributions

The visual comparison of the mean of the posterior distribution
inferred by HiCSampler and the combined Hi-C contact map (Rao
et al., 2014) for the selected region illustrates that HiCSampler can

FIGURE 1
HiCSampler overview. Black arrows indicate essential HiCSampler steps; blue arrow indicates possible downstream analyses based on samples
produced by HiCSampler. HiCSampler takes as input (A) a Hi-C read count matrix, model parameters, and a bias vector estimated using existing
approaches (e.g., ICE). (B) It samples from the approximate posterior interaction frequency matrix by Bayesian inference using MCMC. (C) Samples
inferred with HiCSampler are ready to use for measuring the uncertainty of the interaction frequency with summary statistics (mean, variance, and
dispersion index). (D) They can also be used to estimate the uncertainty of Hi-C-derived predictions such as TADs and loops.
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infer highly predictive posterior distribution (Figure 2). Following
MCMC5C (Rousseau et al., 2011), we simultaneously run two
randomly initialized Markov chains that are compared to
determine convergence (see Methods). The log-likelihood of
posterior samples and the mean square error between within-
and across-chain samples for the first 5,000 iterations indicate
that HiCSampler can converge to the stationary distribution
(Figures 3A, B) of the true interaction frequency within
2,000 burn-in iterations. Additionally, we performed a posterior
predictive check by calculating the p-values of the observed Hi-C
read count conditional on the inferred posterior distribution. We
observed that the p-values are nearly uniformly distributed,
indicating that our model is appropriate (Figure 3C). Using fewer
samples to infer the posterior distribution reduces the running time
but may lead to inaccurate inference. We then evaluated the
accuracy of approximating the posterior distribution using fewer
samples. We treated the posterior distribution inferred from
10,000 samples collected after the burn-in iteration as the gold
standard and compared distributions approximated with fewer
samples to this gold standard. We observed that collecting more

samples from HiCSampler improves the accuracy of the posterior
inference. As shown in Figure 3D, we can terminate the MCMC
process after collecting several hundred samples since the
improvement in accuracy is negligible beyond 500 samples.
These posterior predictive checks and convergence diagnosis do
not guarantee the accuracy of our model but helps us detect
potential flaws.

To further investigate the accuracy of HiCSampler, we
compared HiCSampler against three other models (see Methods)
by evaluating the log-likelihood of five different test sets based on the
posterior distribution inferred from the training set. We created the
training sample and test samples by independently downsampling a
Hi-C contact map with 500-M contact pairs to the downsampled
data with 250-M contact pairs. Since both HiCSampler and the MRF
with the fixed σ2 model have hyperparameters that need to be tuned,
we used a grid search to set the hyperparameters in both models by
evaluating model performance on a test contact map. Following a
previous work (Kruschke, 2010), we approximated the log-
likelihood of a test sample as the mean log-likelihood of a test
sample conditional on 100 posterior samples inferred by

FIGURE 2
Comparison of the mean of the posterior interaction frequency inferred by HiCSampler and normalized Hi-C read count for a particular region
(50–60 Mb) of human chromosome 14 at 5 Kb resolution. The histogram demonstrates posterior distribution for a contact pair approximated using
HiCSampler.

FIGURE 3
MCMC convergence and posterior predictive checks of HiCSampler. (A) Mean square error between within- and across-chain samples. (B) Log-
likelihood of posterior samples. Burn-in iterations detected by HiCSampler in (A,B) are highlighted in gray. (C) Cumulative p-value distribution for the
observed read count matrix, given the inferred posterior distribution. A perfectly uniform distribution would match the red line. (D) Distribution of the KL
divergence between marginal posterior distributions for each contact pair inferred from different sample sizes and that obtained from the full set of
10,000 samples. The color scale represents the density of the KL-divergence. The red line represents the average KL divergence for all contact pairs.
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HiCSampler. As shown in Table 1, HiCSampler achieved the best
log-likelihood on all test samples.

3.3 HiCSampler enables quantifying
uncertainty in TADs and loop calling

A Hi-C contact map is a point estimation of the true genomic
interaction frequency matrix. Thus, it lacks measurements of
uncertainty. TADs and loops called based on Hi-C contact maps are
also inherently point estimations and likewise come with little
quantification of uncertainty. HiCSampler enables studying the
variability of called TADs and loops. To illustrate this, we used
HiCSampler to sample 100 interaction frequency maps from Pr [t|o]
and annotated TADs and loops from each sample with TopDom (Shin
et al., 2016) and HiCCUPS (Durand et al., 2016). Within the 10-Mb
region we studied (chr14:50–60Mb), TopDom identified 24 TADs
from both the high-coverage combined normalized read count matrix
(Rao et al., 2014) and the mean of the posterior matrix. However, the
two sets of annotations are slightly different (Figure 4). These predicted
domain boundaries are enriched for CTCF-binding sites. We also
identified ~24 TADs from each of the 100 posterior samples. The
100 sets of TAD annotations largely overlap, and a large portion of these
annotations are identical to TADs annotated from the combined
normalized read count matrix. Variability in TAD annotations is
primarily observed in terms of the exact location of domain
boundaries. These observations indicate TAD annotations are

generally robust, but the uncertainty in Hi-C contact maps causes
an uncertainty in the precise location of TAD boundaries. Among all
TAD boundaries annotated from the 100 samples, only 12.5% are
detected in all 100 samples; 45% are detected in more than 90% of
samples; and 77% are consistently detected from at least half of the
samples. We then performed a similar analysis for loop annotations.
Compared to TAD annotations, loops annotated from posterior
samples have a higher degree of variability. Most of the peaks are
consistent in less than 35%of posterior samples (Figure 5). This suggests
that loop annotation with HiCCUPS is quite brittle.

4 Discussion

Hi-C and its derivatives are widely used to study three-dimensional
conformations of chromosomes. Many efforts have been invested in
advancing biochemical protocols and data analysis tools, aiming at
estimating the interaction frequency accurately and efficiently. Yet, few
analytical approaches tackle themeasurement uncertainty in interaction
frequency estimates or in annotation of loops and TADs. We address
this problem by introducing HiCSampler, a Markov random field
approach for statistical contact map analysis. HiCSampler is capable
of inferring the posterior distribution of the true interaction frequency,
conditional on some observedHi-C read count data. In our experiment,
we focus on high-resolutionHi-C data analysis at 5 kb, but HiCSampler
can be applied to analyze Hi-C data at different resolutions. The only
hyperparameter that might be sensitive to the data resolution is the
window size that we used to estimate the variance parameter in the
pairwise potential function. As discussed above, this hyperparameter
can be determined by evaluating the model on a test set. We believe
HiCSampler is an important complement to the existing HiC toolset. It
will easily be integrated in existingHi-C data analysis pipelines, enabling
well-grounded estimates of uncertainty of any type of downstream
annotation tasks based on off-the-shelf annotation tools. This is
achieved by simply executing the annotation tool of interest on a set
of contact maps sampled by HiCSampler and capturing the variance of
the predictions. Since predictions based on each sample are
independent, all of them can be conducted in parallel, adjusting the
number of samples to achieve the desired level of distribution accuracy.

To the best of our knowledge, HiCSampler is the first method
developed for the uncertainty measurement of Hi-C data.

TABLE 1 Log-likelihood of individual test data.

Model Test replicates

1 2 3 4 5

HiCSampler −1027454 −1027658 −1027657 −1027658 −1027739

Uniform prior −3574638 −3574707 −3574812 −3574247 −3574339

Gaussian
prior

−1283286 −1283381 −1283537 −1283337 −1283330

MRF with
fixed σ2

−1036005 −1036214 −1036227 −1036189 −1036264

Bold values indicate the best model in each test replicate.

FIGURE 4
TAD annotations for a particular region (50–60 Mb) of human chromosome 14 at 5 Kb resolution. Panels from top to bottom correspond to
TopDom-annotated TADs inferred from the normalized combined read count matrix, mean posterior interaction frequency matrix, and 100 posterior
samples; occupancy of forward and reverse CTCF-binding sites. The two highlighted regions exhibit substantial differences among TADs predicted from
the normalized Hi-C read count matrix and the mean posterior matrix. This variability was also observed among TADs predicted from posterior
samples in these regions.
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However, there remains room for improvement. Despite having
optimized the acceptance rate by introducing the adaptive
proposal and auxiliary variables, the Metropolis–Hastings
algorithm still has a low acceptance rate. We believe that
revising the model in order to replace the Metropolis–Hastings
sampler by a Gibbs sampler can significantly speed up the
sampling procedure. The size of the matrices analyzed and the
complexity of the MCMC inference also make HiCSampler
relatively slow. Variational inference (Blei et al., 2017) and GPU-
based implementations could provide significant speedups. Second,
HiCSampler utilizes an empirical Bayes method to infer the prior
distribution of the interaction frequency. Although this works well in
practice, it is at risk of overfitting in theory. Fully Bayesian approaches
could provide a more robust inference. Although Hi-C datasets with
multiple replicates are becoming available and are being analyzed
using different tools in recent years (Yang et al., 2017; Stansfield
et al., 2019), HiCSampler currently only infers posterior
distributions of interaction frequencies based on a single Hi-C
contact map. In the future, it will be of interest to extend
HiCSampler to model variability measured across multiple
replicates of Hi-C data. In addition, we can expand HiCSampler to
incorporate epigenetic and functional genomics features. For example,
since CTCF-binding sites play an important role in chromatin loop
formation, we can update the prior by modifying the local potential to
encourage contact pairs enriched by CTCF-binding sites to have a
higher interaction frequency.

In conclusion, HiCSampler enables a detailed analysis of
uncertainty in contact frequency estimation and in downstream
annotation and 3D structure prediction tasks. Capturing uncertainty

in 3D genomics is particularly important, considering the relatively
high degree of stochastic noise caused by the relatively low
sequencing compared to the size of the contact matrices being
estimated. We expect that this will enable the robust and
statistically sound analysis of HiC data.
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