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The use of bacteriocins has emerged as a propitious strategy in the development
of new drugs to combat antibiotic resistance, given their ability to kill bacteria with
both broad and narrow natural spectra. Hence, a compelling requirement arises
for a precise and efficient computational model that can accurately predict novel
bacteriocins. Machine learning’s ability to learn patterns and features from
bacteriocin sequences that are difficult to capture using sequence matching-
based methods makes it a potentially superior choice for accurate prediction. A
web application for predicting bacteriocin was created in this study, utilizing a
machine learning approach. The feature sets employed in the application were
chosen using alternating decision tree (ADTree), genetic algorithm (GA), and linear
support vector classifier (linear SVC)-based feature evaluation methods. Initially,
potential features were extracted from the physicochemical, structural, and
sequence-profile attributes of both bacteriocin and non-bacteriocin protein
sequences. We assessed the candidate features first using the Pearson
correlation coefficient, followed by separate evaluations with ADTree, GA, and
linear SVC to eliminate unnecessary features. Finally, we constructed random
forest (RF), support vector machine (SVM), decision tree (DT), logistic regression
(LR), k-nearest neighbors (KNN), and Gaussian naïve Bayes (GNB) models using
reduced feature sets. We obtained the overall top performing model using SVM
with ADTree-reduced features, achieving an accuracy of 99.11% and an AUC value
of 0.9984 on the testing dataset.We also assessed the predictive capabilities of our
best-performing models for each reduced feature set relative to our previously
developed software solution, a sequence alignment-based tool, and a deep-
learning approach. A web application, titled BPAGS (Bacteriocin Prediction based
on ADTree, GA, and linear SVC), was developed to incorporate the predictive
models built using ADTree, GA, and linear SVC-based feature sets. Currently, the
web-based tool provides classification results with associated probability values
and has options to add new samples in the training data to improve the predictive
efficacy. BPAGS is freely accessible at https://shiny.tricities.wsu.edu/bacteriocin-
prediction/.
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1 Introduction

The overutilization and improper application of antibiotics have
the potential to lead to the development and proliferation of
antibiotic-resistant bacteria, resulting in an upsurge of infections
and mortality rates. The prevailing scenario characterized by the
elevation and diffusion of antibiotic-resistant bacteria poses a
significant and pressing concern within the realms of public
health and medicine. Annually, over 2.8 million people get
infected and at least 35,000 patients die in the United States due
to antibiotic resistance (Chowdhury et al., 2019a; Control CfD and
Prevention, 2019). A study in 2019 examining the impact of bacterial
antimicrobial resistance (AMR) for 23 pathogens and 88 pathogen-
drug combinations in 204 countries and territories estimated that at
least 1.27 million deaths were caused by AMR, surpassing the
number of deaths from other major diseases such as malaria and
HIV/AIDS (Murray et al., 2022). Traditional drugs face huge
challenges due to the loss of their sensitivity to antibiotic-
resistant bacteria, and it is necessary to invent novel
antimicrobial compounds for the treatment of antibiotic-resistant
patients (Magana et al., 2020). Bacteriocins are peptides with
antimicrobial attributes that bacteria generate during ribosome
synthesis in their metabolic process (Guder et al., 2000; Willey
and Van Der Donk, 2007; Correia and Weimann, 2021). They
exhibit potent activity against both related and unrelated
bacterial strains and have become an appealing substitute for
conventional antibiotics due to their broad and narrow spectrum
of activity, low toxicity, and high specificity (Riley and Wertz, 2002;
Hamid and Friedberg, 2017; Fields et al., 2020). Several traditional
approaches such as screening assays, chromatography, and mass
spectrometry are used to identify and characterize bacteriocins
(Zendo et al., 2008; Zhang et al., 2018; Desiderato et al., 2021).
However, detecting bacteriocins using these methods can be time-
consuming, tedious, and expensive. These conventional methods
also suffer from missing or underestimating the variety and
originality of bacteriocins in complex microbial communities
(Perez et al., 2014).

To overcome these limitations, sequence-matching
computational methods such as BLASTP can be used to predict
bacteriocins based on known patterns or motifs in the sequences of
bacteriocins (Johnson et al., 2008; Boratyn et al., 2013). Several other
online computational mining tools have been developed to help in
identifying bacteriocins. BACTIBASE is an integrated open database
that uses microbial information from PubMed and protein analysis
tools to characterize bacteriocins (Hammami et al., 2010). BAGEL is
another search tool that classifies bacteriocins sequences based on
homology information (Van Heel et al., 2013). Both BACTIBASE
and BAGEL maintain databases of experimentally validated
bacteriocin sequences. Like BLASTP, these methods depend on
sequence alignment to measure the sequence similarity between
query and reference known bacteriocin sequences; hence, they have
limited ability to identify novel or divergent bacteriocins that do not
match these patterns due to excessive variations or mutations.
Another platform, antiSMASH, utilizes hidden Markov models
and BLAST searches against a known bacteriocin biosynthetic
gene clusters (BGCs) database to identify and annotate putative
BGCs in bacterial genomes (Medema et al., 2011; Blin et al., 2014;
Weber et al., 2015). While some bacteriocin prediction tools, such as

BOA have been introduced to address the issues of high diversity of
bacteriocins, these platforms still depend on homology-based
genome identification that can restrict their capability to identify
highly dissimilar bacteriocin sequences that do not match conserved
context genes of the bacteriocin operon (Morton et al., 2015).

Machine learning algorithms provide an alternative to sequence
matching techniques for predicting bacteriocins, discerning patterns
and characteristics within bacteriocin sequences that extend beyond
their similarity to established ones. For example, we can use machine
learning algorithms to analyze the physicochemical properties,
sequence profiles and secondary structure of bacteriocin protein
sequences to identify novel bacteriocins that may have high
dissimilarity to known bacteriocins. Recently, several machine
learning-based bacteriocin prediction methods were developed
that use k-mer features and word embedding techniques. In the
k-mer technique, features are generated from the subsequences of
length k, whereas word embedding tactics represent peptide
sequences as vectors in high dimensional space (Mikolov et al.,
2013; Hamid and Friedberg, 2019). Additionally, a deep learning-
based technique RMSCNN was designed to predict the presence of
bacteriocins using a convolutional neural network (CNN) (Gu et al.,
2018; Su et al., 2019; Cui et al., 2021). Primary and secondary
structure of peptides, which play a crucial role in detecting diverse
bacteriocins, were not analyzed in the existing approaches. In
addition, none of those solutions employed any feature selection
methods to eliminate irrelevant features that might impair the
performance of a machine learning classifier. Recently, we
introduced a machine learning-based software tool BaPreS
(Akhter and Miller, 2023) to identify novel bacteriocins with
reasonable accuracy using a support vector machine (SVM)
(Cortes and Vapnik, 1995) and a t-test-based feature evaluation
technique. Nonetheless, there is still room for enhancing prediction
performance, which motivated the current study.

The objective of our work was to create a web-based application
using machine learning techniques to identify bacteriocins. To
achieve this, we created predictive models that leverage the
physical and chemical attributes along with the sequence profiles
and structural characteristics of protein sequences. We used a set of
methods, including the Pearson correlation coefficient, alternating
decision tree (ADTree) (Freund and Mason, 1999; Pfahringer et al.,
2001), genetic algorithm (GA) (Whitley, 1994), and linear support
vector classifier (linear SVC) (Pedregosa et al., 2011), to assess and
select subsets of potential features for our models. Subsequently, we
employed machine learning models, namely, random forest (RF),
support vector machine (SVM), decision tree (DT), logistic
regression (LR), k-nearest neighbors (KNN), and Gaussian naïve
Bayes (GNB) to predict bacteriocins using the reduced feature sets,
and assessed the predictive performance of these models for
bacteriocin identification (Leo, 2001; Mucherino et al., 2009;
Pedregosa et al., 2011; Sammut and Webb, 2011; McCullagh,
2019). Finally, we developed a web-based tool called BPAGS
(Bacteriocin Prediction based on ADTree, GA, and linear SVC)
where users have the freedom to choose ADTree-, GA-, or linear
SVC -based selected features to obtain prediction results, and the
BPAGS will automatically generate the required features of the user-
supplied protein sequences. Furthermore, the web application has
the option to use our previously developed BaPreS predictive tool
(Akhter and Miller, 2023) to compare prediction results for the
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testing sequences. Users can test multiple sequences simultaneously
and add new sequences to the training data to boost the predictive
ability of the machine learning models. We compared the
effectiveness of our web application BPAGS with the BaPreS tool,
the deep learning model, RMSCNN (Cui et al., 2021), and the
sequence matching tool, BLASTP (Johnson et al., 2008; Boratyn
et al., 2013).

2 Methods

A depiction of the steps involved in our methodology is shown
in Figure 1. The methods involve collecting bacteriocin (positive)
and non-bacteriocin (negative) datasets, generating candidate
features from the protein sequences, measuring the correlation
among features to remove highly correlated ones, evaluating
features using ADTree, GA, and linear SVC approaches to
eliminate the weakest and irrelevant features, followed by
constructing machine learning models using the chosen set of
features. Finally, we compared the predictive efficacy of the novel
models with our prior software application, sequence alignment, and
deep learning techniques.

2.1 Data collection

The datasets used in this study were identical to those utilized in the
development of our previously implemented software tool, BaPreS
(Akhter and Miller, 2023). BACTIBASE (Hammami et al., 2010)
and BAGEL (Van Heel et al., 2013) databases were considered to
retrieve experimentally annotated and validated positive sequences. We
collected negative sequences from RMSCNN (Cui et al., 2021). Initially,
the dataset comprised 483 positive and 500 negative sequences. To
eliminate duplicate sequences and obtain unique positive and negative
sequences, we employed the CD-HIT tool (Fu et al., 2012). Sequences

with a similarity greater than 90%were removed to prevent themachine
learning model from being biased by duplicate or highly similar
sequences. A high similarity threshold was selected due to the
heterogeneity of bacteriocins, which are a diverse class of bacterial
peptides (proteins) (Mesa-Pereira et al., 2018; Lertampaiporn et al.,
2021). The final dataset comprises 283 unique positive sequences and
497 unique negative sequences. We performed random sampling to
address the issue of imbalanced dataset by reducing the number of
negative sequences from 497 to 283, thereby achieving an equal number
of bacteriocin and non-bacteriocin sequences. We allocated 80% of the
dataset for training purposes, while the remaining 20% was set aside for
testing. The training and testing datasets are available in the
Supplementary Material.

2.2 Feature extraction

The extraction of potential candidate features is crucial for
developing a machine learning model with robust prediction
capabilities. Feature vectors were formulated for the protein
sequences, encompassing a 20-dimensional amino acid composition
(AAC), a 400-dimensional dipeptide composition (DC), a 30-
dimensional pseudo amino acid composition (PseAAC), and a 40-
dimensional amphiphilic pseudo amino acid composition (APseAAC).
Furthermore, we employed the composition/transition/distribution
(CTD) model (Dubchak et al., 1995) to generate 147-dimensional
feature vectors, considering diverse physicochemical amino acid
characteristics. The detailed description of these feature vectors was
discussed in our previously developed BaPreS software tool (Akhter and
Miller, 2023).

We also derived 6-dimensional feature vectors for the secondary
structure (SS) of individual protein sequences. This feature
extraction process starts with a determination of secondary
structure, resulting in a sequence characterized by three states, H
(alpha-helix), E (beta-strand), and C (coil), followed by their spatial

FIGURE 1
Overview of the bacteriocin prediction methods.
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arrangements (Chowdhury et al., 2019b). Additional SS features
involve analyzing consecutive E and H states in the sequence, as well
as examining the frequency of EHE patterns after excluding coil
segments and consolidating consecutive Hs and Es into single H and
E states. We used the distance matrix between amino acids to extract
sequence-order-coupling number (SOCN) feature vectors of 20D
and quasi-sequence-order (QSO) feature vectors of 40D for each
protein sequence (Xiao et al., 2015). Finally, we used the position-
specific scoring matrix (PSSM) to extract sequence profile/
evolutionary-related features from protein sequences. This
process entailed generating the PSSM from protein sequences
using PSI-BLAST (Altschul et al., 1997; Pande et al., 2023) and
computing transition scores between adjacent amino acids to create
a 400-dimensional feature vector for each sequence (Saini et al.,
2016; Mohammadi et al., 2022). Table 1 lists 1,103 collected features.

2.3 Feature evaluation

To uphold the predictive effectiveness of a machine learning
model, it is imperative to exclude unnecessary features prior to
constructing the model. To avoid information leakage between
training and testing datasets, we only assessed the features of the
training data. Initially, we analyzed the correlation among the
features. We used the Pearson correlation coefficient to
determine the statistical relationship between two features,
measuring the strength and direction of their linear
relationship. The formula for estimating Pearson correlation
coefficient ρx,y between two features is given in Eq. 1.

ρx,y � E x − µx( ) y − µy( )[ ]
σx σy

(1)

Here, two features are x and y, E stands for the expectation, µx
and µy are mean values, and σx and σy indicate the standard
deviation of x and y, respectively. The values of ρx,y fall
between −1 and +1, where 0 denotes no correlation, and −1 and
+1 represent perfect negative and perfect positive correlations,

respectively. In this work, we consider only the absolute value of
ρx,y. When two features are highly correlated (i.e., ≥ a threshold of
0.9), we can choose one of them and disregard the other. As a result,
the feature count was decreased from 1,103 to 602. Supplementary
Table S1 (Supplementary Material) lists the reduced feature set
where “aac”, “dipep”, “pseudo”, “amphipseudo”, “comp”, “tran”,
“dist”, “ss”, “qso”, and “pssm” indicate AAC, DC, PseAAC,
APseAAC, composition (CTD), transition (CTD), distribution
(CTD), SS, QSO, and PSSM-based features, respectively. The
AAC feature aac_i (where i = 1, 2, 3, . . .., 20) represents amino
acid composition for the ith amino acids in the order A, R, N, D, C,
E, Q, G, H, I, L, K, M, F, P, S, T,W, Y, V, respectively. The DC feature
dipep_i (where i = 1, 2, 3, . . .., 400) gives the dipeptide composition
of the amino acids in the same order mentioned above. The PseAAC
and APseAAC features are pseudo_i (where i = 1, 2, 3, . . .., 30) and
amphipseudo_i (where i = 1, 2, 3, . . .., 40), respectively. The amino
acid attributes are represented as comp_i (where i = 1, 2, 3, . . .., 21)
and tran_i (where i = 1, 2, 3, . . .., 21) in a specific order. The first
group of amino acid attributes is related to group 1, the second
group is related to group 2, and so on. The distribution feature is
represented as dist_i (where i = 1, 2, 3, . . .., 105), with the first
15 features being related to the distribution estimates of group 1,
group 2, and group 3 for the first amino acid attribute, and so on. A
detailed explanation of the amino acid attributes and how the amino
acids are grouped into three categories is available in the protr R
package (Xiao et al., 2015). The SS feature is represented as ss_i
(where i = 1, 2, 3, . . .., 6). To represent the location-associated
features for H, E, and C, we use the notations {ss_1, ss_2, ss_3}
respectively. Similarly, the normalized maximum spatial consecutive
E and H, and the existence of segmented sequences “EHE” are
denoted as {ss_4, ss_5, ss_6}. The QSO descriptors and PSSM-based
bigrams are represented by qso_i (where i = 1, 2, 3, . . .., 40) and
pssm_i (where i = 1, 2, 3, . . .., 400), respectively.

We considered ADTree (Freund and Mason, 1999; Pfahringer
et al., 2001), GA (Whitley, 1994), and linear SVC (Pedregosa et al.,
2011) separately to further eliminate less important features from
the feature set obtained after correlation analysis. The ADTree
algorithm integrates the intuitive and easily interpretable
structure of a single decision tree with the enhanced predictive
performance achieved through boosting techniques. It represents
knowledge using a decision tree structure that combines tree stumps,
a commonly used model in boosting. A significant characteristic of
this representation of a tree is that its branches are no longer limited
to being exclusive of each other. The root node serves as a predictor
node with a numerical score, while the subsequent layer of nodes
comprises decision nodes that contain a set of decision tree stumps.
Subsequent layers alternate between prediction and decision nodes.
In the ADTree, decision nodes are defined by a predicate condition
or criterion, while prediction nodes comprise a numerical value. It is
important to note that prediction nodes always serve as both the root
and leaves of an ADTree, reflecting the unique structure and
functionality of this decision tree model.

The ADTree builds a set of rules, each consisting of a
precondition, a condition, and two scores. A condition is
expressed as a predicate in the structure of
“attribute <comparison> value,” while a prerequisite is formed
through a logical conjunction of conditions. Rules are evaluated
with nested if statements, and the scores associated with each rule

TABLE 1 Candidate features.

Feature Dimension

Amino acid composition 20

Dipeptide composition 400

Pseudo amino acid composition 30

Amphiphilic pseudo amino composition 40

Composition 21

Transition 21

Distribution 105

Secondary structure 6

Sequence-order-coupling number 20

Quasi-sequence-order descriptors 40

Position specific scoring matrix-based bigrams 400
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are used to determine the prediction for a given instance. The
algorithm starts with a root rule, which has a precondition of
“true” and a condition of “true,” and its scores are calculated
based on the weighted training instances. Initially, the weights of
each training instance set to 1

t, where t is the total number of training
instances. The algorithm then iteratively creates new rules by finding
the best combination of precondition and condition that minimizes
the value of a function z. The value of z is a measure of how well a
rule divides the positively and negatively labeled instances, and it is
used to determine the optimal combination of precondition and
condition for the new rule. In each iteration, the algorithm calculates
new scores for the new rule using a boosting technique. The weights
of the training instances are updated based on how well the new rule
correctly predicts the label of each instance. Training persists until a
halting condition is fulfilled, which could involve reaching a
maximum iteration count or achieving a minimal enhancement
in accuracy. The set of rules generated by the ADTree algorithm
forms an alternating decision tree, where prediction nodes contain a
single number, and the tree structure is determined by the
preconditions used in each successive rule. The unique features
that are used to construct the ADTree consist of a subset of the total
features. We considered 50 randomly generated values for B (the
number of boosting iterations) in the implementation of the
ADTree. The decision tree built using the ADTree algorithm is
presented in Supplementary Figure S1 (Supplementary Material),
showing the selected features out of 602. We obtained 43 ADTree-
reduced features, which are listed in Supplementary Table S2
(Supplementary Material).

We also utilized the genetic algorithm (GA) which is a
metaheuristic optimization algorithm that simulates the natural
selection process of biological evolution, and it is commonly
employed to tackle complex problems. The step of GA is given
in Figure 2. To use GA for the feature selection, chromosomes
(i.e., strings of bits) are generated randomly where each
chromosome represents a subset of features and every bit in a
string indicates whether the respective feature is present or not
in the subset. A fitness function is applied to assess the quality of
each chromosome, which denotes the efficiency of a specific subset
of features in predicting the outcome variable. The area under the
receiver operating characteristic curve (AUC-ROC) was used as the
fitness function in this study. Basic GA operations such as selection
(choosing the fittest chromosomes based on the highest AUC-ROC),
crossover (combining the genetic information of two parent
chromosomes to create a new offspring chromosome), and
mutation (randomly flipping bits in the chromosome to
introduce new genetic information) are performed to optimize
fitness. In the GA, we used RF with 5-fold cross-validation to get
AUC-ROC values for a subset of features. During the estimation of
AUC-ROC, we generated square root values of the number of
feature subsets to set the mtry parameter in RF. We set
crossover = gabin_uCrossover (cross-over method), pmutation =
0.03 (mutation rate probability), popSize = 50 (the number of
individuals/solutions), and maxiter = 50 (total runs or
generations) in the genetic algorithm implementation. The
algorithm terminates when a stopping criterion is met (in our
case, a maximum number of generations) and provides the best

FIGURE 2
Illustrating the process of a genetic algorithm.
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subset of feature (i.e., reduced feature set). Out of 602 features, we
obtained 234 GA-reduced features. The list of features obtained
from GA is provided in Supplementary Table S3
(Supplementary Material).

The linear support vector classifier (linear SVC) (Pedregosa
et al., 2011) offers penalty-based feature selection. This approach
produces sparse solutions with numerous coefficients set to zero,
enabling efficient identification and selection of non-zero
coefficients. The value of C (regularization parameter) in linear
SVC plays a pivotal role in controlling sparsity, allowing us to fine-
tune the number of selected features. We chose C = 0.01 and a
penalty of l1 for feature selection. We selected 39 features out of
602 using this method, and they are listed in Supplementary Table
S4 (Supplementary Material).

2.4 BPAGS web application

The architecture of our BPAGS web application is depicted in
Figure 3. Our machine learning-based web application can
automatically generate all required features for user-supplied
training and testing sequences. After machine-learning models
are generated using the training dataset, classification and
probability results are provided for the testing dataset.

Figure 4 shows the graphical user interface (GUI), service menu,
and sample outputs of the web tool BPAGS. Features required for
the web application are generated in R. R Shiny was utilized to
design the GUI. In this web application, users can upload input files
containing protein sequences in FASTA format. In addition to
machine learning models based on ADTree-reduced features,
GA-reduced features, and linear SVC-reduced features, BPAG
provides an additional option for testing sequences using our
previously developed BaPreS software tool (Akhter and Miller,
2023). After selecting the appropriate feature selection method
and uploading an input FASTA file with the sequences for

prediction, the user should click on the ‘Bacteriocin prediction’
button first to view the binary classification results for the testing
sequences in their input. Subsequently, to obtain the predicted
probability values for the testing sequences, the user can click on
the “Probability estimation” button. Buttons are provided in the web
application to download and save these results. The web tool
includes positive and negative datasets, along with the current
training/testing files for all methods, which are available for users
to download. Furthermore, the web application allows users to
augment the training dataset with new protein sequences,
whether bacteriocin or non-bacteriocin, to enhance prediction
accuracy. More specifically, users have the option to collect and
upload new sequences for retraining the model and obtaining
prediction results for test sequences. Additionally, the webserver
provides a user manual for download. Our BPAGS web application
is publicly available for all users and can be found at https://shiny.
tricities.wsu.edu/bacteriocin-prediction/.

3 Results

We considered several machine learning algorithms to build
predictive models with the selected feature sets. We assessed the
efficacy of these models and contrasted the optimal model with our
previously introduced machine learning-oriented software tool, as
well as two other preexisting tools based on deep learning and
sequence matching.

3.1 Prediction performance

We trained RF, SVM, DT, LR, KNN, and GNBmachine learning
models using the reduced feature sets obtained from ADTree, GA,
and Linear SVC methods. During training, we tuned these
algorithms to find the optimal models by identifying the most

FIGURE 3
Architecture of the BPAGS web application.
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suitable parameters. The list of parameters to tune the models, and
their best values are provided in Supplementary Table S5
(Supplementary Material). We assessed the predictive capability
using Eqs 2–6. TP denotes instances where positive outcomes
were predicted correctly, TN represents instances where negative
outcomes were predicted correctly, FP signifies cases where there
was an incorrect prediction of positive outcomes, while FN
represents cases where there was an incorrect prediction of
negative outcomes. Matthews correlation coefficient (MCC) was
also computed to evaluate the effectiveness of our predictive models.
This metric, which is particularly useful when dealing with
imbalanced datasets, ranges between −1 and +1, with a score of
+1 indicating a flawless prediction, 0 indicating a random
prediction, and −1 indicating complete divergence between the
prediction and ground-truth observation. To further evaluate the
performance of our models, we computed recall, which measures the
fraction of true positive instances that were correctly identified, and
precision, which measures the fraction of positive predictions that

are true. The F1 score is a metric that considers both precision and
recall by calculating their harmonic mean, thereby providing a
balanced measure of a model’s performance.

Testacc � TP + TN

TP + TN + FP + FN
(2)

TestMCC � TP × TN − FP × FN�������������������������������������
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√ (3)

Testrecall � TP

TP + FN
(4)

Testprecision � TP

TP + FP
(5)

TestF1 � 2 ×
Testprecision × Testrecall( )
Testprecision + Testrecall( ) (6)

Confidence intervals are also estimated to provide the range of
values in which the true performance metrics of the models are likely
to fall, based on a 95% level of confidence, which means if the same

FIGURE 4
Illustrating the interface of the BPAGSweb application. (A) depicts the GUI; (B) shows sample prediction results; (C) shows sample probability results.

Frontiers in Bioinformatics frontiersin.org07

Akhter and Miller 10.3389/fbinf.2023.1284705

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1284705


experiment were repeated many times, the true performance metric
would expect to lie within this interval in 95% of the experiments. A
wider confidence interval indicates higher uncertainty of the
prediction s. The area under the curve (AUC) TestAUC were
calculated to measure the performance of binary classification
models. AUC measures the overall discriminative power of a
classification model. Higher AUC values indicate better
performance, with 1 being perfect and 0.5 random chance.

The evaluation of RF, SVM, DT, LR, KNN, and GNB models’
performance across different feature subsets is outlined in Table 2.

The confusion matrices for RF and SVM models constructed using
ADTree-reduced feature sets are provided in Figure 5, while those
for all other models can be found in Supplementary Figure S2
(Supplementary Material). Figure 5 shows that RF and SVMmodels,
based on the ADTree-reduced feature set, successfully identified
55 and 56 protein sequences as bacteriocins, respectively. These
findings indicate that with regard to ADTree-reduced feature sets,
the SVM model demonstrates better overall performance compared
to the other models in terms of the number of predicted bacteriocin
sequences, prediction accuracy, and AUC. We obtained the best

TABLE 2 Evaluation of RF, SVM, DT, LR, KNN, and GNB model performance with varied feature sets.

Feature set Machine learning models Testacc TestMCC Confidence interval (95%) Testprecision Testrecall TestF1 TestAUC

ADTree RF 0.9911 0.9823 (0.9513,0.9998) 1.0000 0.9821 0.9910 0.9965

SVM 0.9911 0.9823 (0.9513,0.9998) 0.9825 1.0000 0.9912 0.9984

DT 0.9464 0.8934 (0.887, 0.9801) 0.9630 0.9286 0.9455 0.9381

LR 0.9821 0.9649 (0.937, 0.9978) 1.0000 0.9643 0.9818 0.9987

KNN 0.8839 0.7894 (0.8097,0.9367) 1.0000 0.7679 0.8687 0.9601

GNB 0.9286 0.8577 (0.8641,0.9687) 0.9444 0.9107 0.9273 0.9665

GA RF 0.9643 0.9309 (0.9111,0.9902) 1.0000 0.9286 0.9630 0.9906

SVM 0.9643 0.9286 (0.9111,0.9902) 0.9643 0.9643 0.9643 0.9968

DT 0.9554 0.9109 (0.8989,0.9853) 0.9636 0.9464 0.9550 0.9633

LR 0.9643 0.9286 (0.9111,0.9902) 0.9643 0.9643 0.9643 0.9901

KNN 0.7946 0.6264 (0.708, 0.8651) 0.9459 0.6250 0.7527 0.8653

GNB 0.9375 0.8763 (0.8755,0.9745) 0.9623 0.9107 0.9358 0.9350

Linear SVC RF 0.9732 0.9478 (0.9237,0.9944) 1.0000 0.9464 0.9725 0.9904

SVM 0.9732 0.9466 (0.937, 0.9978) 0.9818 0.9643 0.9730 0.9990

DT 0.9375 0.8751 (0.8755,0.9745) 0.9298 0.9464 0.9381 0.9531

LR 0.9643 0.9292 (0.9111,0.9902) 0.9815 0.9464 0.9636 0.9908

KNN 0.9464 0.8951 (0.887,0.9801) 0.9808 0.9107 0.9444 0.9955

GNB 0.9286 0.8577 (0.8641,0.9687) 0.9444 0.9107 0.9273 0.9601

Legend:Testacc , Accuracy on the testing dataset;TestMCC , MCC on the testing dataset;Testprecision , Precision on the testing dataset; Testrecall , Recall on the testing dataset;TestF1, F1 score on the

testing dataset; TestAUC , AUC on the testing dataset.

FIGURE 5
Confusionmatrices depicting themodel performance. (A) shows confusionmatrix for the RFmodel constructed using the ADTree-reduced feature
set, and (B) shows confusion matrix for the SVM model constructed using the ADTree-reduced feature set.

Frontiers in Bioinformatics frontiersin.org08

Akhter and Miller 10.3389/fbinf.2023.1284705

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1284705


models for ADTree-, GA-, and linear SVC-reduced feature sets
using SVM, and the probability scores for all test sequences
generated by these models are available in Supplementary Table
S6 (Supplementary Material).

3.2 Selected features in the alternating
decision tree

Our best machine-learning results were obtained using SVM
with the ADTree-reduced feature set. As mentioned earlier,
43 features out of 602 were selected by the constructed ADTree.
In ADTree, most of the features selected are based on dipeptide
composition. Refer to Supplementary Table S2 (Supplementary
Material) for the selected features.

3.3 Performance comparison

We developed the BPAGS web application by employing
machine learning models using the chosen feature set and
compared its performance to a deep learning method RMSCNN
(Cui et al., 2021), our previously released machine learning-based
tool BaPreS (Akhter and Miller, 2023), and sequence matching tool
BLASTP (Johnson et al., 2008; Boratyn et al., 2013). RMSCNN
(https://github.com/cuizhensdws/RWMSCNN) was developed for
identifying marine microbial bacteriocins using CNN. The protein
sequences are encoded into numerical representations to be fed into
the CNN for feature learning and prediction. The BaPreS tool
automatically generates the required features obtained after
correlation and t-test analyses and utilizes an SVM with the
selected features for prediction. Note that our web application
BPAGS gives users an option to use the BaPreS tool for testing
sequences. The sequence alignment tool BLASTP (https://blast.ncbi.
nlm.nih.gov/Blast.cgi?PAGE=Proteins) is used to match a query
protein sequence against a protein sequence database, aiming to
identify homologous sequences. It estimates percent identity based
on the alignments between the sequences, and the higher the percent
identity, the higher the similarity among the sequences.

The prediction metrics of all methods/tools are shown in
Table 3. Our web application BPAGS outperforms both
RMSCNN and BaPreS using the same training and testing
datasets. In our previous study, we showed the superiority of
BaPreS over BLASTP in detecting bacteriocins (Akhter and
Miller, 2023). Given that BPAGS has demonstrated superior

prediction results compared to BaPreS, we can infer that BPAGS
has a stronger predictive ability than BLASTP. To correctly identify
equivalent true positives and true negatives aligning with the
performance of our web application, BLASTP demands identity
thresholds of less than 30% and 20%, respectively. Large numbers of
false positives and false negatives are expected when BLASTP is used
with such low identity thresholds.

4 Discussion

Accurately predicting bacteriocins is essential for discovering
new antimicrobial peptides and designing novel peptides with
enhanced bioactivity and stability to combat antibiotic resistance.
Machine learning models that incorporate multiple potential
features have demonstrated high accuracy in predicting
bacteriocins. Here, we presented a bacteriocin prediction
pipeline based on machine learning that utilized
physicochemical, structural, and sequence profile features
derived from protein sequences. The feature selection process
involved utilizing the Pearson correlation coefficient and
implementing ADTree, GA, and linear SVC to reduce the
feature set. Subsequently, we used several machine-learning
algorithms, including RF, SVM, DT, LR, KNN, and GNB to
construct predictive models using the reduced feature sets.
Overall, the SVM model with the ADTree-reduced feature set
is identified as the top-performing model in terms of a higher
number of true positive bacteriocin sequences, prediction
accuracy, and AUC. This suggests that it utilized the most
important features derived from protein sequences effectively.
We developed a standalone web application BPAGS based on
different reduced feature sets so that users can test their protein
sequences for bacteriocin prediction without having any
programming knowledge. Additionally, users can include their
training sequences to further enhance the prediction strength of
the models. In addition to the three feature selection approaches
discussed in this work, the web application also allows the use of
our previously developed tool, BaPreS, to compare prediction
results for the testing dataset.

Most of the selected features found in the ADTree are from
dipeptide features. Dipeptide composition is an important
feature for bacteriocin prediction as it provides insights into
the amino acid composition and arrangement within a
bacteriocin peptide (Gabere and Noble, 2017). As many
bacteriocins are cationic molecules and bear hydrophobic or

TABLE 3 Performance assessment of the machine learning and deep learning approaches in predicting bacteriocins.

Method/tool Testacc Testprecision Testrecall TestF1 TestAUC

RMSCNN 0.9375 0.9623 0.9107 0.9358 0.9818

BaPreS 0.9554 0.9636 0.9464 0.9550 0.9879

BPAGS (ADTree) 0.9911 0.9825 1.0000 0.9912 0.9984

BPAGS (GA) 0.9643 0.9643 0.9643 0.9643 0.9968

BPAGS (Linear SVC) 0.9732 0.9818 0.9643 0.9730 0.9990

Legend: Testacc , Accuracy on the testing dataset; Testprecision , Precision on the testing dataset; Testrecall , Recall on the testing dataset; TestF1, F1 score on the testing dataset; TestAUC , AUC on the

testing dataset.
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amphiphilic characteristics, dipeptides (i.e., pairs of adjacent
amino acids) can be indicative of hydrophobicity and secondary
structure (Darbandi et al., 2022; Akhter and Miller, 2023). In
addition to dipeptides, ADTree identified features such as amino
acid composition and secondary structure which are also crucial
in achieving high prediction accuracy. Hence, we conclude that
the ADTree was able to select the most important and limited
number of features (i.e., only 43 features) that helps achieve
strong prediction results from the SVMmachine learning model.
Our models showed better prediction results than sequence
matching, deep learning, and our previously introduced
methods. Therefore, we deduce that our web-based
application BPAGS effectively employed pivotal features to
accurately discern markedly distinct bacteriocins with a
satisfactory level of accuracy. Researchers can use our web
application without having any programming knowledge to
detect bacteriocins from various sources including bacteria,
the human body, the environment, and animal and plant-
associated niches. Also, the data and script used in this work
are publicly accessible at https://github.com/suraiya14/BPAGS,
facilitating their reuse in similar biological applications.

This study has several limitations. The development of the
BPAGS was based on a restricted set of distinct bacteriocin and
non-bacteriocin sequences. Therefore, the outcomes of our
assessments could potentially be influenced by unknown
biases. Though we applied the cross-validation method to
generalize our predictive models, we will add more
experimentally validated nonduplicate bacteriocin and non-
bacteriocin sequences in our web application whenever they
are available. Currently, the BPAGS web application does not
include any visual representations that demonstrate how the
features contribute to the prediction results. To address this, we
intend to incorporate SHAP (Shapley Additive Explanations)
methodology (Lundberg and Lee, 2017; Lundberg et al., 2020) to
quantitatively measure the incremental influence of individual
features on the predictions made by the machine learning
models. In the future, we plan to integrate more features
from protein-protein interactions, metabolomics, and gene
expression information to improve the robustness of our web
application. Upgrading the web application by integrating a
feature stacking or ensemble technique may assist in
detecting novel bacteriocin more precisely. Also, we will
incorporate more feature selection methods (Li et al., 2017)
so that users can compare the prediction results for each test
sequence and determine bacteriocins more confidently.
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