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Motivation: For a number of neurological diseases, such as Alzheimer’s disease,
amyotrophic lateral sclerosis, and many others, certain genes are known to be
involved in the disease mechanism. A common question is whether a structural
variant in any such gene may be related to drug response in clinical trials and how
this relationship can contribute to the lifecycle of drug development.

Results: To this end, we introduce VariantSurvival, a tool that identifies changes in
survival relative to structural variants within target genes. VariantSurvival matches
annotated structural variants with genes that are clinically relevant to neurological
diseases. A Cox regression model determines the change in survival between the
placebo and clinical trial groupswith respect to the number of structural variants in
the drug target genes. We demonstrate the functionality of our approach with the
exemplary case of the SETX gene. VariantSurvival has a user-friendly and
lightweight graphical user interface built on the shiny web application package.
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1 Introduction

Neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s disease, and
amyotrophic lateral sclerosis, impose a substantial burden on patients, caregivers, and
healthcare systems worldwide (GBD, 2019 Dementia Forecasting Collaborators, 2022; Feigin
et al., 2020). Despite decades of research, the underlying mechanisms driving disease
progression and variability in patient survival remain incompletely understood (Martin
et al., 2017; Robinson et al., 2023). Genetic factors have been increasingly recognized as
crucial contributors to the pathogenesis and progression of neurodegeneration. Recent
advancements in genomic technologies have enabled the identification of various genetic
markers, including single-nucleotide variants, copy number variations, and structural
variations, that may play significant roles in disease susceptibility, progression, and
prognosis (Langbehn et al., 2019; van Rheenen et al., 2021; Al Khleifat et al., 2022).

An accurate evaluation of patient survival is a critical aspect of clinical trials aimed at
assessing the efficacy of therapeutic interventions for neurodegenerative diseases.
Traditional survival analysis methods, such as Kaplan–Meier curves (Kaplan and Meier,
1958) and Cox proportional hazards models (Cox, 1972; T. M. Therneau and Grambsch,
2000), have been widely used. However, these approaches often overlook the intricate
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genetic landscape underlying disease heterogeneity, limiting their
ability to capture the full extent of genetic influences on patient
survival (Willemse et al., 2022). Thus, there is a compelling need for
methodologies that integrate genetic markers to enhance the
precision and predictive power of survival assessments in
neurodegenerative clinical trials.

Structural variations (SVs) are genomic alterations involving
large-scale rearrangements, including deletions, duplications,
inversions, and translocations. Emerging evidence suggests that
SVs can profoundly impact gene expression and disrupt regulatory
elements associated with neurodegeneration (Marshall et al., 2008;
Lupski et al., 2010; Carvalho and Lupski, 2016; Marshall et al., 2017).
Consequently, these genomic alterations hold substantial potential
as prognostic indicators of disease progression and survival outcomes
in clinical trials. We have previously shown the correlation between

structural variants and survival in neurodegenerative diseases such
as amyotrophic lateral sclerosis and frontotemporal dementia,
highlighting the importance of testing structural variants in
clinical trials (Al Khleifat et al., 2022). Understanding the role of
SVs in patient survival may unveil novel insights into the complex
genetic architecture of neurodegenerative disorders and aid in the
identification of treatment-specific patient subgroups.

To support the clinical trial analysis and interpretation of DNA
sequencing data, we have developed VariantSurvival, a clinical
genetic framework. VariantSurvival uses NGS data and other
phenotypic inputs such as age, sex, and other clinical information
to evaluate the associations between genomic variants and survival
outcomes. The software links multiple genetic information from
neurological and psychiatric conditions to known genes in the
disease of interest. Users can upload data of genomic structural

FIGURE 1
Panel of dropdown menus within the Select Target Gene tab.
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variants, select from a list of genes, and view the results in the form of
survival functions, Cox regression tables, and other visualizations
and data tables. VariantSurvival is user-friendly and accessible to
clinicians and other users without a background in genetics.

2 Results

We present VariantSurvival, a new R package, to launch a shiny
dashboard (Chang and Ribeiro, 2021; Chang et al., 2022) to visualize
and summarize genotype–treatment response for selected medical
conditions and target genes. The Supplemental Material of this work

contains the Methods section, which describes the statistical models,
implementation, and usability in detail. Here, we summarize the
application and examine a use case.

Our results demonstrate that VariantSurvival effectively
accommodates the analysis of non-implicated genes in the
context of neurodegenerative diseases. Despite its primary focus
on structural variants, the tool yielded meaningful insights into the
impact of the selected non-implicated gene on survival outcomes in
the chosen disease dataset. This confirms the tool’s flexibility and its
potential to uncover previously unrecognized associations between
genes and survival, even when those genes are not conventionally
linked to the disease under investigation.

FIGURE 2
Panel of dropdown menus with selected features to investigate the Charcot–Marie–Tooth syndrome.
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2.1 Usage and data input

VariantSurvival requires two types of formatted input: metadata
of the clinical trials (patient ID, clinical trial groups, survival status,
and time to event) and structural variant information of all
individuals participating in the clinical trial.

The set of structural variants across all individuals of the clinical
trial is expected to be formatted in the standard variant call format
(VCF) and requires gene annotation for each variant. More
precisely, VariantSurvival requires a multi-sample VCF file where
each variant record is annotated with gene identifiers according to
the Ensembl database (Cunningham et al., 2022). For a given target
gene selected by the user, VariantSurvival creates a tally
summarizing the number of structural variants affecting the
target gene for each individual.

The second mandatory input for VariantSurvival is the
metadata. Provided that there is a non-empty set of individuals
presenting SVs in the target gene, the application proceeds with
associating the corresponding clinical trial group labels with all
entries (individuals) of the tally. At this point, VariantSurvival
computes and visualizes the survival function of Kaplan–Meier
product limit estimates (Kaplan and Meier, 1958). Depending on
the extent of the provided metadata, the user can select additional
features to be used as independent covariates for a Cox regression
model that tests whether these features are associated with the time
to event.

Further instructions on how to generate and format the input
data, test data in order for the user to familiarize themselves with the

dashboard, and instructions on how to install the R package and run
the application are available at the GitHub repository of
VariantSurvival.

2.2 The dashboard interface

The VariantSurvival shiny application is designed as a
standalone dashboard. Its functionality is grouped into three
primary web browser-like tabs.

2.2.1 Select Target Gene tab
The first tab of the application that is on display by default is

Select Target Gene. This tab is primarily designed for user interaction
and feature selection from the metadata. On the left panel (Figure 1),
the user must select from multiple dropdown menus. The topmost
dropdown menu provides a selection of diseases. The initial release
of the application is focused on neurodegenerative diseases. The full
list of diseases can be found in Section 1.2 of the Supplementary
Material. When selecting a disease, the dashboard immediately
displays a list of genes that have previously been associated with
the disease based on the ClinGen database (Rehm et al., 2015). To
continue with an analysis of a certain gene, the user must select the
metadata first. This way VariantSurvival can connect the list of genes
with a clinical trial group. For the remaining dropdown menus, the
user must select the corresponding features from the metadata sheet.
Mind that the time factor unit must be set accordingly. The features
selected for the trial group factor and dead/alive factor must be

FIGURE 3
Select Target Gene panel to select a gene associated with the disease of interest. The tally displays the absolute number and relative proportion of
participants affected by SVs in the target gene for the placebo and treatment groups.
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binary features in the metadata. An example of feasible features is
shown in the section Exemplary case and in the online material.

Once all dropdown menus are set, the Summary panel is filled
with data. At the top, a table summarizes the number of patients
whose genomes contain SVs in any of the genes associated with the
selected neurological condition. A search bar aids the lookup for
target genes of interest. At the bottom, the user can select one certain
gene of interest associated with the disease. For the selected gene, the
panels underneath display quantities, histograms, and sample IDs of
patients whose genomes contain SVs in the corresponding gene
region. Moreover, a histogram in the Structural Variants
Distribution panel shows the quantity of SVs in each patient and
treatment group.

2.2.2 Kaplan–Meier tab
The second tab of the dashboard is Kaplan–Meier and displays

survival functions according to the Kaplan–Meier product limit
estimator (Kaplan and Meier, 1958).

The Kaplan–Meier tab consists of two data panels. The Null
model panel shows the survival function of all data points,
presenting a baseline survival probability over time. The Multiple
model panel shows the data separated by the treatment group and

the presence or absence of structural variants in the patients’
target gene.

The small red cogwheel in the top left corner, visible only on the
Multiple model panel, provides additional settings to fine-tune data
visualization. For instance, the user can constrain the minimum or
maximum number of observed variants in a target gene, add
confidence intervals, or display a risk table that summarizes the
counts of each individual group. Below the plot window, the user can
also inspect the life table, listing all numeric values corresponding to
the function graphs in detail. The life table is separated into two
panels: one for the group of patients with SVs and one for the group
of patients without SVs in the target gene.

2.2.3 Cox regression tab
The third tab of the dashboard is Cox regression. In this tab, the

user can select numerical and categorical covariates for a Cox
proportional hazards model (Cox, 1972). Subsequently, its effect
parameters are estimated, and the hazard ratio is reported for every
selected covariate. Similar to the Kaplan–Meier product limit
estimates, the results are listed and separated into a Standard
model and a Multiple model using all patient data or the data are
separated by the presence or absence of structural variants in the

FIGURE 4
Histogram of participants affected with SVs. The abscissa denotes the number of SVs in the target gene. The proportion in red denotes the placebo
group; the proportion in blue denotes the treatment group.
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patients’ target gene. Section 1.1 of the Supplementary Material
contains a mathematical description of the SV aware of the Cox
proportional hazards model.

2.3 Exemplary case

To demonstrate the functionality and usability of
VariantSurvival, we present an exemplary case of investigating
one specific target gene in a cohort of anonymized clinical
samples. The participants in the clinical trial are separated into a
placebo group and treatment group, where the members of each
group were either not exposed to a drug treatment or received the
drug, respectively. DNA samples from all patients in the study were
extracted and sequenced using an Illumina NGS assay. A genomic
dataset of paired-end short-read WGS data was provided for each
patient. For each genomic dataset in this case study, we generated a
set of predicted SVs, detected using the Illumina ExpansionHunter
tool (Dolzhenko et al., 2017). In addition, all individual sets of SVs
were merged into one joint set of SVs of the entire cohort. Each
structural variant in the joint set of SVs is annotated with Ensembl
gene identifiers if it matches a corresponding gene region. The
online material of VariantSurvival contains documentation on how
to replicate this data preparation.

In our case, we investigated the SETX gene, e.g., as found in
association with motor neurone disease (Al Khleifat et al., 2022) or
the Charcot–Marie–Tooth syndrome (Yoshimura et al., 2019). It
should be emphasized that a gene associated with risk does not
necessarily imply an effect on survival. First, all the dropdown
menus in the Select Target Gene tab are set (Figure 2). We select

the Charcot–Marie–Tooth syndrome and select the feature
“patient_ID” from the metadata sheets as participant ID. The
time factor for the Kaplan–Meier product limit estimator is
selected as the “time to death or last follow-up in years” from
the metadata features. The time factor unit is set to years
accordingly. The binary metadata features “Phenotype” and
“survival.status_bin” are selected for the clinical trial group factor
and alive/dead factor, respectively.

With all the dropdown menus properly set, the Select Target
Gene tab displays a table of associated biomarkers. From the column
of gene symbols, we can choose and focus on one gene and select it in
the dropdown menu below. In this exemplary case, the SETX gene is
selected (Figure 3). The information summary reports
43 participants from the clinical trial that carry a variant allele in
the SETX gene, including seven participants from the placebo group
and 36 participants from the treatment group.

In the Structural Variants Distribution panel (Figure 4), the
dashboard displays a histogram with the number of patients for each
SV found in the SETX gene. Here, 36 out of 50 participants in the
treatment group have at least three SVs in the SETX gene.

The second tab of the dashboard, i.e., Kaplan–Meier, displays
the survival functions (Figure 5). For both the placebo and treatment
groups, two survival functions are computed for the subgroups of
participants as either carrying or not carrying SVs in the selected
SETX gene. The graphs indicate two factors of longevity according to
the clinical trial data. First, from the participants of the placebo
group who were affected by SVs in the target gene, none survived
longer than 5 years after their medical condition was reported. In
contrast, the corresponding treatment group contains participants
(three as listed in the table) surviving longer than 5 years. Second,

FIGURE 5
Survival functions according to the Kaplan–Meier product limit estimates. The four functions represent participants of the placebo group not
affected by SVs in the target gene (pink), participants of the placebo group affected by SVs (teal), participants of the treatment group not affected by SVs
(purple), and participants of the treatment group affected by SVs (blue).

Frontiers in Bioinformatics frontiersin.org06

Krannich et al. 10.3389/fbinf.2023.1277923

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1277923


participants in the placebo group that are not affected by SVs in the
target gene have a higher survival probability of more than 5 years
after the condition was reported than the participants in the placebo
group affected by SVs in the target gene. Moreover, a minor drop in
treatment efficiency can be observed between the treatment groups.
Altogether, the observations from the data indicate a positive
response to treatment compared to the baseline placebo effect as
well as an obtrusive effect of SVs in the target gene on the response to
treatment.

With the Cox regression tab, we can investigate the impact of the
selected features on survival. Here, we investigate whether the age at
onset is an explanatory numerical covariate. As shown in Figure 6,
the age at onset has a hazard ratio of 1.02 in the group of participants
with SVs affecting the target gene. For a continuous covariate, the
hazard ratio indicates the change in the risk of death with a change in
the reference unit by 1 (Zwiener et al., 2011). Here, the reference unit
is time in years, i.e., an increase by 1 year in age at onset increases the
risk of death by two percent.

It is important to mention that this particular exemplary case is
presented on simulated data (Gaastra et al., 2016) to solely
demonstrate the functionality of VariantSurvival. The treatment
groups of participants were assigned to simulate a successful clinical

trial. The numbers, figures, and data shown in this section should
not be used for medical recommendations or decision-making.

3 Discussion

3.1 Summary

VariantSurvival is a lightweight and user-friendly dashboard
that allows the exploration of the prognostic potential of genes and
gene sets in a broad range of neurological conditions. This will assist
in developing markers to predict treatment response in clinical trials
that might lead to the identification of specific treatment groups.

The ability of VariantSurvival to assess the effects of non-
implicated genes on survival outcomes in neurodegenerative
diseases highlights its adaptability and broader utility.
Researchers can use the tool to explore novel gene–survival
relationships, potentially leading to new insights and hypotheses
in the field of neurodegenerative research. This versatility makes
VariantSurvival a valuable resource, not only for studying structural
variants but also for investigating various gene contributions to
survival in diverse disease contexts.

FIGURE 6
Age at onset in years selected as a feature to determine the Cox proportional hazards ratio.
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3.2 Limitations

The current version (v0.1.1) of the application is limited to
neurodegenerative diseases. Furthermore, the dashboard is currently
designed and tailored to solely process large genomic structural
variants from input data.

3.3 Outlook

Future directions for the extension of VariantSurvival include the
support for additional types of variants (SNVs and indels) and omics
data (methylation assay, RNA data, and the retrovirus database (Pačes
et al., 2002)). Furthermore, our aim is to extend the scope of
VariantSurvival to address other types of medical conditions
(cancer, psychological disorders, etc.). Together with an extended
spectrum of medical conditions, we aim to automate the updates of
target gene lists and to move on from manual batch updates.
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