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RNA accessibility is a useful RNA secondary structural feature for predicting RNA-
RNA interactions and translation efficiency in prokaryotes. However, conventional
accessibility calculation tools, such as Raccess, are computationally expensive and
require considerable computational time to perform transcriptome-scale analysis.
In this study, we developed DeepRaccess, which predicts RNA accessibility based
on deep learning methods. DeepRaccess was trained to take artificial RNA
sequences as input and to predict the accessibility of these sequences as
calculated by Raccess. Simulation and empirical dataset analyses showed that
the accessibility predicted by DeepRaccess was highly correlated with the
accessibility calculated by Raccess. In addition, we confirmed that
DeepRaccess could predict protein abundance in E.coli with moderate
accuracy from the sequences around the start codon. We also demonstrated
that DeepRaccess achieved tens to hundreds of times software speed-up in a GPU
environment. The source codes and the trainedmodels of DeepRaccess are freely
available at https://github.com/hmdlab/DeepRaccess.
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1 Introduction

RNAmolecules play crucial roles in the regulation of diverse cellular processes, and their
regulatory functions are closely linked to their structures (Mortimer et al., 2014). For
example, tRNAs have to form cloverleaf secondary structures and L-shaped tertiary
structures in order to function properly during translation. As another example, in
prokaryotic translation, the RNA region upstream of the start codon has a function to
regulate protein abundance, and the level of abundance decreases when the region takes a
stem structure (de Smit and van Duin, 1990). Accordingly, many experimental and
computational studies have been carried out to analyze RNA structures in order to
elucidate the relationships between the structures and functions (Bonilla et al., 2022;
Wayment-Steele et al., 2022). In particular, computational analyses of RNA secondary
structures are frequently performed because of their low cost, moderate accuracy, and high
speed (Reuter and Mathews, 2010; Lorenz et al., 2011; Huang et al., 2019; Sato et al., 2021;
Fukunaga and Hamada, 2022; Sato and Hamada, 2023).

RNA accessibility is one of the secondary structural features and is defined as the energy
required for an RNA region not to form a stem structure. The accessibility is used to predict
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RNA-RNA interactions (Agarwal et al., 2015; Fukunaga and
Hamada, 2017; Mann et al., 2017) and translation efficiency in
prokaryotes (Terai and Asai, 2020) because these molecular
processes are more likely to occur when the RNA region of
interest is single-stranded. Therefore, several software programs
have been developed to calculate the RNA accessibility (Bernhart
et al., 2006; Lu and Mathews, 2008; Bernhart et al., 2011; Kiryu et al.,
2011; Lange et al., 2012). Some of these programs used a local folding
approach, which reduces computational time by ignoring long-
distance base pairs (Bernhart et al., 2006; Kiryu et al., 2011;
Lange et al., 2012). However, current methods are still too
computationally expensive for transcriptome-scale analysis, and
thus the development of faster methods for calculating
accessibility is an essential research topic. In general, one of the
powerful approaches to speed up the calculation is parallel
computing, and several parallel algorithms have now been
proposed for RNA secondary structure analysis (Fekete et al.,
2000; Kawaguchi and Kiryu, 2016). However, the parallel
algorithms for RNA secondary structure analysis have not been
fully explored, especially in parallel computations using GPUs (Rizk
and Lavenier, 2009). This is because most algorithms for RNA
secondary structure analysis are based on dynamic programming,
which is difficult to parallelize.

In recent years, machine learning-based software acceleration
has attracted attention in computer simulation (Um et al., 2020;

Kochkov et al., 2021; Sun et al., 2023). Some of these methods used
running results of a slow but accurate simulator as training data, and
constructs a predictive model that reproduces the simulation results.
Since the run of the predictive model is generally much faster than
that of the simulator, the accurate predictive model can be seen as a
fast alternative to the simulator. In particular, deep learning-based
methods have the advantage of using GPUs efficiently based on the
deep learning libraries without the need to build specialized
algorithms. Machine learning-based acceleration is beginning to
be used in bioinformatics, such as phylogenetic tree construction
(Azouri et al., 2021) and sequence alignment score calculation
(Zheng et al., 2019; Corso et al., 2021; Girgis et al., 2021; Chen
et al., 2022). However, there is no research on the application to
RNA secondary structure analysis.

In this study, we developed DeepRaccess, a fast accessibility
prediction tool based on deep learning-based software
acceleration. We confirmed that DeepRaccess could reproduce
the results of an existing RNA accessibility calculation method
with high accuracy on both simulation and empirical datasets. We
also demonstrated that the accessibility calculated by DeepRaccess
was moderately correlated with protein abundance in E. coli.
Finally, we verified that DeepRaccess was significantly faster
than an existing method on various datasets in a GPU
environment.

2 Materials and methods

2.1 Overview of the DeepRaccess software

DeepRaccess is a machine learning predictor whose input is an
RNA sequence and whose output is the accessibility in subregions of
the sequence. Figure 1 shows an overview of the DeepRaccess
approach. The subregion length la is fixed in the training step,
and the accessibility of all subregions with the length la are the
output. When users require the accessibility with a different length
la, they have to redo the training of the prediction model. In this
study, we used 35 as the default value for la. Note that this value has
been used to predict prokaryotic translation efficiency in a previous
study (Terai and Asai, 2020).

The training datasets consisted of RNA sequences as the input
and the accessibility as the target values. The RNA sequences were
artificially generated (the details are described in Section 2.3), and
the accessibility was calculated from the input RNA sequences using
Raccess (Kiryu et al., 2011). Raccess adopts a local folding approach
that speeds up the computation by ignoring base pairs spanning
more than W bases, and can compute the accessibility of all
subregions based on a secondary structure score model for a
fixed la length. The computation is based on dynamic
programming, and the time complexity is O(NW2) where N is
the sequence length. In this study, we used the CONTRAfold
model as the score model because of its high accuracy (Do et al.,
2006), and used 100 as the default value of W. Note that Raccess is
the only software that can compute the accessibility for long
sequences in a reasonable time under the numerically stable
computation. The source code for Raccess is not available from
the link given in the original Raccess paper, but can be downloaded
from the following link: https://github.com/gterai/raccess.

FIGURE 1
The schematic illustration of the DeepRaccess approach.
DeepRaccess first trains a model to predict accessibility. The training
dataset was composed of artificial RNA sequences and their
corresponding accessibility calculated by Raccess. DeepRaccess
then rapidly predicts the accessibility of empirical RNA sequences
based on the trained predictive model.
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We set the maximum sequence length in the training dataset to
440, which is the value used in RNABERT (Akiyama and Sakakibara,
2022). We therefore could not predict the accessibility of sequences
longer than 440 bases by merely applying DeepRaccess without any
modifications. Therefore, for such a long sequence, we predicted the
accessibility based on the following procedures. First, DeepRaccess
divides the sequence into 440-base subsequences by shifting the
window by 330 bases. This means that neighboring subsequences
overlap by 110 bases. DeepRaccess then predicted the accessibility of
these subsequences and integrated them with the accessibility of the
full-length RNA. Specifically, because the accuracy of RNA
accessibility declines in regions near the sequence end points
(Kiryu et al., 2011), we ignored the accessibility of the 55-base
region from the end of each subsequence in the overlapped region.

2.2 Neural network architecture

We used deep neural networks as the predictor. We implemented
four representative network architectures using PyTorch and compared
their prediction accuracy: 1) Fully Convolutional Network (FCN) (Long
et al., 2015), 2) U-Net (Ronneberger et al., 2015), 3) Bi-directional
Encoder Representations from Transformers (BERT) (Devlin et al.,
2018) and 4) RNABERT (Akiyama and Sakakibara, 2022).
Supplementary Tables S1–S4 show the details of each network
architecture, respectively. We set the epoch and batch sizes to ten
and 256, respectively. We also used AdamW as the optimizer and the
values used by RNABERT as the hyperparameters of the optimizer.

The input RNA sequences are embedded into numerical vectors
and fed into the neural networks. The FCN and U-Net models used
token embedding. This embedding first randomly generates six 120-
dimensional numerical vectors corresponding to each of the six
states: four RNA bases (A, C, G, U), one undetermined nucleotide
(N) and padding. The resulting vectors are then assigned to each
state in the input sequences. The BERT and RNABERT models used
positional embedding in addition to token embedding. In this
embedding, 120-dimensional numerical vectors corresponding to
each position in the sequences are randomly generated. Finally, the
values of the two embedding results are summed for each base.

We briefly review each network architecture. FCN is a type of
CNN architecture that is widely used for image segmentation. FCN
does not use fully connected layers and is composed only of
convolutional layers. We used a network of 40 convolutional
layers with constant channel and unit sizes as the FCN model.
U-Net is a variant of FCN, and consists of three parts, bottom-up
path, bottleneck, and top-down path. The data is downsampled in
the bottom-up path, the computation is performed in convolutional
layers with the smallest unit sizes in the bottleneck, and the data is
upsampled in the top-down path. The essential feature of U-Net is
that the layers on the bottom-up and top-down paths have skip
connections. For the U-Net model, we used a network consisting of
3, 35, and 3 layers on the bottom-up path, bottleneck, and top-down
path, respectively. BERT was originally developed for natural
language processing and is a model in which transformer layers
are stacked several times. In this study, we stacked six transformer
layers. Transformer can incorporate positional information of
elements into the model by using the attention mechanism.
RNABERT is a BERT model pre-trained on 76,237 human small

ncRNAs in the RNAcentral database (Petrov et al., 2017). Both RNA
sequence and structural information were embedded in the learned
representation of RNABERT. We fine-tuned the pre-trained
RNABERT model in the same way as other models were trained.

2.3 Training datasets

All sequence data used for training were artificially generated.
We generated the sequences using two methods: 1) uniform base
sampling to generate RNAs that lack strong stem structures and 2)
sampling to generate RNAs with strong stem structures similar to
small ncRNAs. In this paper, we refer to these methods as the
uniform and the structured RNA sampling methods, respectively.

In the uniform sampling method, we first determined the
sequence length N by sampling from the uniform distribution
unif(100, 440). The bases in the sequences were sampled from
the categorical distribution Cat(x|π) for the category (A, C, G, U,
N), and π was sampled from the Dirichlet distribution Dir(π|α = [1,
1, 1, 1, 0.1]). π was sampled once per sequence.

In the structured RNA sampling method, after generating a
sequence based on the uniform sampling method, we determined
the stem length l by sampling from unif(8, 48). We next selected the
length d of the region flanked between two stem regions from unif(3,
N − 2l).We also selected the start position of the first stem region from
unif(0, N − 2l − d). We then substituted the bases in the second stem
regions so that the bases were complementary to the bases of the first
region. When the base was G or U, whether the base formed a
Watson-Crick base pair or a wobble base pair was determined by the
Bernoulli distribution Bern(x|μ). μ was sampled from the Beta
distribution Beta(μ|α = 4, β = 1). After that, we substituted the
bases in the stem region to create internal loops, and whether a
base was substituted or not was determined by Bern(x|μ). Here, μ was
sampled from Beta(μ|α = 1, β = 15), and the base after the substitution
was sampled from Cat(x|π) using the uniform sampling method. We
also substituted the next base after the substituted base according to
Bern(x|μ), and μ was sampled from Beta(μ|α = 2, β = 1).

Using these two methods, we created two training datasets that
were a uniform RNA dataset and a structured RNA dataset. In the
former, all sequences were generated by the uniform sampling
method, while the latter contained half of each of the sequences
generated by the two sampling methods. We performed the training
on each of the two training datasets and created two predictive
models for each architecture. We used 10 million as the default
number of sequences per the training.

2.4 Test datasets and evaluation measure

We evaluated the prediction accuracy of DeepRaccess using
simulation test datasets and three empirical datasets: Rfam,
Gencode, and E.coli synthetic mRNA datasets. As the test
simulation dataset, we used a dataset generated in the same way
as the training data used for the trained model. We used
100 thousand as the number of sequences per the test dataset.
The Rfam dataset consisted of 3,105,149 sequences from the Rfam
14.9 database (Kalvari et al., 2021), and most of which are highly
structured. The Gencode dataset contains 142,379 transcripts in
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Gencode version M29 (Frankish et al., 2021). We have removed
sequences of less than 35 bases from this analysis. The E.coli
synthetic mRNA datasets consisted of 244,000 sequences with
120 bases around the start codon of synthetic mRNAs (Cambray
et al., 2018; Terai and Asai, 2020). We applied Raccess and
DeepRaccess to these datasets, and compared the accessibility
calculated by the methods. For the evaluation measure, we used
Spearman’s rank correlation coefficient (ρ) and normalized mean
square error (NMSE), which is the MSE divided by the target value.

To validate the usefulness of DeepRacess, we also evaluated its
predictive performance for prokaryotic translation efficiency. We
used the E. coli synthetic mRNA dataset for this analysis, and
calculated Spearman’s ρ between protein abundance and the
accessibility based on the DeepRaccess. For the comparison, we
used the accessibility calculated by Raccess, minimum free energy
(MFE) calculated by CONTRAfold (Do et al., 2006), and scores of
RBSDesigner (Na et al., 2010) and RBSCalculator (Salis, 2011).

We investigated the computational speed of DeepRaccess and
compared it to Raccess. Raccess and DeepRaccess were run in a
CPU-only environment (CPU: Intel(R) Xeon(R) Gold 6,148
2.1 GHz, memory: 8 GB). In addition, DeepRaccess was also run in

an environment where both CPU and GPU were available (CPU:
Intel(R) Xeon(R) CPU E5-2,698 v4 2.2 GHz, GPU: Tesla V100 DGXS
32GB×4, memory: 257GiB).

3 Results

3.1 Accuracy evaluation on simulation
datasets

We first evaluated the prediction accuracy of DeepRaccess using
simulation test datasets and compared the performances of different
neural network architectures. Table 1; Figure 2; Supplementary Figure
S1 show the prediction performances of DeepRaccess. We found that
the NMSEs were less than 0.25 and the Spearman’s ρs were greater
than 0.97 in all cases, suggesting that deep learning is effective in
predicting RNA accessibility. In addition, the scores based on the
structured RNA dataset were worse than those based on the uniform
RNA dataset in each architecture. The reason for the difficulty in
predictionmay be that the structured RNAdataset has a large variance
in the RNA accessibility. We also verified that the FCN was the best-

TABLE 1 Comparison of the prediction accuracy among the neural network architectures.

Architecture Uniform Structured

NMSE Spearman’s ρ NMSE Spearman’s ρ

FCN 0.0754 0.9943 0.1148 0.9876

U-Net 0.0984 0.9913 0.2400 0.9788

BERT 0.0912 0.9919 0.2472 0.9734

RNABERT 0.1076 0.9901 0.2442 0.9736

Normalised mean square error (NMSE) is theMSE divided by the target value. “Uniform” and “Structured”mean the evaluation result for the uniform and structured datasets, respectively. The

bold values are the highest scores among the neural network architectures.

FIGURE 2
Prediction accuracy of the FCN architecture for the simulation datasets [(A) the uniform RNA dataset and (B) the structured RNA dataset]. The x and
y-axes represent the accessibility calculated by Raccess and predicted accessibility, respectively. The color bar representing the counts is displayed using
a log scale.
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performing architecture in both datasets and therefore used the FCN
in the following analyses.

We next investigated the effect of the training data size on the
prediction performances using the structured RNA dataset
(Supplementary Table S5; Supplementary Figure S2). We confirmed
that the prediction accuracy improved as the data size increased, and
the accuracy had not yet converged even when the data size was
increased to 10million. Therefore, we should achieve higher prediction

accuracy when more sequences are used for the training dataset and
more time is spent on training. We also evaluated the effect of the
parameters la and W on the performances (Supplementary Table S6;
Supplementary Figure S3). We found that DeepRaccess had higher
performance when la was large. In addition, small W resulted in
accurate prediction. This may be because the RNA accessibility has
small variances and ranges when W is small.

3.2 Accuracy evaluation on the empirical
datasets

We then assessed whether DeepRaccess could predict the
accessibility of empirical RNA sequences using three datasets
(Table 2; Figure 3; Supplementary Figure S4). We verified that the
best predictor for each dataset had an NMSE of less than 0.23, and the
Spearman’s ρ was greater than 0.88 for all datasets. While the
predictive model trained on the uniform RNA dataset

TABLE 2 Prediction performances for the empirical datasets.

Uniform Structured

Dataset NMSE Spearman’s ρ NMSE Spearman’s ρ

Gencode 0.1352 0.9215 0.1422 0.9159

Rfam 0.5493 0.8721 0.2244 0.9044

E.coli 0.1186 0.8821 0.1520 0.8548

FIGURE 3
Prediction accuracy for the empirical datasets. (A) Prediction performances for the Gencode dataset of the predictive model trained on the uniform
RNA dataset and (B) the structured RNA dataset. (C) Prediction performances for the Rfam dataset of the predictive model trained on the uniform RNA
dataset and (D) the structured RNA dataset. The x and y-axes represent the accessibility calculated by Raccess and predicted accessibility, respectively.
The color bar representing the counts is displayed using a log scale.
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outperformed that trained on the structured RNA dataset for the
Gencode and E.coli synthetic mRNA datasets, the opposite trend was
found for the Rfam dataset. In addition, the prediction results on the
Rfam dataset had the highest NMSE of the three datasets. These
results are probably due to the fact that the Rfam dataset contains
many structured RNAs. Furthermore, for the Rfam and Gencode
datasets, we found some data has very low predicted accessibility
although the accessibility calculated by Raccess was large. This result
means that these regions were predicted to form few stems, even
though they actually have strong stem structures. In conclusion,
DeepRaccess was also able to predict RNA accessibility with high
accuracy for empirical RNA sequences, but its accuracy was
insufficient for highly structured RNAs.

We also evaluated the correlation between the protein abundance
in E.coli and the accessibility calculated by DeepRaccess (Table 3;
Figure 4; Supplementary Figure S5). We found that the Spearman’s ρ
by DeepRaccess trained with the uniform and the structured dataset
were 0.585 and 0.493, respectively, indicating that DeepRaccess could
predict the protein abundance with moderate accuracy. The
prediction accuracy of DeepRaccess trained with the uniform
dataset was lower than that based on the accessibility calculated by
Raccess, but comparable to that of the MFE score and higher than
those of RBSDesigner and RBSCalculator.

3.3 Evaluation of the computational speed

Finally, we evaluated the runtime of DeepRaccess. First, we
looked at the time taken to train the predictive model and found it to
be 2 days and 20 h in the GPU environment. This is not short but the
prediction model only needs to be trained once, and thus the long
time is not a practical bottleneck. Note that this training step is not
necessary when users are using trained models of DeepRaccess. We
next assessed the time taken to predict the RNA accessibility
(Table 4). In the CPU-only environment, DeepRaccess was not
necessarily faster than Raccess, and the superiority depended on the
datasets. On the other hand, DeepRaccess was tens to hundreds of
times faster in the GPU environment than Raccess in the CPU
environment. Although it should be noted that the environment in
which the computations were performed was different, we have
shown that DeepRaccess was extremely fast compared to Raccess.

4 Discussion

In the current study, we proposed DeepRaccess, a rapid RNA
accessibility prediction method based on the deep learning. We
evaluated the prediction accuracy and the computational speed of
DeepRaccess using the simulation and three empirical datasets. We
generated two training datasets, the uniform RNA datasets and the
structured RNA datasets. We validated that DeepRaccess had a high

level prediction accuracy while exhibiting significantly faster
performance on the GPU environment. When calculating the
accessibility of RNAs such as mRNAs and long ncRNAs,
DeepRaccess trained with the uniform RNA datasets was more
effective. On the other hand, when calculating the accessibility of
structured RNAs such as short ncRNAs, DeepRaccess trained with the
structured RNA datasets was preferable. In addition, we demonstrated
that the accessibility of regions around start codons of E.coli mRNA
calculated by DeepRaccess can predict the protein abundance.

Although DeepRaccess had high prediction accuracy, further
improvement in prediction performance is an essential issue. The
simplest approach is to increase the number of training data. In this
study, we used 10 million RNA sequences as our training data, but
we expect to improve the accuracy by using several billion RNA
sequences. While increasing data size is difficult in machine learning
for bioinformatics in general, our method allows unlimited data
growth by generating data through simulation. In addition, there is
scope for improvement in training data generation methods. In this
study, we employed two sampling methods: the uniform and
structured RNA sampling methods. We investigated how the
distribution of accessibility in our training dataset differs from
those in the empirical dataset (Supplementary Figure S6). As a
result, we found that our training datasets, even the structured RNA
dataset, tend to have lower accessibility values than empirical
datasets. We also investigated the relationship between
accessibility and NMSE, and found that there was a correlation

TABLE 3 Prediction performances for the protein abundance in the E.coli synthetic mRNA dataset.

Measure DeepRaccess (Uniform) DeepRaccess (Structured) Raccess MFE RBSDesigner RBSCalculator

Spearman’s ρ 0.585 0.493 0.709 0.605 0.440 0.540

The values of RBSDesigner and RBSCalculator were cited from (Terai and Asai, 2020).

FIGURE 4
Correlation between the protein abundance and the accessibility
calculated by DeepRaccess trained with the uniform RNA dataset. The
protein abundance was measured by fluorescence-activated cell
sorting and was normalized so that the minimum value was 1 and
the maximum value was 100 (Cambray et al., 2018). The x- and y-axis
represent the protein abundance and the accessibility, respectively.
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between higher accessibility and higher NMSE (Supplementary
Figure S7). This may be due to the lack of the data of strong
stem region in the dataset. Therefore, utilizing enhanced sequence
data generation methods that produce data more akin to empirical
RNA sequences should improve the prediction accuracy. Deep
generative models, such as generative adversarial networks
(Zrimec et al., 2022), should hold promise as potential methods.

Furthermore, the development of neural network architectures is
also a promising approach for improving accuracy. In this study, we
could not fully optimize the architecture due to time and
computational resource constraints. The current study is limited to
an initial investigation into identifying the most suitable model from
among various architectures, including FCN and BERT. Further
optimization of the architecture is an important research topic.
Given that we had not yet achieved convergence in prediction
accuracy when the data size was increased, the current architecture
may be overly complex. The development of lightweight architectures
with comparable accuracy to the current study should lead to the
faster computation of accessibility. As another example, Corso et al.
proposed that embedding in the hyperbolic space improves the
accuracy of predicting the edit distance between sequences (Corso
et al., 2021), and thus applying the non-Euclidean space may also be
useful in predicting RNA accessibility (Nickel and Kiela, 2017).

The computational speedup provided by the deep learning
method can be applied to the other secondary structural features
such as base pairing probabilities (McCaskill, 1990), structural
profiles (Fukunaga et al., 2014), and structural entropy (Garcia-
Martin and Clote, 2015). Each feature has been used to improve the
accuracy of RNA secondary structure prediction (Hamada et al.,
2009), to predict RNA-protein binding (Ishida et al., 2020), and to
evaluate the effect of base mutations on the structure (Kiryu and
Asai, 2012). In particular, the algorithm used to compute these
structural features taking into account pseudoknots is extremely
slow (Dirks and Pierce, 2003), and thus speeding up the method
through deep learning should be an important topic of future
research.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding authors.

Author contributions

KH: Data curation, Methodology, Software, Writing–review and
editing, Formal Analysis, Investigation. NI: Data curation,

Methodology, Software, Writing–review and editing. TF:
Conceptualization, Funding acquisition, Project administration,
Writing–original draft. MH: Conceptualization, Funding
acquisition, Project administration, Supervision, Writing–review
and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This work
was supported by JSPS KAKENHI Grant numbers: JP22H04891 and
JP23K16997 to TF; JP23H00509, JP22H04925, and JP20H00624 to
MH. This research was also supported by AMED under Grant
Numbers JP22ama121055, JP21ae0121049, and JP21gm0010008
(to MH).

Acknowledgments

Computations were performed on the NIG supercomputer at
ROIS National Institute of Genetics.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The author(s) declared that they were an editorial board
member of Frontiers, at the time of submission. This had no
impact on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fbinf.2023.1275787/
full#supplementary-material

TABLE 4 The run time evaluation on simulation and empirical datasets.

Program Simulation Gencode Rfam E.coli

Raccess 11h52m (628.3) 5d22h (82.0) 6d01h (183.5) 8h53m (201.1)

DeepRaccess: <CPU> 3h02m (160.3) 9d03h (126.5) 4d23h (149.9) 8h24m (190.1)

DeepRaccess: <GPU> 1m08s (1.0) 1h44m (1.0) 47m33s (1.0) 2m39s (1.0)

The rows indicate the run times and the run time ratio of each program to DeepRaccess <GPU> .
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