AUTHOR=Kyritsis Konstantinos A. , Pechlivanis Nikolaos , Psomopoulos Fotis TITLE=Software pipelines for RNA-Seq, ChIP-Seq and germline variant calling analyses in common workflow language (CWL) JOURNAL=Frontiers in Bioinformatics VOLUME=3 YEAR=2023 URL=https://www.frontiersin.org/journals/bioinformatics/articles/10.3389/fbinf.2023.1275593 DOI=10.3389/fbinf.2023.1275593 ISSN=2673-7647 ABSTRACT=

Background: Automating data analysis pipelines is a key requirement to ensure reproducibility of results, especially when dealing with large volumes of data. Here we assembled automated pipelines for the analysis of High-throughput Sequencing (HTS) data originating from RNA-Seq, ChIP-Seq and Germline variant calling experiments. We implemented these workflows in Common workflow language (CWL) and evaluated their performance by: i) reproducing the results of two previously published studies on Chronic Lymphocytic Leukemia (CLL), and ii) analyzing whole genome sequencing data from four Genome in a Bottle Consortium (GIAB) samples, comparing the detected variants against their respective golden standard truth sets.

Findings: We demonstrated that CWL-implemented workflows clearly achieved high accuracy in reproducing previously published results, discovering significant biomarkers and detecting germline SNP and small INDEL variants.

Conclusion: CWL pipelines are characterized by reproducibility and reusability; combined with containerization, they provide the ability to overcome issues of software incompatibility and laborious configuration requirements. In addition, they are flexible and can be used immediately or adapted to the specific needs of an experiment or study. The CWL-based workflows developed in this study, along with version information for all software tools, are publicly available on GitHub (https://github.com/BiodataAnalysisGroup/CWL_HTS_pipelines) under the MIT License. They are suitable for the analysis of short-read (such as Illumina-based) data and constitute an open resource that can facilitate automation, reproducibility and cross-platform compatibility for standard bioinformatic analyses.