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Background: Automating data analysis pipelines is a key requirement to ensure
reproducibility of results, especially when dealing with large volumes of data. Here
we assembled automated pipelines for the analysis of High-throughput
Sequencing (HTS) data originating from RNA-Seq, ChIP-Seq and Germline
variant calling experiments. We implemented these workflows in Common
workflow language (CWL) and evaluated their performance by: i) reproducing
the results of two previously published studies on Chronic Lymphocytic Leukemia
(CLL), and ii) analyzing whole genome sequencing data from four Genome in a
Bottle Consortium (GIAB) samples, comparing the detected variants against their
respective golden standard truth sets.

Findings: We demonstrated that CWL-implemented workflows clearly achieved
high accuracy in reproducing previously published results, discovering significant
biomarkers and detecting germline SNP and small INDEL variants.

Conclusion: CWL pipelines are characterized by reproducibility and reusability;
combined with containerization, they provide the ability to overcome issues of
software incompatibility and laborious configuration requirements. In addition,
they are flexible and can be used immediately or adapted to the specific needs of
an experiment or study. The CWL-based workflows developed in this study, along
with version information for all software tools, are publicly available on GitHub
(https://github.com/BiodataAnalysisGroup/CWL_HTS_pipelines) under the MIT
License. They are suitable for the analysis of short-read (such as Illumina-
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based) data and constitute an open resource that can facilitate automation,
reproducibility and cross-platform compatibility for standard bioinformatic
analyses.

KEYWORDS
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automation, reproducibility, reusability

Background

Over the past 2 decades, computational analysis has become a
key component of research, and especially in domains generating big
data such as life sciences. Reduction in costs, and advancements in
high-throughput methods and technologies resulted in the
generation of large amounts of data from different omics fields,
such as genomics, epigenomics and transcriptomics (Muir et al.,
2016). Many of these biological datasets are accessible to the
scientific community through databases, such as the European
Nucleotide Archive (ENA) (Leinonen et al., 2011a) and the
Sequence Read Archive (SRA) (Leinonen et al., 2011b), or large
consortia, such as the 1,000 Genomes (Auton et al., 2015) and The
Cancer Genome Atlas (TCGA) (Weinstein et al., 2013), with their
ease of access leading to significant discoveries. This plethora of
large-scale and diverse omics data is primarily driven by the
understanding that a single -omics type provides only a limited
view of the underlying complex biological mechanisms to gain
sufficiently meaningful insights. Therapeutic interventions in the
complex pathologies evident in common diseases, including cancer
or neurodegenerative disorders, require a systems-approach that
aspire to: i) unravel salient biological motifs coordinated by several
molecules, ii) deduce which changes between disease and control
groups are causative or simply a subsequent product of the disease,
and iii) reliably identify potential biomarkers and “druggable”
targets (Hasin et al., 2017; van Hasselt and Iyengar, 2019).

Reflecting the complexity of the bulk of High-throughput
Sequencing (HTS) generated data, the corresponding software tools
required for processing and analyzing them are equally advanced; they
often come with dependencies, such as requirements for pre-installed
software, expect a specific order of execution within a larger workflow,
and usually custom scripts are required to integrate them into
functional pipelines. Therefore, a considerable amount of time and
effort is dedicated to creating suitable computational environments,
where software pipelines aiming to analyze HTS data can be executed.
Moreover, it is quite common for software pipelines to be designed to
serve the needs of a specific study or experiment solely, therefore
extensively incorporating custom scripts, which are rarely designed
with sustainability in mind, and even including the occasional manual
step, such as manual file conversion to achieve format compatibility.
However, these practices should be avoided given that they: i) are
inefficient and error-prone, ii) hinder the reproducibility and
reusability of the workflow, and iii) lead to the need for further
time-consuming and laborious development in order to be reapplied
(Sandve et al., 2013).

It is now well known that reproducing published results and
reapplying peer-reviewed and publicly available software tools in
new experiments has become challenging and/or error-prone
(Baker, 2016; Collberg and Proebsting, 2016; Stupple et al., 2019),

with global efforts and initiatives explicitly targeting this.
Reproducibility and reusability, although often neglected, are
critical factors that computational biology tools and workflows
are called to satisfy when applied to biological research. Ideally,
scientific results should be reproducible, both by the original party
that performed the analysis and third-party peers, and software
pipelines should strive to be reusable for the analysis of novel data.
These characteristics increase productivity, build trust and
encourage the wider scientific community to adopt a particular
software tool.

A solution for mitigating issues on reproducibility and
reusability is the utilization of formal workflow languages and
standards, such as the Common Workflow Language (CWL), an
open standard describing and implementing the creation of data
analysis workflows (Chapman et al., 2016). A major advantage of
CWL is that it is platform-independent, meaning that CWL
workflows can be executed on any platform, be it a local
machine, a cluster, or a cloud-based infrastructure. This makes
CWL workflows highly portable and allows for seamless
execution across different computing environments. Furthermore,
CWL is designed to be interoperable with other bioinformatics tools
and platforms, allowing integrating different tools and software,
making it easier to develop complex workflows that can handle a
wide range of data types. CWL also provides a flexible and expressive
syntax for defining workflows. This allows users to define their
workflows in a variety of programming languages, including YAML,
JSON, and Python, making it easy for users with different
backgrounds to adopt and use the platform. Notably, CWL
workflows are designed to be reproducible, ensuring that the
results obtained from a workflow are consistent across different
computing environments, making it easier to reproduce and validate
results across third-parties. There is a large and active community
that provides support and development for CWL and the standard
itself is supported by workflow frameworks such as Toil (Vivian
et al., 2017). This ensures that CWL constantly improves and
evolves, with new features and functionalities being added
regularly. Taking a step further in resolving potential issues
regarding software dependencies and compatibility, CWL also
supports the execution of operations using Docker containers
(Merkel, 2014). Docker is a containerization platform that allows
for packaging an application along with its dependencies and
running it in a self-contained unit called a container. Docker
containers can run on any machine that has Docker installed,
regardless of the underlying operating system or hardware. This
makes it easy to move applications between environments, from
development to production or from one cloud provider to another.

Here, we established automated software pipelines for analyzing
RNA-Seq, ChIP-Seq and Germline variant calling experiments using
CWL v1.0. Through the analysis of publicly available Illumina short-
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read data, we recapitulate major findings of previous studies on
Chronic Lymphocytic Leukemia (CLL) and report high
performance in germline variant calling using samples from the
Genome in a Bottle (GIAB) Consortium, thus validating
functionality and reproducibility for each software pipeline.

CLL is a heterogeneous, slow-growing type of cancer that
develops when abnormal B-lymphocytes accumulate in the bone
marrow and blood. These malignant cells can interfere with the
production of normal blood cells, leading to anemia, infections, and
bleeding disorders. CLL is the most common subtype of leukemia in
adults of the western countries, accounting for approximately 30%
of all cases of leukemia (Redaelli et al., 2004). The events leading to
malignant transformation are gradually becoming known, with large
chromosomal rearrangements, such as trisomy 12, being the
probable cause of disease initiation and further accumulating
somatic mutations contributing to disease aggressiveness (Landau
et al., 2015). CLL patients can be distinguished in two categories with
markedly different behavior and outcome based on the somatic
hypermutation (SHM) status of the clonotypic stereotyped B cell
receptors (BcR). Specifically, patients with no or few SHMs in their
immunoglobulin heavy variable (IGHV) genes (“unmutated” CLL;
U-CLL) experience a significantly more aggressive disease than
those with a significant SHM load (“mutated” CLL; M-CLL)
(Damle et al., 1999; Hamblin et al., 1999; Papakonstantinou
et al., 2019).

The GIAB project is a collaborative effort led by the National
Institute of Standards and Technology (NIST) to develop reference
materials and methods for accurately measuring human genome
sequences. The project aims to provide a set of well-characterized
genomic reference materials that can be used to evaluate the
performance of genomic sequencing technologies and inform the
development of new methods for genomic analysis (Zook et al.,
2014; Zook et al., 2016). The usefulness of the GIAB project lies in its
ability to improve the accuracy and reliability of genomic
sequencing, which is essential for applications such as
personalized medicine, disease diagnosis, and drug development.
Open access to standardized reference materials and methods allows
for researchers to better compare and validate different sequencing
technologies, which in turn improves the quality and consistency of
genomic data. This can lead to more accurate diagnoses, more
effective treatments, and a deeper understanding of the genetic
basis of disease.

The CWL Command Line Tools and Workflows designed here
were rigorously tested and validated for their performance and
functionality on publicly available CLL and GIAB HTS data. All
CWL-based software tools use Docker containers to automate
software installation and confer cross-platform portability, and
can be adopted for applications across various fields in biological
sciences.

Results

HTS data analyses for CLL cases

CWL workflow for RNA-Seq
The pipeline for the processing of RNA-Seq data integrates

several tools into a complete CWL workflow (Supplementary Figure

S1), which receives as input raw FASTQ files from RNA-Seq
experiments. The initial quality control of Illumina reads is
performed using FastQC (Andrews et al., 2012) and trimming of
the reads (e.g., removal of adapter and/or low quality sequences) is
done using Trim galore (Krueger et al., 2021). An optional step for
custom processing of the reads using FASTA/Q Trimmer (part of
the FASTX-toolkit) (Hannon, 2010) is available at this point. The
pre-processed reads are then mapped to the reference genome using
HISAT2 (Kim et al., 2019) and samtools software (Li et al., 2009;
Danecek et al., 2021) is used to convert mapped reads from SAM
(Sequence Alignment Map) to BAM (Binary Alignment Map)
format, and sort mapped reads based on chromosomal
coordinates. Subsequently, two independent workflows are
implemented for differential expression analysis at the transcript
and gene level. First, following the reference protocol for HISAT,
StringTie and Ballgown transcript expression analysis (Pertea et al.,
2016), the program StringTie along with a reference transcript
annotation GTF (Gene Transfer Format) file (if one is available)
is used to:

I. Assemble transcripts for each RNA-Seq sample using the
previous read alignments (BAM files)

II. Generate a global, non-redundant set of transcripts observed in
any of the RNA-Seq samples

III. Estimate transcript abundances and generate read coverage
tables for each RNA-Seq sample, based on the global,
merged set of transcripts (rather than the reference) which is
observed across all samples

The Ballgown program (Frazee et al., 2015) is then used to load
the coverage tables generated in the previous step and perform
statistical analyses for differential expression at the transcript level.
Notably, the StringTie - Ballgown protocol applied here was selected
to include potentially novel transcripts in the analysis. Second, the
featureCounts software (Liao et al., 2014) is used to count reads that
are mapped to selected genomic features, in this case genes by
default, and generate a table of read counts per gene and sample.
This table is passed as input to the DESeq2 tool (Love et al., 2014) to
perform differential expression analysis at the gene level. Ballgown
and DESeq2 R scripts, along with their respective CWL wrappers,
were designed to receive various parameters as input, such as
experimental design, contrasts of interest, numeric thresholds,
and hidden batch effects.

Differential gene expression analysis between CLL
stereotyped subsets 6 and 8

To validate the effectiveness of the CWL RNA-Seq workflow, we
attempted to reproduce the analysis by Papakonstantinou et al.
(Papakonstantinou et al., 2019). Specifically, we re-analyzed RNA-
Seq data (150 bp long, paired-end reads), produced by the NextSeq
500 Illumina platform, for two well-characterized clinically
aggressive CLL subgroups, namely, stereotyped subsets #6
(IGHV1-69/IGKV3-20) (n = 5) and #8 (IGHV4-39/IGKV1(D)-
39) (n = 4) (Papakonstantinou et al., 2019). These subgroups are
characterized by the presence of similar or “stereotyped” BcRs,
indicating that the cancer cells have originated from a common
precursor cell (clonal populations). Both stereotyped subsets #6 and
#8 belong to the U-CLL category of CLL patients and present
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similarities beyond their SHM status. However, subset #6 has been
reported to follow a more indolent course (Forconi et al., 2010) than
subset #8, with the latter being more aggressive and exhibiting the
highest risk of Richter transformation among all CLL cases (Rossi
et al., 2009). The RNA-Seq data that were re-analyzed with our

workflow concern total RNA from negatively selected CD19+ B-cells
or peripheral blood mononuclear cells (PBMCs), which were
isolated from CLL patients.

Following pre-processing and differential gene expression
analysis with the RNA-Seq workflow, we detected
99 differentially expressed genes (log2FC ≥ 1, p-value ≤0.05),
38 of which were common to the 321 differentially expressed
genes reported by the original study using the same filtering
criteria (Supplementary Figure S2). Notably, we successfully
detected as differentially expressed, between subsets #6 and #8,
the 7 genes (namely, BTNL9, CHDH, CTLA4, IL21R, SH3BP4,
ZAK, and TP63), with the exception of IL21R having log2FC ≥ 1
(~2) but p-value ~0.15, that were detected to be differentially
methylated and expressed in the original study (Figure 1;
Figure 2). It is of note that we successfully detected the
differentially expressed TP63 (FDR-adjusted p-value <0.001), as
this gene was reported to be hypomethylated and overexpressed
in subset #8, and its encoded protein (p63) was shown to act as a
pro-survival factor in CLL models in vitro (Papakonstantinou et al.,
2019).

CWL workflow for ChIP-Seq
Similarly to the CWL-based RNA-Seq pipeline, the pipeline for

processing of ChIP-Seq data integrates various tools and receives
raw FASTQ files as input (Supplementary Figure S3). The initial
quality control of Illumina reads is performed using FastQC, while
the trimming processes are executed using Trimmomatic (Bolger
et al., 2014). The pre-processed reads are then mapped to the
reference genome using HISAT2 and samtools is used to convert
mapped reads from SAM to BAM format, sort mapped reads based

FIGURE 1
Bar plot showing the Log2 fold changes (y-axis) in expression
levels for seven genes (BTNL9, CHDH, CTLA4, IL21R, SH3BP4, ZAK,
TP63) (x-axis) that were detected to be differentially methylated and
expressed in the original study (genes of interest), following
comparisons between CLL stereotyped subsets #6 and #8 [#6
(numerator) vs. #8 (denominator)] using the CWL-based RNA-Seq
workflow. Both published and CWL-based RNA-Seq workflow results
follow the same pattern of expression differences for all genes of
interest (Papakonstantinou et al., 2019).

FIGURE 2
Visualizing the results of the differential gene expression analysis performed by CWL-based RNA-Seq pipeline using the RNA-Seq data of CLL
stereotyped subsets #6 and#8 [#6 (numerator) vs. #8 (denominator)]. The volcano plot displays the results of the differential gene expression analysis for
all genes. Genes of interest, that were detected to be differentially methylated and expressed in the original study, are highlighted to display the
statistically significant levels of differential expression. Among them is TP63, which was reported to act as a pro-survival biomarker for CLL subset
#8 cells (Papakonstantinou et al., 2019).
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on read names, add information regarding paired-end reads (e.g.,
CIGAR field information), resort based on chromosomal
coordinates, remove duplicate reads and create indexes on
coordinate-sorted BAM files for fast random access. At this
point, quality metrics and files for inspecting the mapped ChIP-
Seq reads, considering the experimental design, are produced
independently using deeptools2 (Ramírez et al., 2016). Briefly:

I. Read coverages for genomic regions of two or more BAM files
are computed (multiBamSummary). The results are produced
in compressed numpy array (NPZ) format and are used to
calculate and visualize pairwise correlation values between the
read coverages (plotCorrelation).

II. Estimation of sequencing depth, through genomic position
(base pair) sampling, and visualization is performed for
multiple BAM files (plotCoverage).

III. Cumulative read coverages for each indexed BAM file are
plotted by counting and sorting all reads overlapping a
“window” of specified length (plotFingerprint).

IV. Production of coverage track files (bigWig), with the coverage
calculated as the number of reads per consecutive windows of
predefined size (bamCoverage), and normalized through various
available methods (e.g., Reads Per Kilobase per Million mapped
reads; RPKM). The coverage track files are used to calculate
scores per selected genomic regions (computeMatrix), typically
genes, and a heatmap is produced based on the scores associated
with these genomic regions (plotHeatmap).

Subsequently, the process of calling potential binding positions
(peaks) to the genome (peak calling) is executed using MACS2
(Zhang et al., 2008), which produces a series of BED (Browser
Extensible Data) files in different formats.

Central part of the CWL ChIP-Seq workflow is the differential
binding analysis, which aims to detect epigenetic changes, such as
altered levels of transcription factor binding or histone
modifications, that are connected to different experimental
conditions (phenotypic traits, different drug treatments, etc.). For
this purpose, quality control of ChIP-Seq data is performed with
ChIPQC (Carroll et al., 2014) and differential binding analysis is
executed, using by default the narrowPeak (BED) files produced by
MACS2, with DiffBind (Ross-Innes et al., 2012). Furthermore, the
ROSE (Rank Ordering of Super-Enhancers) software was integrated
into the workflow for detecting regions which act as super-
enhancers (Lovén et al., 2013; Whyte et al., 2013). Super-
enhancers are defined as genomic regions with high
concentration of enhancer elements that are considered to be
functionally clustered and act synergistically to regulate the
transcription of genes involved in critical functions such as cell
differentiation (Lovén et al., 2013; Whyte et al., 2013). The detection
of super-enhancers by ROSE is followed by repetition of the
ChIPQC and DiffBind analyses solely for these regions. In
addition, for the application of custom analyses on MACS2 peak
calling results, a table containing the total number of reads per peak
(rows) and for all samples (columns), is generated by utilizing
bedtools (Quinlan and Hall, 2010) software and integrating a
series of independent steps in the workflow. It is worth noting
that wherever is necessary, the option of removing peaks
overlapping with known, problematic regions of the genome

(i.e., blacklisted regions) (Amemiya et al., 2019) is provided to
avoid miscalculations, such as overestimation of peak intensity,
and wrong interpretation of the results.

Differential binding analysis between CLL
subgroups with mutated and unmutated IGHV
gene status

The CWL ChIP-Seq workflow was tested by re-analyzing ChIP-
Seq data (50 bp long, paired-end reads), produced by the HiSeq
2000 Illumina platform, for different subgroups of CLL patients that
are distinguished by the presence (M-CLL) or absence (U-CLL) of
IGHV gene mutations. Specifically, we attempted to reproduce the
analysis of Kosalai et al. (Kosalai et al., 2019) on samples that
originate from the peripheral blood of M- and U-CLL patients and
were subjected to immunoprecipitation for EZH2 methyltransferase
and H3K27me3 histone modification, to identify sites where
EZH2 binds and catalyzes the H3K27me3 modification with
different efficiency between the aggressive U-CLL (n = 6) and the
more indolent M-CLL (n = 6) (Kosalai et al., 2019).

The CWL ChIP-Seq workflow proved effective in detecting the
statistically significant, differential binding of EZH2 to the promoter
region of the IGF1R gene in U-CLL compared to M-CLL (FDR-
adjusted p-value <0.001 for peaks chr15:98650048-98650448 and
chr15:98648126-98648526) (Figure 3 and Supplementary Figure
S4), while at the same time the levels of H3K27me3 remained
unchanged between the two subgroups for the same region
(Supplementary Figure S5). These results reflect the main
findings of the published study, where it was shown that IGF1R
is non-canonically activated in U-CLL through the EZH2-mediated
recruitment of MYC in its promoter, resulting in further activation
of the PI3K pathway (Kosalai et al., 2019).

FIGURE 3
Boxplot displaying the differential binding of
EZH2methyltransferase in the region of IGF1R promoter, between M-
and U-CLL subgroups. In particular, DiffBind analysis of the U-CLL
samples detected two peaks (chr15:98650048-98650448 and
chr15:98648126-98648526) in which EZH2 is bound in a statistically
significant manner (FDR-adjusted p-value <0.001) in U-CLL samples
compared to the respective regions inM-CLL samples (see Supporting
data). From the table containing the consensus peak regions and their
respective read counts, the read counts (y-axis) for the consensus
peak regions (x-axis) overlapping with the DiffBind-detected IGF1R
promoter peaks were extracted and shown here.
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Germline variant calling for GIAB samples

CWL workflow for germline variant calling
We developed a complete pipeline for calling small germline

variants, namely, SNPs and small INDELs, by processing data
from whole- (WGS) or targeted-genome sequencing experiments
(e.g., whole-exome sequencing; WES). The pipeline receives as
input FASTQ files and includes some pre-processing steps. As
with the RNA-Seq workflow, the initial quality control and
trimming processes are performed using FastQC and Trim
galore, respectively. The pre-processed reads are then mapped
to the reference genome using the bwa-mem algorithm (Li, 2013).
Samtools software is then applied to convert mapped reads from
SAM to BAM format, sort mapped reads based on read names,
add information regarding paired-end reads (e.g., CIGAR field
information), and resort based on chromosomal coordinates.
Subsequently, Picard Tools software (Picard Tools, 2021) is
used to: i) add basic Read-Group information regarding
sample name, platform unit, platform (e.g., ILLUMINA),
library and identifier (picard AddOrReplaceReadGroups), and
ii) mark PCR and/or optical duplicate reads (picard
MarkDuplicates), to each BAM file. Samtools software is
additionally used to collect summary statistics and create
indexes on coordinate-sorted BAM files for fast random
access. At this point, following the recommendations of
Genome Analysis Toolkit (GATK) for best practices in
germline variant calling (DePristo et al., 2011; Van der
Auwera and O’Connor, 2020), the pipeline is split into two
separate workflows to process samples differently during the
variant detection and filtering steps. For both workflows, to
reduce time and take advantage of all available computational
resources, the reference genome is split into a predefined number
of intervals, using the GATK SplitIntervals tool (Van der Auwera
et al., 2013), for parallel processing through incorporation of
CWL subworkflows and application of the “scatter and gather”
approach. The developed workflows include:

I. Multi-sample workflow (Supplementary Figure S6): Following
the variant calling step, multiple samples are concatenated into a
single, unified VCF (Variant Calling Format) file, which contains
the variant information for all samples. In particular, using the
GATK BaseRecalibrator and ApplyBQSR tools (McKenna et al.,
2010), BAM files are firstly evaluated with a process called Base
Quality Score Recalibration (BQSR), during which Machine
Learning (ML) models are used to detect miscalculated base
quality scores, due to potential sources of non-random technical
errors, and re-estimate them. Variant calling is then performed
using GATK HaplotypeCaller (Poplin et al., 2018) in gVCF
(genomic VCF) mode (-ERC GVCF) and all genomic
interval-split gVCF files of each sample are merged using the
GATK MergeVCFs tool. The unified VCF file is then produced
using the GATK CombineGVCFs and GenotypeGVCFs tools,
and it is further annotated, separately for SNP and INDEL
variants, using the Variant Quality Score Recalibration
(VQSR) method (DePristo et al., 2011). VQSR employs ML
algorithms to create models of true and false variant calls and
utilize them to estimate new quality scores for the detected
variants. It is important to note here that both BQSR and

VQSR require dataset(s) of known and well-characterized
variants (e.g., from dbSNP or 1,000 Genomes for Homo
sapiens) to train their respective ML models and apply score
recalculation accurately. In the final steps of the analysis, the
bcftools software (Li et al., 2009; Danecek et al., 2021) is used to
filter the variants, based on the information added during VQSR
and/or custom filters, and normalize INDELs (split multiallelic
sites). The ANNOVAR tool (Wang et al., 2010) is then used to
annotate the final dataset of filtered variants with genomic,
population-related and/or clinical information.

II. Single-sample workflow (Supplementary Figure S7): Accepting as
input multiple samples, which are not merged into a unified VCF
file but are rather processed separately in each step of the
workflow, leading to the production of a VCF file for each
sample. In this approach, BQSR and variant calling with
HaplotypeCaller also take place as the initial steps. Next, the
GATK CNNScoreVariants is applied, a tool that streams variants
and their reference context to a python program, which evaluates
a pre-trained Convolutional Neural Network (CNN) on each
variant and annotates each VCF with variant call scores
(DePristo et al., 2011; Van der Auwera and O’Connor, 2020).
VCF files are further annotated (tranche filtering) using the CNN-
annotated variant scores of the INFO field and the GATK
FilterVariantTranches tool. Finally, filtering and INDEL
normalization with bcftools and annotation with ANNOVAR
are performed for each VCF. The workflow also incorporates an
independent, optional step of variant hard filtering, where hard
filters, based on GATK4 suggestions, are applied to each VCF file
instead of the CNN pre-trained model-based filtering.

It is worth noting that a different combination of additional
GATK tools and CWL subworkflows is used to apply BQSR in each
workflow. Additionally, variations of the described workflows,
omitting BQSR, VQSR and CNN pre-trained model-based
filtering and using only hard filtering are currently under
development (“dev” branch of GitHub repository). These
alternative workflows will constitute simple but ready-to-use
solutions for the analysis of samples from non-reference
organisms lacking the required, well-defined variant datasets for
ML-based variant filtration.

Comparison of germline variant calling
concordance

The CWL Germline Variant calling workflow was validated for
its functionality and accuracy using raw data from the GIAB
project (Zook et al., 2014; Zook et al., 2016). In particular, we
utilized WGS data of the reference GIAB samples (golden call sets)
of: i) NA12878, that refers to the genome of a B-lymphocytic cell
line, and ii) NA24385, NA24149 and NA24143, that correspond to
the son, father and mother of an Ashkenazi family trio (see
Methods). These samples were originally sequenced and
processed by NIST, using multiple sequencing platforms and
computational tools for mapping and variant calling, for the
purpose of creating reliable genomic data resources that can be
used to assess the performance of novel germline variant calling
software tools (Krusche et al., 2019). Thus, the raw WGS data of
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GIAB samples are accompanied by reference VCF files (truth sets)
which contain the majority of confirmed SNP and small INDEL
variants for each sample (~80% genome coverage).

The performance of the single-sample germline variant
calling workflow was evaluated on all four GIAB samples by
performing comparisons between the detected short variants,
which were filtered based on CNN-annotated variant scores,
and the respective gold standard VCF truth sets. The hap. py
software (https://github.com/Illumina/hap.py) was used to
perform genotype-level, haplotype comparisons and calculate
the performance metrics (F1 score, Recall, Precision). Using
default parameters, the workflow performed well on all GIAB
samples with >90% for all performance metrics in both SNP and
INDEL comparisons (Figure 4), thus validating its functionality
and applicability. Similarly, the multi-sample germline variant
calling workflow was evaluated by comparing the detected
variants of the Ashkenazi family trio samples. Specifically, all
gold standard truth set VCF files for the Ashkenazi family trio
samples were merged using bcftools into a single VCF file for
comparison with the detected and filtered variants of the
workflow, which are also reported in a single VCF file.
Similarly, the high confidence genomic regions (BED format)
for each sample, that are used for benchmarking purposes, were
concatenated, sorted and merged using bedtools, to be used with
hap. py for the variant comparison. As with the single-sample
workflow, all performance metrics exceeded 90%, with the
exception of precision in INDEL comparisons (~89%),
validating the functionality of the multi-sample workflow
(Figure 5).

Discussion

Rapid technological advancements, development of new
methodologies and software tools as well as the ever-increasing
volume of available multi-omics data, have increased the complexity
of in silico analyses and placed a strain in reproducibility and
reusability efforts. The high number of non-reproducible
experimental results, retracted articles and failing clinical trials
calls for the establishment of a minimum set of standards
required to back scientific claims (Sandve et al., 2013), with
several systematic efforts being undertaken towards this goal,
such as FAIR Principles (Wilkinson et al., 2016; Goble et al.,
2020; Barker et al., 2022) and DOME recommendations (Walsh
et al., 2021). Having the ability to accurately reproduce scientific
results leads to increased productivity, due to being able to easily
reuse and/or repurpose previous methods and code in new projects,
andmakes one’s research more accessible and trustworthy as well. In
this regard, the utilization of platforms like Galaxy (Afgan et al.,
2018), and the adoption of workflow frameworks [Nextflow (Di
Tommaso et al., 2017), Snakemake (Köster and Rahmann, 2012)]
and specifications [CWL (Chapman et al., 2016), RO-Crate
(Soiland-Reyes et al., 2022), Biocompute Object (Vahan
Simonyan et al., 2017)] offers several advantages in the
development of reproducible software pipelines.

CWL constitutes an open standard for defining computational
workflows in a platform-agnostic manner, facilitating significant
workflow automation, reproducibility and reusability. Its increasing
popularity has led to the design of sophisticated software solutions,
including novel, open-source pipelines (Korhonen et al., 2019) and

FIGURE 4
Performance evaluation of the CWL-based (single-sample) germline variant calling pipeline on Illumina short-read, WGS data from four GIAB
samples (Zook et al., 2014; 2016). The CWL workflow was applied on all GIAB samples and performance metrics were calculated using hap. py (https://
github.com/Illumina/hap.py) for comparisons between the detected and filtered (A) SNPs and (B) INDELs, against the respective gold standard VCF truth
set of each sample. The workflow performed well on all samples, achieving >90% for all performance metrics in both SNP and INDEL comparisons.
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dedicated workflow managers (Kotliar et al., 2019), based on this
open standard, while several popular workflow managers such as
Toil or the commercial Seven Bridges platform, are adapting to use
it. For the CWL workflows designed here, we opted to utilize
publicly available and custom-made Docker images (“pull
actions”) to run separate containers for all integrated software
tools. Docker offers scalability, easy deployment and provides a
consistent, isolated runtime environment for applications,
regardless of the host operating system or infrastructure. This
makes it easier to maintain and update applications, and reduces
the likelihood of compatibility issues.

However, there are some security concerns regarding the use of
Docker. Specifically, Docker containers are designed to run with
process-level isolation, providing a level of security by isolating
applications and their dependencies. However, Docker containers
typically run with root-level permissions by default, which
introduces potential security risks (T. Combe et al., 2016). Best
practices, such as running containers with limited privileges and
employing additional security measures, should be followed to
enhance the security of Docker deployments. Adoption of CWL-
supported software solutions including Singularity (Kurtzer et al.,
2017), which was designed for high-performance computing
(HPC) environments and places a strong emphasis on security
and isolation, or udocker (Gomes et al., 2018), an alternative
Docker implementation allowing for execution of Linux
containers in user mode, can also help in mitigating security
risks. Furthermore, it is worth mentioning that sometimes

common processes taking place between workflow steps,
including file(s) manipulation or execution of conditional
statements, requires the application of workarounds such as
implementation of JavaScript-based “expression tools”.
Although this may burden the workflow with increased
verbosity, it nevertheless attests to the flexibility offered by CWL.

Using previously published data, we established the
functionality of three CWL pipelines designed for processing
HTS data originating from RNA-Seq, ChIP-Seq and germline
variant calling experiments. Namely, through the application of:
i) the RNA-Seq workflow we confirmed the overexpression of pro-
survival TP63 in subset #8 CLL patients compared to #6 subset
(Papakonstantinou et al., 2019), and ii) the ChIP-Seq workflow we
confirmed the non-canonical, differential binding of EZH2 to the
promoter of IGF1R, whose expression is non-canonically induced
in U-CLL patients by EZH2-recruited MYC leading to the
activation of the PI3K pathway (Kosalai et al., 2019). Moreover,
we displayed the high performance of the germline variant calling
pipeline through processing of publicly available WGS data from
the GIAB project and comparison with the respective VCF truth
set data (Zook et al., 2014, Zook et al.,2016). These findings
support the use or adaptation of the CWL pipelines developed
here as reliable and reproducible software solutions to routinely
performed HTS experiments aiming for biomarker discovery.
Furthermore, it is our hope that these workflows will constitute
an open resource that will facilitate the adoption of CWL in future
software pipeline development.

FIGURE 5
Performance evaluation of the CWL-based (multi-sample) germline variant calling pipeline on Illumina short-read, WGS data from three GIAB
samples (AshkenazimTrio) (Zook et al., 2014; 2016). The CWL workflow was applied on all GIAB samples and performance metrics were calculated using
hap. py (https://github.com/Illumina/hap.py) for comparisons between the detected and filtered (A) SNPs and (B) INDELs, against the respective gold
standard VCF truth set of all samples. The latter was produced by merging all gold standard truth set VCF files for the Ashkenazi family trio samples
into a single VCF file for comparison, using bcftools. All performance metrics exceeded 90%, with the exception of Precision in INDEL comparisons
(~89%), validating the functionality of the multi-sample workflow.
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Methods

Reference data acquisition

The RNA-Seq data from CLL stereotyped subsets #6 and #8 are
available from the ArrayExpress database at EMBL-EBI (www.ebi.
ac.uk/arrayexpress), under the accession number E-MTAB-6962.
Additional information on CLL RNA-Seq data (accession numbers,
sample names, etc.) are available in Supplementary Table S1. The
EZH2 and H3K27me3 ChIP-Seq data for M-CLL and U-CLL
subgroups are available from the Gene Expression Omnibus
(GEO) NCBI database (https://www.ncbi.nlm.nih.gov/geo/),
under the accession number GSE115772. The publicly available
WGS data used for the four GIAB samples, are available from SRA
(https://www.ncbi.nlm.nih.gov/sra), under the accession numbers
SRR6794144 (NA12878, B-lymphocytic cell line), SRR22476789
(AshkenazimTrio son), SRR22476790 (AshkenazimTrio father),
and SRR22476791 (AshkenazimTrio mother).

CWL pipelines

The pipelines developed here follow the syntax specified in CWL
v1.0 (Chapman et al., 2016). A CWL wrapper was written for each
software tool using CWL CommandLineTool syntax, and the tools
were integrated into functional workflows using CWL Workflow
syntax. The workflows were operated using the cwltool package
v3.1.20221018083734 (https://github.com/common-workflow-
language/cwltool). A number of CWL wrappers (Command Line
Tools), that were utilized in our workflows, were adapted from
publicly available sources. We provide a list of these tools and their
respective sources in Supplementary Table S2. For the execution of
each tool publicly available Docker images from Docker Hub and
Quay. io were used, with the exception of Ballgown, DESeq2,
ChIPQC, DiffBind and ROSE, for which custom scripts were
written and incorporated into in-house Docker images. These in-
house Docker images are available in Docker Hub (https://hub.
docker.com/u/biodataanalysisgroup) and their respective
Dockerfiles can be found in the CWL pipelines GitHub
repository (https://github.com/BiodataAnalysisGroup/CWL_HTS_
pipelines). A list of all software tools and their respective Docker
images is available in Supplementary Table S3. Docker v20.10.19 was

used to pull and create Docker containers. A list of dependency files
(e.g., reference genome files) for the execution of each workflow is
also available in Supplementary Table S4. The workflows are ordered
in a way by which the output data of each step constitute the
required input data of one or more of the next steps. Wherever
possible the “scatter” feature of CWLwas applied to facilitate parallel
execution. The desired output files, from any of the workflow steps,
can be selected from the “outputs” section of each workflow. All
workflows were registered and are also available in WorkflowHub
(https://workflowhub.eu/) (Goble et al., 2021).

Additional CWL tools and workflows

Additional, short scale CWL workflows were designed for pre-
processing of raw FASTQ files before executing one of the main
CWL workflows. These include:

I. FastQC and MultiQC (Ewels et al., 2016) workflows for quality
inspection of multiple FASTQ files

II. Trim galore and Trimmomatic workflows for sequence
trimming of FASTQ files prior to the execution of the main
workflow

This allows users to inspect the input data before proceeding
with the main analysis. Quality control and trimming steps are
optionally available. Thus, these operations can be applied
independently beforehand and their output can be provided as
input to the next steps of the workflow (i.e., mapping pre-
processed reads).

Pipeline runtimes

We used a 28-core Unix cluster with 238 Gb RAM for the
execution of all CWL pipelines. The runtimes of all pipelines, based
on the publicly available HTS data utilized for their performance
evaluation, are reported at Table 1.

These numbers are indicative of the execution time of each
pipeline when running in a single machine for a standard HTS
analysis, and can be further scaled down upon configuration and
parallel execution in multi-node HPC environments.

TABLE 1 Runtimes for all CWL-based pipelines, along with information on publicly available HTS data that were used for performance evaluations.

RNA-
seq

ChIP-seq (EZH2) ChIP-seq
(H3K27me3)

Single-sample germline
variant calling pipeline

(cwltool --parallel)

Multi-sample germline
variant calling pipeline

(cwltool --parallel)

Runtime ~5 h ~18 h ~18 h ~4 days and 11 h ~2 days and 5 h

Number of (No.) samples 9 14 (with two control
samples for M- and

U-CLL)

14 (with two control
samples for M- and U-CLL)

4 3

Average No. of reads per
(paired-end) sample

(million reads)

~32.58 ~52.72 ~57.3 ~814.3 ~833.06

Read length (bp) 150 50 50 150 150
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Availability of supporting source code
and requirements

Project name: Biodata Analysis Group CWL pipelines.
Project home page: https://github.com/BiodataAnalysisGroup/

CWL_HTS_pipelines.
DockerHub: https://hub.docker.com/u/biodataanalysisgroup.
WorkflowHub:

• RNA-Seq: https://doi.org/10.48546/WORKFLOWHUB.
WORKFLOW.524.1

• ChIP-Seq: https://doi.org/10.48546/WORKFLOWHUB.
WORKFLOW.525.1

• Germline Variant calling (Multi-sample): https://doi.org/10.
48546/WORKFLOWHUB.WORKFLOW.526.1

• Germline Variant calling (Single-sample): https://doi.org/10.
48546/WORKFLOWHUB.WORKFLOW.527.1

Operating system(s): Linux-based systems (Ubuntu
20.04.6 LTS).

Programming language: CWL v1.0, Python, R, Bash.
Other requirements: cwltool package v3.1.20221018083734,

Docker v20.10.19.
License: MIT.
Availability of supporting data: The following datasets,

supporting the results of this article, are available at Zenodo
repository (Kyritsis et al., 2023) and include:

• Differential transcript and gene expression results produced
during the analysis with the CWL-based RNA-Seq pipeline

• Bigwig and narrowPeak files, differential binding results, table
of consensus peaks and read counts of EZH2 and H3K27me3,
produced during the analysis with the CWL-based ChIP-Seq
pipeline

• VCF files containing the detected and filtered variants, along
with the respective hap. py results regarding comparisons
against the GIAB golden standard truth sets for both CWL-
based germline variant calling pipelines
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