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Introduction: Tissue-based sampling and diagnosis are defined as the extraction
of information from certain limited spaces and its diagnostic significance of a
certain object. Pathologists deal with issues related to tumor heterogeneity since
analyzing a single sample does not necessarily capture a representative depiction
of cancer, and a tissue biopsy usually only presents a small fraction of the tumor.
Many multiplex tissue imaging platforms (MTIs) make the assumption that tissue
microarrays (TMAs) containing small core samples of 2-dimensional (2D) tissue
sections are a good approximation of bulk tumors although tumors are not 2D.
However, emerging whole slide imaging (WSI) or 3D tumor atlases that use MTIs
like cyclic immunofluorescence (CyCIF) strongly challenge this assumption. In
spite of the additional insight gathered bymeasuring the tumormicroenvironment
inWSI or 3D, it can be prohibitively expensive and time-consuming to process tens
or hundreds of tissue sections with CyCIF. Even when resources are not limited,
the criteria for region of interest (ROI) selection in tissues for downstream analysis
remain largely qualitative and subjective as stratified sampling requires the
knowledge of objects and evaluates their features. Despite the fact TMAs fail to
adequately approximate whole tissue features, a theoretical subsampling of tissue
exists that can best represent the tumor in the whole slide image.

Methods: To address these challenges, we propose deep learning approaches to
learn multi-modal image translation tasks from two aspects: 1) generative
modeling approach to reconstruct 3D CyCIF representation and 2) co-
embedding CyCIF image and Hematoxylin and Eosin (H&E) section to learn
multi-modal mappings by a cross-domain translation for minimum
representative ROI selection.

Results and discussion: We demonstrate that generative modeling enables a 3D
virtual CyCIF reconstruction of a colorectal cancer specimen given a small subset
of the imaging data at training time. By co-embedding histology and MTI features,
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we propose a simple convex optimization for objective ROI selection. We
demonstrate the potential application of ROI selection and the efficiency of its
performance with respect to cellular heterogeneity.
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Introduction

Cancers are complex diseases that operate at multiple biological
scales—from atom to organism—and the purview of cancer systems
biology is to integrate information between scales to derive insight
into their mechanisms and therapeutic vulnerabilities. From this
holistic perspective, the field has come to appreciate that the
spatial context of the tumor microenvironment in intact tissues
enables a more granular definition of disease and the design of
more personalized and effective therapies (Lu et al., 2019). This
has been spurred by an increased understanding that solid tumors
are complex ecosystems including stromal barriers imposed by tissue
architecture (Johnson et al., 2020) and infiltrating immune cells in the
surrounding stroma (Risom et al., 2021). This has motivated the
National Cancer Institute’s Human Tumor Atlas Network (HTAN) to
begin charting 3D tissue atlases which capture the multiscale
organizations and interactions of immune, tumor, and stromal
cells in their anatomically native states (Rozenblatt-Rosen et al.,
2020). The HTAN-SARDANA (Lin et al., 2023) is one such atlas
that aimed to deeply characterize the architecture of a single colorectal
cancer (CRC) specimen via histology and a spatial context-preserving
multiplexed imaging platform called cyclic immunofluorescence
(CyCIF) (Lin et al., 2018).

Histology is an essential component of the clinical management of
cancer. For around 150 years, pathologists have interrogated thin
sections of tissue stained with hematoxylin and eosin (H&E) to
determine the morphological correlates of cancer grade, stage, and
prognosis. However, this essentially 2D representation of tissue is a
relatively poor representation of tissues like the prostate, pancreas,
breast, and colon which have highly convoluted 3D ductal structures
(Liu et al., 2021; Kiemen et al., 2022; Kuett et al., 2022; Lin et al., 2023).
Since 2D whole slide imaging of a 3D specimen might not be
representative, 2D analyses using biased down-sampling or the
small fields of view afforded by tissue microarrays (TMAs) suffer
further due to subsampling issues (Lin et al., 2023; Liudahl et al.,
2021). Moreover, histology alone lacks the molecular specificity to
unequivocally determine the identity and function of cells in tissue. In
contrast, CyCIF enables the co-labeling of tens of markers in tissue
and can broadly characterize the tumor, immune, and stromal
compartments. By coupling histology and CyCIF in the same
specimen, the HTAN-SARDANA atlas integrates both top-down
(pathology-driven) and bottom-up (single-cell phenotype-driven)
perspectives of CRC and provides a framework for the charting of
3D atlases for other cancers (Lin et al., 2023).

In spite of these advances, 3D multiplexed imaging atlases and 2D
whole slide multiplexed imaging with large cohorts both require a
tremendous amount of resources and effort to build. For the HTAN-
SARDANA atlas, a single CRC specimen was serially sectioned and
processed yielding 22 H&E slides interleaved with 25 CyCIF slides, with

the CyCIF slides taking days to process due to the cycles of antibody
incubation. To build the breast cancer atlas, a single specimen was
serially sectioned and processed into 156 slides which were
characterized using imaging mass cytometry (Kuett et al., 2022),
which enables simultaneous labeling of 40 antigens with a single
incubation step, but has a relatively limited spatial scope (500 μm ×
500 μm x 500 μm) compared to CyCIF. To build the pancreas cancer
atlas, specimens were serially sectioned and processed into over
1,000 H&E slides, some of which had histological regions of interest
labeled through a laborious and subjective manual annotation process
(Kiemen et al., 2022). These annotations were used as training data for a
deep learning segmentation model which was used to fully reconstruct
the semantically-labeled 3D specimen with high accuracy, but this
approach is restricted by the limited and predefined annotation classes.

To address this challenge, we extend a virtual staining paradigm
into the third dimension by deploying it on the coupled H&E and
CyCIF image data from the HTAN-SARDANA atlas of CRC. We
have previously demonstrated methods for predicting virtual IF
stains based on H&E-stained tissue (SHIFT: Speedy Histological-to-
ImmunoFluorescent Translation) (Burlingame et al., 2018;
Burlingame et al., 2020), wherein we use spatially-registered H&E
and immunofluorescence (IF) data and generative deep learning to
model the correspondences between these imaging modes and
compute near-real time virtual IF stains conditioned on H&E-
stained tissue alone. From a biological perspective, these data and
approaches allow us to ask which markers in an IF panel have a
quantifiable histological signature, what that signature might be, and
a means to estimate the distribution of markers in histological
images for which such a signature exists. From an application
perspective, the approach could be useful for automated
compartment labeling in 3D tissues labeled with highly-
standardized and low-cost histological stains. We demonstrate
that what generative models learn from less than 5% of coupled
H&E and CyCIF images, where just a single set from the 3D stack is
used to predict the entire 3D stack (22 slides). This minimal data
input allows us to generate a virtual 3D CyCIF reconstruction of the
whole CRC specimen and that quantitative endpoints derived from
real and virtual CyCIF images are highly correlated.

In order to reduce the burden and complexity of multiplex
imaging on whole slide images (WSIs), TMAs are often used to
sample small sections of the tissue for analysis. Although these
TMAs have become a staple of analytics over the past decade, they
come with many drawbacks and are prone to substantial bias, often
introducing sampling errors and shifts in the expected content
which fail to accurately capture the true heterogeneity and spatial
distributions found in WSIs (Liudahl et al., 2021; Nguyen et al.,
2021). In order to overcome this sampling bias, a significantly large
number of TMA cores would need to be taken (Lee et al., 2019;
Liudahl et al., 2021; Lin et al., 2023), but increasing the size of the
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randomly sampled TMA cores also shows little to no effect on
improving their representativeness (Nocito et al., 2001). It is
necessary to intelligently sample regions for TMAs, but without a
method to quantify biological content beforehand, intelligent
sampling is estimated from histological appearance alone. If
regions of WSIs could be quantitatively described prior to
analysis, TMA cores could subsequently be taken based on which
regions of the image were most representative of the whole slide.

As a method for virtual TMA selection, we further explore the
concept of shared representation between H&E and CyCIF to
quantitatively identify representative samples for a region of interest
(ROI) selection. Using the principles of SHIFT (Burlingame et al., 2018;
Burlingame et al., 2020), here we propose a cross-domain autoencoder
(XAE) image translation architecture which after training can assign
regional descriptors to image tiles that contain the cell type information
of CyCIF based solely on the H&E image. By formulating a simple
convex optimization problem, these tile-based descriptors can be used
to select small regions that are representative of the whole slide image
with aminimumnumber of ROIs.We demonstrate a proof-of-concept
study that the XAE architecture is able to adequately represent
biological information and that the minimum set of ROIs is more
representative of whole slide biology than random sampling or biased
manual ROI selection.

Results

Preprocessing steps for spatially registered
H&E and CyCIF images

Spatially registered H&E and IF images are a requirement for
SHIFT model (Burlingame et al., 2020) training and evaluation. To
register the H&E and CyCIF data for this task, we begin with
sequential registration of the H&E stack beginning from the
middle sections and propagating to outer sections (see Methods
section, Supplementary Figures S1A, B).We then co-register ROIs of
adjacent H&E and CyCIF images (5 μm apart) using their respective
nuclear masks for a finer local registration of the adjacent sections.

Before SHIFT model training could begin, we had to account for
the section-to-section variability in H&E stain intensity, which helps
to ensure a model trained on one H&E section generalizes well to the
other sections. Using the training H&E section (middle section as
shown in Supplementary Figure S1A) as a reference, we tried several
stain normalization methods for outer testing sections (Reinhard
et al., 2001; Macenko et al., 2009; Vahadane et al., 2016), and
found that the Reinhard method worked best at normalizing stain
intensities to the reference by qualitative comparison (Supplementary
Figures S1C,D). This result was consistent with a quantitative
comparison that found the Reinhard method conferred better
generalizability to deep learning models in an analogous digital
pathology application (Ternes et al., 2020).

Image-to-image translation for 3D virtual
CyCIF reconstruction

With spatially registered H&E and CyCIF data, we set out to
generate a virtual 3D CyCIF reconstruction in an effort to measure

how faithfully we can characterize the full SARDANA dataset with
virtual IF staining by learning from only one pair of adjacent H&E
and real CyCIF sections. First, the middle pair of H&E and CyCIF
sections were selected for training SHIFT models under the
assumption that they are a good representation of the tissue on
either side of the sample block. This assumption is supported by the
initial HTAN-SARDANA study (Lin et al., 2023), where the authors
conclude that 2D whole slide imaging of a 3D specimen does not, in
general, suffer from the subsampling issue associated with TMAs or
small fields of view.

We then decompose the WSIs into thousands of pairs of
matching H&E and CyCIF image tiles and use those to train a
generative adversarial network (GAN) to synthesize virtual CyCIF
tiles conditioned on H&E tiles (Burlingame et al., 2020). Briefly, the
generator network of the model is responsible for synthesizing
virtual CyCIF images conditioned on H&E images, and the
discriminator network is responsible for quality assurance of the
virtual CyCIF images synthesized by the generator as shown in
Figure 1A. Once trained on the middle sections, the model can then
be tested by feeding it tiles from the held-out H&E sections to
generate virtual CyCIF images for comparison with the real CyCIF
images. Importantly, a virtual CyCIF image is conditioned on H&E
section, and there is natural variation between it and its adjacent real
CyCIF section 5 μm away, which complicates pixel-wise evaluation
of model accuracy.

We trained individual SHIFT models to predict single CyCIF
channels conditioned on H&E inputs from the central H&E/CyCIF
training sections 053/054 (Figure 1A). Representative test results
from the application of trained SHIFT models on H&E/CyCIF test
sections 096/097 (far from the middle section, i.e., training section)
are shown in Figures 1B,C. These qualitative results indicated that
the SHIFT models fit well with the training sections, and the
representations learned were useful for an extension to held-out
test sections.

The virtual CyCIF images generated by SHIFT models are
conditioned on H&E sections which are 5 μm adjacent to the real
CyCIF sections, so the cellular contents are slightly different between
sections and images. Recognizing that this would hamper pixel-wise
comparisons between the real and virtual CyCIF images
(Burlingame et al., 2018; Burlingame et al., 2020), we estimated
an upper bound on SHIFT performance by measuring the
concordance between nuclear content from the adjacent sections
of the H&E/CyCIF test sectiosns 096/097 (Supplementary
Figure S2).

The test sections were first subdivided into 135 non-overlapping
ROIs and each ROI was locally registered to improve the alignment
of H&E and CyCIF image content, then we measured the Dice
coefficient of nuclear masks derived from the H&E and DAPI
images from each ROI (Supplementary Figure S2A). We used the
Dice coefficient for each ROI as a compensation factor when
evaluating the quality of the virtual stains for each ROI by
dividing raw quality scores by the Dice coefficients corresponding
to each ROI. Virtual CyCIF image quality was evaluated using
structural similarity (SSIM), which is established as a metric for
assessing virtual stain quality (Rivenson et al., 2019a; Rivenson et al.,
2019b; Burlingame et al., 2020). The median compensated SSIM for
virtual stains ranged from 0.36 for CD20 up to 0.89 for αSMA. This
result suggested that there was significant room for improvement for
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some SHIFT models, but we hypothesized that the virtual images
might still be useful in the hands of a CyCIF domain expert since
SSIM is sensitive to slight differences in image contrast which may
not significantly affect downstream processing and interpretation
(Burlingame et al., 2020).

To test this, we quantified the positive cell ratio for multiple
markers in each of the pathologist-annotated 6 ROIs in H&E test
section 096 using either real or virtual CyCIF images (Figure 1D),
which assesses how such an endpoint might be impacted when using
virtual images which may or may not be of high quality with respect
to SSIM (Supplementary Figure S2). In spite of the adjacency
complication explained above, there was a substantial correlation
between positive cell ratios using real and virtual CyCIF images,
suggesting that virtual images could be used in place of real without
significantly affecting some downstream endpoints. Having
established the fitness of the SHIFT models, we performed a full
virtual 3D reconstruction of the CyCIF images by passing all held-
out H&E test sections to the SHIFT models trained on the H&E/
CyCIF training sections (Figure 1E).

We also tested the ablation study to assess the value added by the
discriminator network of the GAN by training models without it,
leaving the generator network to learn the virtual panCK stain alone
(Supplementary Figure S3). We found that while the generator-only
virtual panCK stain has good localization, it lacks the naturalistic
texture of the real and GAN-generated virtual stains, which

highlights the compromise of a more efficient and portable
generator-only model.

Shared latent representation via embedding
of CyCIF images on H&E image

3D Virtual staining is enabled through the rich latent
representations that generative models are capable of learning
from paired H&E and CyCIF image data. We hypothesized that
these latent representations could be useful for the related and
unsolved problem of objective ROI selection. If ROI selection for
targeted CyCIF staining was to be possible using only H&E for
prediction, it would be necessary for the H&E images to contain
relevant biological information equivalent to that of CyCIF.

To test this hypothesis, we created tile-based image descriptors
from H&E using a standard Variational Autoencoder (VAE) (Kingma
and Welling, 2013) and compared them to cell type composition
vectors (7 cell types) created from CyCIF imaging data for the same
tiles. In order to evaluate the overlap and exclusivity of each modality’s
information, we used canonical correlation analysis (CCA) (Härdle
and Simar, 2007) using two components. The two modalities
quantitatively show canonical correlations (0.91 and 0.88 for each
component respectively), and qualitatively show a high level of overlap
when the two components are plotted on top of one another

FIGURE 1
Overview of Image-to-Image translation for 3D virtual CyCIF reconstruction of SARDANA and WSI virtual staining result (A) Extending SHIFT to 3D
using adjacent spatially-registered H&E/CyCIF WSIs from a single CRC sample. (B) WSI virtual staining result. Models trained to predict single-channel
CyCIF images conditioned on the H&E/CyCIF training sections were applied to H&E test section 096 to generate virtual stain WSIs for themarkers panCK,
αSMA, and CD45. The input H&E test section is shown at left, and the real and virtual CyCIF WSIs are shown in the rows above and below,
respectively, for ease in comparison (C)Qualitative comparison of real and virtual staining for the markers panCK, αSMA and CD45 in the selected region.
(D)Quantitative comparison of ROI cell composition correlation between real. For each of the ROIs, the positive ratio of cells for each of panCK, CD45,
CD20, and CD3 are calculated using the sameworkflow and displayed for either real or virtual CyCIFWSIs. Pearson’s correlations and p-values describing
the association between positive ratios derived from real and virtual CyCIF WSIs for each marker are indicated above each bar plot (E) 3D virtual stain
volumes conditioned on held-out H&E test sections visualized by 3D Slicer (3D Slicer, 2021).
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(Figure 2A). Motivated by this example, and building upon previous
works in cross-domain data translation (Liu et al., 2017; Schau et al.,
2020), we built a cross-domain autoencoder (XAE) architecture that
learns to co-embed H&E and CyCIF representations of the same tissue
into the shared latent representation (Figure 2B). To test a minimum
working example of our XAE architecture, we performed a simple
ablation experiment with the CyCIF encoder of the model removed.
For this experiment, the model was tasked with H&E reconstruction
andH&E-to-(DAPI and panCK) translation. To assess the goodness of
fit, the model was trained to convergence and evaluated on a training
batch. Visual inspection of model outputs indicated that themodel was
functioning as intended (Figure 2C). In our original design, the XAE
included skip connections that connected across the U-Net generator
blocks, but we discovered that the models did not learn useful latent
representations of images, a direct effect of the absence of loss function
gradient flow through the interior layers of the models enabled by skip
connections. We removed the skip connections in subsequent
experiments and found that these models exhibit good convergence
properties and have appreciable loss function gradient flow through
the model interior (not shown).

Having confirmed that the trained XAE had fit its training
distribution (Figure 2C), we next wanted to assess the
representativeness and interpretability of the latent feature space

that it learned with respect to pathologically interesting regions of
the sample. To do this, we used the H&E encoder of the trained XAE
to encode tiles from H&E test section 096 into 512-dimension
feature representations and assessed how the features were
distributed over tiles drawn from each of several pathologist-
defined ROIs in the test section. The 6,742 non-overlapping tiles
fromH&E test section 096 which had at least one pixel of pathologist
annotation were each encoded into 512-dimension latent feature
maps. We found that many of the learned image features were
associated with pathologically distinct regions of the sample
(Figure 2D).

In order to evaluate how well deep learning can capture and
represent unseen complex information using H&E images alone, the
VAE model trained on H&E images alone and XAE features were
compared to cell types defined by CyCIF expressions and pathologist
tissue annotations. Clustering tiles within the whole slide image based
on cell type composition using K-means resulted in 7 clusters, and the
pathologist annotated 6 key tissue types, which are Normal Mucosa,
Invasive Adenocarcinoma (Superficial, Submucosa, Muscularis, Solid
Region, Mucinous Region, to be used as ground truth as shown in
Figure 3A). Ground truth tile labels were compared against one
another to create a baseline for evaluation. In our study, we
integrate information from both H&E images and CyCIF data.

FIGURE 2
(A) VAE encodings of HE and CyCIF cell type composition (7 cell types) show high canonical correlation and a large overlap between data and cluster
embeddings (B) XAE architecture. The model has two input heads, one for H&E encoder inputs (xi) and another for CyCIF encoder inputs (yi), both of
which encode into a shared latent space (z). Themodel also has two output heads, one for H&E decoder outputs and another for CyCIF decoder outputs.
Full XAEmodel architecture is described in Table 2 (C)Ground truth tiles representing a single training batch. Trained XAEmodel results for the tasks
of H&E-to-H&E reconstruction and H&E-to-CyCIF translation using the ground truth training (D) XAE latent feature clustering and corresponding
pathologist annotation where the inset image indicates the binary mask corresponding to each ROI with respect to the layout of the H&E test section.
Features were z-scored, then tiles were mean-aggregated based on their ROI, and features were hierarchically clustered. The ROI label keys are 1: tumor
adenocarcinoma (n = 2,501 tiles); 2: normal mucosa (n = 362 tiles); 3: proper muscle (n = 1,576 tiles); 4: submucosa (n = 473 tiles); 5: subserosa, loose
connective tissue (n = 782 tiles); and 6: fibrosis, inflammation, lymphoid aggregate (n = 1,048 tiles). The color scale corresponds to themean of z-scored
feature values for each ROI.

Frontiers in Bioinformatics frontiersin.org05

Burlingame et al. 10.3389/fbinf.2023.1275402

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1275402


The ground truth labels provide a consistent reference point that
bridges the gap between these two sources of information. This
integration is valuable for understanding the relationships between
histological features and molecular characteristics, which is crucial for
advancing our understanding of diseases and tissue biology. In
addition, by utilizing pathologist tissue annotations alongside
CyCIF-defined cell types, we aim to evaluate the capability of deep
learning models to capture and represent complex information that
may not be explicitly labeled in the training data. This assessment is
significant because it assesses the models’ potential to uncover hidden
biological insights that could be missed by traditional analysis
methods. When annotations were used to predict cell type, there
was a baseline performance of 57.1% cluster purity and
0.44 normalized mutual information (NMI), a metric used to
quantify the similarity or mutual information between two sets of
data while accounting for the size and distribution of the data sets.
Conversely, when cell type was used to predict annotations, there was
a baseline performance of 66.8% cluster purity and 0.44 NMI
(Figure 3B). In all metrics, XAE outperformed VAE predictions,
achieving a 56.1% cluster purity and 0.35 NMI against cell type,
and 70.2% cluster purity 0.38 NMI against pathologist annotation
(Figure 3B). It is also notable that on the metric of cluster purity
against annotations, the XAE outperformed the baseline metric; this
indicates that the XAE is better at predicting histologic tissue type
than even cell type compositions.

Analysis of complex information, deeper than large-scale clustering,
was conducted using canonical correlations between the model

embedding space and the tile-wise CyCIF expressions. We conducted
a visual analysis to assess the alignment or correspondence between two
types of embeddings: one derived from CyCIF data representing cell
types and another generated from H&E images by our models. This
visual assessment was conducted to evaluate how well these embeddings
matched or overlapped with each other. Visually both VAE and XAE
show a good overlap between cell type embeddings from CyCIF and
model embeddings produced from H&E images (Figure 3C); the XAE,
however, achieves higher canonical correlations (0.93 and 0.92 compared
to 0.91 and 0.88 for VAE). To confirm that we were extracting relevant
and rare cell types with the representation models, we computed the
Spearman correlation between every predicted cluster and the ground
truth cluster (Figure 3D). From this, we can see that XAE has
consistently high magnitudes of correlation and that a reasonable
correlation exists for every ground truth cluster except for cell type
clusters 4 and 5 which are underrepresented populations. Furthermore,
the cell types that the XAE is able to capture are largely explained by
changes inNa-KATPase, E-Cadherin, and PCNA,whichwere shown to
be important indicators for cell phenotypes in prior research on this
tissue (Lin et al., 2023).

It is shown by numerous metrics that the XAE model outperforms
the VAE in capturing detailed information from H&E images alone,
which are able to adequately recapitulate information from CyCIF
expression data and pathologist annotations that are unseen during test
time. Because the XAE encodings are able to adequately recapitulate the
information in CyCIF from H&E, we can use them for proxy analyses
such as selecting representative regions of the WSI for further analysis.

FIGURE 3
Deep learning architectures recapitulate unseen complex information using H&E (A) Images colored by tile labels for cell type, pathologist
annotation, assigned cluster fromVAE using H&E input, and assigned cluster fromXAE usingH&E input (color-coded label is shown in (D)) (B)Quantitative
evaluation of VAE and XAE at recapitulating biological labels, measured using cluster purity and NMI and compared to baseline of agreement between
biological labels. (C) Canonical correlation analysis between cell type composition vector and H&E encodings for both VAE and XAE, quantitatively
measured by component correlation and qualitatively by label overlap in embedding space. (D) Cluster-wise correlation matrix for XAE against both cell
type and pathologist annotations to determine which biological features are adequately captured. Defining CyCIF expressions provided based on inter/
intra-cluster variability.
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Co-embedding H&E and CyCIF
representations improve ROI selection

Currently, ROI selection within H&E WSIs is done either
randomly, which is inaccurate and is likely to select an area that
does not represent theWSI, or with manual selection of ROI, which is
biased, subjective, and has been shown to miss whole tissue patterns
(Lin et al., 2023). Using the XAE embeddings, which capture the
complex cell type and annotation information using H&E, we develop
an optimization-based approach to select a minimum set of ROIs that
aremore representative than random sampling while being repeatable
and biologically driven. To evaluate ROI selection performance, we
use three metrics: mean squared error (MSE) between the cell type
composition of selected ROIs and WSI; Jensen-Shannon Divergence
(JSD) between the cell type composition vectors of selected ROIs and
WSI; and mean entropy of the selected ROIs’ cell type compositions.
Since MSE and JSD both have disadvantages, the use of both for
evaluating composition is beneficial. MSE is highly prone to outliers
and abnormal data, amplifying errors of single erroneous samples,
and JSD cannot operate with terms that are zero (ignoring them from

the operation), and therefore underestimates error in samples with
empty classes. Three different methods for ROI selection were tested:
random sampling, convex optimization minimizing l1-norm of cell
type composition, and convex optimization minimizing the norm of
cell type composition with maximizing entropy to select ROIs with
more heterogeneous cell composition.

When regions are randomly sampled, we observe that the cell type
compositions struggle to converge to the whole slide cell type
composition, taking upwards of 20–30 ROIs (each of which
comprises between ~0.15% and ~0.80% of WSI area individually)
before reaching a reasonable representation (Figure 4 top row).
Using a simple composition-based optimization, selected ROIs
drastically decrease the number of ROIs necessary to around 7. This
number of ROI is equivalent to the number of cell type clusters we were
optimizing for and further investigation shows that the algorithm was
selecting primarily homogeneous regions that reconstruct the whole
slide composition. This is validated by looking at the mean entropy of
ROIs for the base convex optimization method, which consistently
shows low to middling ROI entropy values, especially in the 1000-pixel
size data (Figure 4 middle row).

FIGURE 4
Optimization of ROI Selection. For four ROI sizes (1000 × 1000, 1500 × 1500, 2000 × 2000, 2500 × 2500 pixels) and three sampling techniques
(random sampling, convex optimization using cell type composition, convex optimization using cell type composition, and regional entropy), we
calculate the optimal selection of ROI (Top row) By calculating the MSE for a range of ROI, we can evaluate each technique’s rate and quality of
convergence. (Middle row) Selections of representative ROIs are evaluated based on two metrics (Entropy for tissue heterogeneity and Jensen-
Shannon Divergence for composition similarity). Random sets of 7 ROIs are generated 1,000 times to portray the baseline pattern. Selections from linear
and convex optimizations are plotted with increasing numbers of ROIs to show the change in performance. The performance of the manually selected
ROIs is also shown to emphasize the bias in targeted sampling. (Bottom row) The optimal ROIs are shown for convex entropy optimization at each size of
ROI. Image colors portray the XAE labeled cell types.
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To select a more heterogeneous region, entropy is considered in
the convex optimization and we observe convergence much earlier
at 3-4 representative ROIs. Unlike the simple optimization
considering cell composition only, however, the ROIs selected are
not homogenous and include much more biologically interesting
regions with diverse cell populations. This is confirmed by entropy
values considerably higher than the randomly sampled population.
When looking at the full range of clusters, both optimization-based
approaches are substantially better than even manual ROI selection
which is extremely biased, scoring poorly on both composition
metrics and heterogeneity metrics.

To account for this, we narrowed the range of clusters being
optimized for in the ROI selection to only consider tumor and
immune cell populations (Supplementary Figure S4). Even in this
restricted cluster set, manual annotation does not perform better
than convex optimization using entropy and is less representative of
theWSI’s tumor and immune cell type composition. This shows that
the improvements made over manual selection are not solely due to
the cell type bias of pathologists selecting interesting regions; it is
also the fact that the ROI selection based on the convex optimization
method can find the most representative regions which can be a
difficult task for an annotator who cannot see cell type.

Discussion

Tumors are not 2D, but many of the imaging characterization
platforms in both research and clinical practice make the
assumption that TMAs containing small core samples of
essentially 2D tissue sections are a reasonable approximation of
bulk tumors. However, emerging 3D tumor atlases strongly
challenge this assumption (Failmezger et al., 2020; Kiemen et al.,
2020; Kuett et al., 2022; Lin et al., 2023). In spite of the additional
insight gathered by measuring the tumor microenvironment in 3D,
it can be prohibitively expensive and time-consuming to process
tens or hundreds of tissue sections with CyCIF. Even when resources
or time are not limiting, the criteria for ROI selection in tissues for
downstream analysis remain largely qualitative and subjective.

In the current study, we extend the virtual staining paradigm to a
3D CRC atlas (Lin et al., 2023) and demonstrate a proof-of-concept
that generative models can learn from a minimal subset of the atlas
to reconstruct the remaining sections of the CyCIF portion of the 3D
atlas and recapitulate the quantitative endpoints derived using the
real CyCIF data. Quantitative comparisons of real and virtual CyCIF
stains exposed the challenge of using adjacent sections to train
models, where image contents are subtly but appreciably different
between sections at single-cell resolution. This challenge could be
overcome in future studies by staining each tissue section first with
CyCIF, then terminally with H&E (Burlingame et al., 2020). That
being said, this study and those like it take for granted that histology
workflows are inherently destructive since serial sectioning and
processing of tissue can preclude tissue from being used in other
assays. Alternatively, a non-destructive 3D microscopy approach
using tissue clearing and light-sheet microscopy could be deployed,
which would also preserve tissues for other assays (Liu et al., 2021).
However, the slow diffusion rate of antibodies in whole tissues limits
the deep multiplexing potential of the CyCIF platform in this non-
destructive approach, but the use of small molecule dyes and affinity

agents could help to overcome this challenge to 3D virtual staining
applications (Xie et al., 2021).

We also implement and evaluate a novel deep learningmodel that
integrates paired H&E and CyCIF data into a shared representation,
and demonstrate that the model can be used as a quantitative and
objective guide for ROI selection, with the integrated H&E/CyCIF
representations being more informative than H&E representations
alone. The limitation of this approach is that the XAE model must be
trained using paired H&E-CyCIF data prior to being used for
prediction and quantification but we can also reduce the required
CyCIF panel (Ternes et al., 2022; Sims and Young, 2023). A further
limitation is that the ROI selection can only be optimized with respect
to quantifiable measures such as heterogeneity and composition.

Although image representations can accurately describe
biological features, they cannot convey what may or may not be
biologically interesting to researchers or clinicians. Although cell
type composition and entropy were used as metrics of biological
relevance in this setting, it is likely that other experiments would
have different priorities. Some examples of this might include:
weighting cell type clusters by the level of interest; weighting
entropy negatively if homogeneous regions are desired; and
weighting some other extracted scores such as co-localization of
2 cell types of interest. The method of optimization is versatile and
amenable to many different functions. The key takeaway is that this
pipeline allows for intelligent representation from H&E images,
which enables a plethora of subsequent analyses on this
representation space with other multiplexed imaging platforms
such as multiplexed ion beam imaging (MIBI) (Angelo et al.,
2014), imaging mass cytometry (IMC) (Giesen et al., 2014), or
NanoString GeoMX (Merritt et al., 2020) as only a few ROIs
could be selected and analyzed using these platforms.

Methods

3D registration of paired H&E and CyCIF

Because images are taken on serial sections, images throughout the
3D stack of tissue and between H&E and CyCIF require registration in
order to be properly analyzed. To register all the H&E together, we used
the centermost slide as the baseline target for registration (i.e., reference).
Registration transforms were calculated between each layer in the stack,
and then were applied sequentially to all slides, moving from one to the
next until all slides were registered to the same coordinates as the central
slide (Supplementary Figure S1A). The central slide was chosen as the
reference because it would maximize similarity to the tissue
morphologies at the far ends of the tissue stack.

For training and testing H&E to CyCIF training, it was necessary
to have high-quality single-cell level registration of adjacent H&E
and CyCIF images. Due to whole slide structural changes that
biologically occur in the 5 μm space between sections, it was not
possible to adequately register whole slide images this accurately
without using non-rigid transformations, which resulted in imaging
artifacts that skewed analysis. To get the best registration possible
with the least amount of artifacts, we performed fine-tuned CyCIF
registration on smaller ROIs covering the entire tissue. Within a
single ROI, a rigid transformation can accurately register the tissue
without having conflicting transforms from regions located in
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distant areas of the whole slide. The registration transform for this
step was calculated using a binarized DAPI image and a binarized
H&E image after deconvolution of the hematoxylin stain to align the
nuclei for the two images (Young et al., 2017).

H&E and CyCIF image intensity
normalization

To minimize the influence of technical variability on stain color
between H&E sections, we experimented with the application of several
stain normalization methods to the H&E WSIs (Reinhard et al., 2001;
Macenko et al., 2009; Vahadane et al., 2016) using the Python package
stain tools (https://github.com/Peter554/StainTools). To identify and
mask out background regions of each WSI (white regions of a slide
without tissue), WSIs were each cropped into non-overlapping 256 ×
256-pixel tiles and tiles containing greater than 70% area of pixels with
8-bit intensity greater than (210, 210, 210) were excluded from
subsequent normalization steps. To help identify and mask out
background pixels in the remaining tiles before model fitting and
normalization, the foreground tiles from each H&E WSI were
independently standardized such that 5% of all pixels were
luminosity saturated. For all normalization methods, we used the
H&E WSI from section 054 as the stain reference to which the stain
intensity distributions of all other H&E WSIs would fit. After
normalizing the foreground tiles of each non-reference WSI to fit
the reference stain distribution, tiles were restitched to form cohesive
WSIs. On the basis of visual inspection (Supplementary Figure S1B and
Supplementary Figure S1C), we opted to use the Reinhard
normalization method, which has also been shown to maximize
deep learning model performance on digital pathology applications
(Ternes et al., 2020). To control for variations in raw contrast between
CyCIF WSIs, we rescaled the intensities of CyCIF WSIs to have a min-
max range fit to the 70th-99.99th intensity percentiles of the inputWSIs.

SHIFT models

SHIFT models were built using Pytorch as previously described
(Burlingame et al., 2020).Model architectures are described in Table 1.
Models were trained to predict single channel images corresponding
to one of the CyCIF stains from input H&E tiles from section 054, e.g.,
H&E→CD45 or H&E→CD31. Paired H&E and CyCIF image tiles
from section 054 were split into 80% training (8,134 tiles) and 20%
validation (2034 tiles) sets and each model was trained with a batch
size of 4 and learning rate of 0.0002 for 100 epochs. Best models were
selected based on the lowest validation loss at each epoch end and
were then used for downstream application to held-out H&E WSIs.

Measuring concordance between nuclei
overlap in adjacent sections

Estimation of the upper bound on SHIFT performance was done
by measuring concordance between overlapping nuclei in adjacent
sections for locally-registered ROIs from H&E/CyCIF test sections.
For H&E ROIs, we deconvolve the hematoxylin stain to extract
nuclear content intensity (Ruifrok and Johnston, 2001), then

segment the intensity to derive binary nuclear masks using
Cellpose (Stringer et al., 2020). For CyCIF ROIs, we use Cellpose
to segment DAPI intensity to derive binary nuclear masks. The Dice
coefficients describing the overlap of nuclear masks from ROIs of
adjacent sections were used as compensation factors for evaluating
virtual stains. The Dice-compensated SSIM values are calculated by
taking the SSIM (using an 11-pixel sliding window) of the virtual
CyCIF ROI with respect to the real CyCIF ROI and dividing it by the
Dice coefficient of nuclear overlap between the hematoxylin and
DAPI nuclear masks from sections 096/097 for that ROI.

XAE models

XAE models were built using Pytorch. Model architectures are
described in Table 2. The XAE architecture used here is an adaptation
of the UNIT architecture (Liu et al., 2017) and the imaging-to-omics
XAE architecture (Schau et al., 2020). XAE models have two input
encoders (Figure 2B), one accepting H&E image tiles (batch size × 3 ×
256 × 256), and the other accepting the corresponding paired CyCIF
images (batch size × N CyCIF channels × 256 × 256). Both encoders
compress their inputs into a shared latent space z. From z, image
representations can be upscaled by either H&E or CyCIF decoders.
Hence, there are four forward paths through the model: 1) H&E
reconstruction: H&E→z→H&E; 2) H&E-to-CyCIF translation:
H&E→z→CyCIF; 3) CyCIF reconstruction: CyCIF→z→CyCIF;
and 4) CyCIF-to-H&E translation: CyCIF→z→H&E. Models were
trained with a batch size of 16 and a learning rate of 0.0001 for
100 epochs. Best models were selected based on the lowest validation
loss at each epoch end andwere then used for downstream application
to held-out H&E WSIs. We also experimented with U-Net-like
architecture with skip connections between encoder and decoders
but found that loss gradients did not propagate to the most internal
layers of these models such that meaningful latent representations
were not learned.

Tile cluster identification

Ultimately, we want to evaluate whether deep learning
architectures can recapitulate the biological information of both cell
type and pathologist, but since VAEs andXAEs operate on a tile by tiles
basis, it is necessary to cluster tiles based on their cell type composition.
For every tile in the WSI, a vector was created that represented the
composition of cell types. The ground truth cell type information was
made by K-means clustering these composition vectors (Figure 3).
Using the elbow method, we determined that 7 clusters were optimum
for evaluation. A smaller number of clusters within the elbow was
chosen to better match the number of pathologist annotations for
consistency in evaluation. Pathologist information was created
manually by an expert pathologist, resulting in 6 distinct tissue
types (Figure 3). Tiles were assigned a ground truth tissue type
based on the maximum pixel-wise tissue type within the region.
7 clusters were computed for both the standard VAE and the XAE
encoding vectors to evaluate against the cell type ground truth clusters.

Severalmetrics were used to evaluate the ground truth recapitulation.
Cluster purity was used to evaluate howwell the twomethodologies were
able to reconstruct the same clusters as ground truth:
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TABLE 1 architecture of SHIFT models.

Layer Encoders Shared?

1 ReflectionPad2d ((3, 3, 3, 3)) No

Conv2d (3, 64, kernel_size=(7.7), stride=(1.1))

InstanceNorm2d (64, eps=1e-05, momentum=0.1, affine=False)

LeakyReLU(negative_slope=0.2, inplace=True)

2 Conv2d (64, 128, kernel_size=(4.4), stride=(2.2), padding=(1.1)) No

InstanceNorm2d (128, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

3 Conv2d (128, 256, kernel_size=(4.4), stride=(2.2), padding=(1.1)) No

InstanceNorm2d (256, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

4 ResBlock (N=256,K=3, S=1) No

5 ResBlock (N=256, K=3, S=1) No

6 ResBlock (N=256, K=3, S=1) No

z ResBlock (N=256, K=3, S=1) Yes

Reparameterization ()

Layer Decoders Shared?

1 ResBlock (N=256, K=3, S=1) Yes

2 ResBlock (N=256, K=3, S=1) No

3 ResBlock (N=256, K=3, S=1) No

4 ResBlock (N=256, K=3, S=1) No

5 ConvTranspose2d (256, 128, kernel_size=(4.4), stride=(2.2), padding=(1.1)) No

InstanceNorm2d (128, eps=1e-05, momentum=0.1, affine=False)

LeakyReLU(negative_slope=0.2, inplace=True)

6 ConvTranspose2d (128, 64, kernel_size=(4.4), stride=(2.2), padding=(1.1)) No

InstanceNorm2d (64, eps=1e-05, momentum=0.1, affine=False)

LeakyReLU(negative_slope=0.2, inplace=True)

ReflectionPad2d ((3, 3, 3, 3))

7 Conv2d (64, 3, kernel_size=(7.7), stride=(1.1)) No

Tanh ()

Layer Discriminators Shared?

1 Conv2d (11, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) No

LeakyReLU(negative_slope=0.2, inplace=True)

2 Conv2d (64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) No

InstanceNorm2d (128, eps=1e-05, momentum=0.1, affine=False)

LeakyReLU(negative_slope=0.2, inplace=True)

3 Conv2d (128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) No

InstanceNorm2d (256, eps=1e-05, momentum=0.1, affine=False)

LeakyReLU(negative_slope=0.2, inplace=True)

(Continued on following page)
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Purity � 1
N

∑k
i�1
max ci ∩ tj( )

whereN is the number of data points, k is the number of clusters, ci is the
set of predicted clusters and tj is the set of ground truth clusters. The
sklearn implementation of Normalized Mutual Information (NMI)
(Metrics, 2021) was used as anothermetric to evaluate the same question:

NMI U,V( ) � MI U,V( )
mean H U( ), H V( )( )

where U and V are the predicted and ground truth cluster labels,
andH(U) andH(V) represent the entropy of U and V respectively.
The predicted tile-type clusters were paired to ground truth cell-type
clusters and annotations using the Spearman correlation.

To evaluate whether the deep learning models capture the same
level of feature information as CyCIF staining, we used the pyrcca
(Bilenko and Gallant, 2016) implementations of canonical correlation
on the encoded latent feature space and the paired CyCIF tile-wise
expressions. The outputs from this process produced two components
shared between the twomodalities. Quantitatively the correspondence
of the two modalities can be measured by the canonical correlation of
each component, and qualitatively the correspondence can be
observed by the overlap in the scatter plot of the new components.

Region of interest (ROIs) selection

Random sampling
Random sampling was conducted by randomly drawing a new

non-overlapping ROI repeatedly. For bulk analysis and comparison,
1,000 random combinations of k ROIs were selected where k is the
number of ROIs found to be optimal for the other sampling methods.

Convex optimization on composition
If b represents counts of cells across the clustered group and ai

represents the cell number belonging to the i-th ROI, by solving

min
x

x‖ ‖1 s.t. b � Ax

we could identify the minimum number of ROIs to match the WSI
cellular population (themain issue of this approach is that we often select
homogenous cell populations) where b ∈ RN, b represents composition
vector of clustered groups within the WSI, each column of A ∈ RN×M

represents a possible ROI and each row contains the percentage of tiles
in that ROI for each cluster;N,M represent the number of clusters and
the number of possible ROIs in the WSI respectively.

Since we do not have cell composition beforehand, we will use
cluster results based on the latent representation of tiles within ROIs
via embedding both H&E and CyCIF. The underlying assumption
here is that H&E/CyCIF embedding reflects tile-based cell
composition as shown in Figure 2. For the optimization of
cluster composition, we solve the optimization problem:

min x x‖ ‖1 s.t. b � Ax and 0≤ x≤ 1

Implementation of this function was conducted using the
intlinprog function in MATLAB. The threshold of 0.01 was
applied to x as a cutoff for selecting relevant ROIs to guarantee
all selected ROIs made a significant contribution.

Convex optimization with entropy
To optimize both composition and ROI heterogeneity, we take

the entropy of the composition vector into account using the convex
optimization function:

min
x

Ax − b‖ ‖2 − λEx s.t. 0≤ x≤ 1 and∑x � 1

where E ∈ RM represents the vector of entropies and λ is a
hyperparameter governing the weight of entropy. In this experiment,
λwas set to 1. Implementation of this functionwas conducted usingCVX
(Grant, 2021) in MATLAB. x as the cutoff for selecting relevant ROIs to
guarantee all selectedROIsmade a significant contribution. The threshold
of 0.01was applied tox as a cutoff for selecting relevant ROIs to guarantee
all selected ROIs made a significant contribution.

TABLE 1 (Continued) architecture of SHIFT models.

Layer Encoders Shared?

4 Conv2d (256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) No

InstanceNorm2d (512, eps=1e-05, momentum=0.1, affine=False)

LeakyReLU(negative_slope=0.2, inplace=True)

5 Conv2d (512, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) No

ResBlock

ReflectionPad2d ((1, 1, 1, 1))

Conv2d (N, N, kernel_size=(K, K), stride=(S, S))

InstanceNorm2d (N, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)

ReflectionPad2d ((1, 1, 1, 1))

Conv2d (N, N, kernel_size=(K, K), stride=(S, S))

InstanceNorm2d (N, eps=1e-05, momentum=0.1, affine=False)
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Evaluation
The quality of the selected representative ROIs was evaluated

based on three metrics: Mean squared error (MSE) compared to
WSI composition; Jensen-Shannon Divergence (JSD) of the ROI and
WSI compositions; and mean ROI entropy. Mean squared error was
calculated using:

MSE � 1
n
∑n
i�1

Ri −W0( )2

where n is the number of predicted clusters, R is the percent
composition of each cluster within all selected ROIs combined,
and W0 is the percent composition of each cluster within the WSI.
JSD was calculated using:

JSD � 0.5 ·∑n
i�1
Ri · log2

Ri

0.5 · Ri +Wi( )( )
+ 0.5∑n

i�1
Wi · log2

Wi

0.5 · Ri +Wi( )( )

TABLE 2 architectures of XAE models.

Layer Generator

D1 Conv2d (3, 64, kernel_size=(4.4), stride=(2.2), padding=(1.1), bias=False) LeakyReLU(negative_slope=0.2,
inplace=True)

D2 Conv2d (64, 128, kernel_size=(4.4), stride=(2.2), padding=(1.1), bias=False) BatchNorm2d (128, eps=1e-05,
momentum=0.1, affine=True) LeakyReLU(negative_slope=0.2, inplace=True)

D3 Conv2d (128, 256, kernel_size=(4.4), stride=(2.2), padding=(1.1), bias=False) BatchNorm2d (256, eps=1e-05,
momentum=0.1, affine=True) LeakyReLU(negative_slope=0.2, inplace=True)

D4 Conv2d (256, 512, kernel_size=(4.4), stride=(2.2), padding=(1.1), bias=False) BatchNorm2d (512, eps=1e-05,
momentum=0.1, affine=True) LeakyReLU(negative_slope=0.2, inplace=True)

D5 Conv2d (512, 512, kernel_size=(4.4), stride=(2.2), padding=(1.1), bias=False) BatchNorm2d (512, eps=1e-05,
momentum=0.1, affine=True) LeakyReLU(negative_slope=0.2, inplace=True)

D6 Conv2d (512, 512, kernel_size=(4.4), stride=(2.2), padding=(1.1), bias=False) BatchNorm2d (512, eps=1e-05,
momentum=0.1, affine=True) LeakyReLU(negative_slope=0.2, inplace=True)

D7 Conv2d (512, 512, kernel_size=(4.4), stride=(2.2), padding=(1.1), bias=False) BatchNorm2d (512, eps=1e-05,
momentum=0.1, affine=True) LeakyReLU(negative_slope=0.2, inplace=True)

D8 Conv2d (512, 512, kernel_size=(4.4), stride=(2.2), padding=(1.1), bias=False) ReLU(inplace=True)

U1 ConvTranspose2d (512, 512, kernel_size=(4.4), stride=(2.2), padding=(1.1), bias=False) BatchNorm2d (512,
eps=1e-05, momentum=0.1, affine=True) ReLU(inplace=True)

U2 ConvTranspose2d (1,024, 512, kernel_size=(4.4), stride=(2.2), padding=(1.1), bias=False) BatchNorm2d (512,
eps=1e-05, momentum=0.1, affine=True) ReLU(inplace=True)

U3 ConvTranspose2d (1,024, 512, kernel_size=(4.4), stride=(2.2), padding=(1.1), bias=False) BatchNorm2d (512,
eps=1e-05, momentum=0.1, affine=True) ReLU(inplace=True)

U4 ConvTranspose2d (1,024, 512, kernel_size=(4.4), stride=(2.2), padding=(1.1), bias=False) BatchNorm2d (512,
eps=1e-05, momentum=0.1, affine=True) ReLU(inplace=True)

U5 ConvTranspose2d (1,024, 256, kernel_size=(4.4), stride=(2.2), padding=(1.1), bias=False) BatchNorm2d (256,
eps=1e-05, momentum=0.1, affine=True) ReLU(inplace=True)

U6 ConvTranspose2d (512, 128, kernel_size=(4.4), stride=(2.2), padding=(1.1), bias=False) BatchNorm2d (128,
eps=1e-05, momentum=0.1, affine=True) ReLU(inplace=True)

U7 ConvTranspose2d (256, 64, kernel_size=(4.4), stride=(2.2), padding=(1.1), bias=False) BatchNorm2d (64,
eps=1e-05, momentum=0.1, affine=True) ReLU(inplace=True)

U8 ConvTranspose2d (128, 1, kernel_size=(4.4), stride=(2.2), padding=(1,1)) Tanh ()

Layer Discriminator

1 Conv2d (4, 64, kernel_size=(4.4), stride=(2.2), padding=(1,1)) LeakyReLU(negative_slope=0.2, inplace=True)

2 Conv2d (64, 128, kernel_size=(4.4), stride=(2.2), padding=(1.1), bias=False) BatchNorm2d (128, eps=1e-05,
momentum=0.1, affine=True) LeakyReLU(negative_slope=0.2, inplace=True)

3 Conv2d (128, 256, kernel_size=(4.4), stride=(2.2), padding=(1.1), bias=False) BatchNorm2d (256, eps=1e-05,
momentum=0.1, affine=True) LeakyReLU(negative_slope=0.2, inplace=True)

4 Conv2d (256, 512, kernel_size=(4.4), stride=(1.1), padding=(1.1), bias=False) BatchNorm2d (512, eps=1e-05,
momentum=0.1, affine=True) LeakyReLU(negative_slope=0.2, inplace=True)

5 Conv2d (512, 1, kernel_size=(4.4), stride=(1.1), padding=(1.1))
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where n is the number of predicted clusters, R is the percent
composition of each cluster within all selected ROIs combined,
and W is the percent composition of each cluster within the WSI.
The mean entropy was calculated using:

MeanEntropy � 1
m
∑m
i�1
ri · log ri( )

where m is the number of selected ROIs and ri is the percent
composition within each individual ROI.
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