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In this study, we introduce Blob-B-Gone, a lightweight framework to
computationally differentiate and eventually remove dense isotropic
localization accumulations (blobs) caused by artifactually immobilized particles
in MINFLUX single-particle tracking (SPT) measurements. This approach uses
purely geometrical features extracted from MINFLUX-detected single-particle
trajectories, which are treated as point clouds of localizations. Employing
k-means++ clustering, we perform single-shot separation of the feature space
to rapidly extract blobs from the dataset without the need for training. We
automatically annotate the resulting sub-sets and, finally, evaluate our results
by means of principal component analysis (PCA), highlighting a clear separation in
the feature space. We demonstrate our approach using two- and three-
dimensional simulations of freely diffusing particles and blob artifacts based on
parameters extracted from hand-labeled MINFLUX tracking data of fixed 23-nm
bead samples and two-dimensional diffusing quantum dots on model lipid
membranes. Applying Blob-B-Gone, we achieve a clear distinction between
blob-like and other trajectories, represented in F1 scores of 0.998 (2D) and 1.0
(3D) as well as 0.995 (balanced) and 0.994 (imbalanced). This framework can be
straightforwardly applied to similar situations, where discerning between blob and
elongated time traces is desirable. Given a number of localizations sufficient to
express geometric features, the method can operate on any generic point clouds
presented to it, regardless of its origin.
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1 Introduction

When performing single-particle tracking (SPT) experiments using optical microscopy,
the vast majority of methodologies require some form of labeling to enable single-molecule
detection, be it fluorescent tags or some form of highly scattering tag for scattering-based
detection (Manzo and Garcia-Parajo, 2015). In a concrete experimental setting, the labeling
procedure inevitably leads to several side effects, such as unbound tags or cross-linked
reporters being present as immobile objects in the field of view. These artifacts may, in turn,
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lead to large accumulations of localizations in small regions,
hereinafter defined as blobs, which may disturb the final
detection. This is especially unwanted in cases where the
diffusing species of interest undergoes transient confinements or
trapping, rendering the detection of these behaviors especially
complex.

Recently developed MINFLUX microscopy (Balzarotti et al.,
2017; Gwosch et al., 2020; Schmidt et al., 2021) has shown great
potential for high-throughput single-particle tracking (SPT) in two-
and three-dimensions of single fluorescently tagged molecules. Due
to the nature of its implementation, especially concerning its
commercial version, a MINFLUX microscope detects all
fluorescent reporters in a pre-defined region of interest (ROI),
producing an array of coordinates and corresponding time
stamps. Thus, immobile markers have a higher chance of being
tracked in MINFLUX multiple times compared to the freely moving
particles, which diffuse in and out of the ROI. In the case of SPT, it is
preferable to use reporters that may be tracked for extended periods
of time, such as metallic core quantum dots or, especially,
photostable fluorescent dyes. Together with the core concept of
MINFLUX of producing localization with comparatively few
photons, the presence of immobile particle artefacts may be
accentuated.

Due to the single-digit nanometer resolution of MINFLUX
microscopy, the size of markers is a non-negligible factor in
MINFLUX data. In general, we observe that immobile particles
appear as either circular or spherical isotopically distributed point
clouds with their radius proportional to the size of the marker. In the
following work, we will refer to these spherical artifacts as blobs.
These blobs need to be removed from the dataset before any analysis
of particle motion can take place, as they can drastically influence the
analysis of specific cases of particle diffusion, such as those
characterized by transient confinements or “hopping” behavior
(Kusumi et al., 2005; Honigmann et al., 2013). Classically, sorting
is done by hand or by means of conventional statistical diffusion
analysis and outlier reduction. This, however, becomes significantly
more costly in computation time and power when applied to large
quantities of long trajectories produced by high-throughput
techniques such as MINFLUX. Recent AI-enabled tools for
classification and clustering of particle trajectories are able to
deliver promising results but require heavy computational power,
large databases for training, and are specific in their application
(Muñoz-Gil et al., 2020).

We propose a lightweight solution to this issue that is based on
point cloud geometry and is able to rapidly identify and sort out all
blob-like particle trajectories in two- and three-dimensional SPT
data. Though this application was designed with MINFLUX in
mind, it can, in essence, be transferred and applied to any point
cloud-based technique, given that one sub-population of data
exhibits blob-like behavior.

2 Methodology

The following section will introduce and describe the methods
used to remove blobs from point cloud datasets. First, we investigate
deliberately created MINFLUX SPT blobs to understand their
geometry. Following that, we describe how we simulated and

diversified diffusion and blob datasets in two and three
dimensions to attain more rigid test samples. We use untrained
single-shot k-means clustering (David Arthur, 2007) based on five
designed classical geometrical features, which are calculated for each
set independently. Lastly, we give a brief explanation of why we
chose them and how they are computed.

2.1 MINFLUX blob artifacts

A single immobile bead sample was used to collect examples of
blob-like structures usingMINFLUXmicroscopy. This is a GATTA-
Beads “R” sample (GATTAquant GmbH), purchased as a pre-
mounted standard microscope slide from the producer. The
beads have a nominal diameter of 23 nm (verified by STED
microscopy) and are filled with ATTO 647N dye.

The beads were imaged using a commercial MINFLUX setup
(abberior GmbH), which is based on an iterative localization
approach (Schmidt et al., 2021). The setup used for the
measurements reported herein is comprised of a confocal and
MINFLUX illumination/detection unit attached to an Olympus
IX83 microscope body. The illumination and detection objective
is a ×100 oil immersion objective lens (UPL SAPO100XO/1.4,
Olympus). For our MINFLUX measurements, we used a 642 nm
excitation line, and the microscope detects the fluorescence with two
avalanche photodiodes with detection ranges of 650–685 nm and
685–760 nm to estimate the localization of the fluorescence emitters
in two dimensions (for the experiments contained herein). Photon
detection takes place in a confocal microscopy fashion through a
pinhole size corresponding to 1.0 AU. The localizations are derived
from the sum of the photons from the two samples. Hardware
control is provided using a version of Imspector software (abberior
GmbH) that supports MINFLUX detection.

The abberior MINFLUX localizes particles with an iterative
scanning approach with a pre-defined sequence of iterations
(Gwosch et al., 2020; Schmidt et al., 2021). In brief, the
microscope initially detects a fluorescence signal in an area by
scanning a donut-shaped beam in a certain number of positions
in an orbit with a radius L in various positions in a small field of
view. Subsequently, the microscope “closes in” on the fluorescence
signal by reducing the radius L and refining the position estimation.
Each successive iteration also requires a different number of photons
to produce localizations and can have a different dwell time and
excitation laser power, as reported in the parameter table. When the
microscope reaches the last iteration of the sequence, the system is
locked on the latest detected particle and continues localizing it with
the same parameters as long as photons are detected or the particle is
detected within the scanning orbit [through the center frequency
ratio (CFR) metric (Schmidt et al., 2021)].

In the case of a diffusing fluorescent molecule, the position
update serves as a direct tracking method, delivering particle
trajectories out of the microscope without additional particle
tracking steps, as it is more usual for SPT through other
microscopy techniques.

Essential parameters for the scanning sequences used, which are
optimized for SPT, are listed in Tables 1–3 for immobile two- and
three-dimensional as well as two-dimensional mobile tracking,
respectively. We need to highlight that another variable that
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changes between pattern iterations is the excitation laser power. We
express this by listing a laser power multiplier amongst the
parameters, which refers to a reference excitation power of
1.78 μW at the sample plane.

2.1.1 Reconstructing blobs
Using MINFLUX tracking data of immobile fluorescent beads

as a base model, we attempt to empirically recreate blobs in silico
as the backbone for later simulations. Initially, we inspect the
spread of localizations of an arbitrarily chosen MINFLUX blob

using a two-dimensional histogram (Figure 1A central panel).
We further show the respective distributions along X and Y,
which reveals a clear center-symmetrical Gaussian shape
(Figure 1A side panels).

To understand the expanse of the localization dispersion, we
extract standard deviations along all axes for every dataset taken and
show them grouped by sample in Figure 1B. It is immediately
apparent that they are close but not identical, indicating a
slightly elliptical shape, which we have to consider during
simulation.

TABLE 1 MINFLUX scanning parameters for 2D tracking of immobile particles.

2D tracking First iteration Second iteration Third iteration Fourth iteration

L (nm) 284 302 150 100

Pattern shape Hexagon Hexagon Hexagon Hexagon

Collected photons (counts) 40 20 20 20

Laser power multiplier (times) 1 1 2 3

Pattern dwell time (µs) 100 100 100 100

Pattern repeat (times) 1 1 1 1

Center frequency ratio (CFR) −1.0 −1.0 0.8 −1

Background threshold (kHz) 15 30 30 50

TABLE 2 MINFLUX scanning parameters for 3D tracking of immobile particles.

3D tracking First iteration Second iteration Third iteration Fourth iteration Fifth iteration

L (nm) 285 1,440 285 150 100

Pattern shape Hexagonal (lateral localization) Z line shape (axial localization) Octahedron Octahedron Octahedron

Collected photons (counts) 40 300 40 30 30

Laser power multiplier 1 1 1 2 3

Pattern dwell time (µs) 500 2000 200 200 200

Pattern repeat (times) 1 1 1 1 1

Center frequency ratio (CFR) −1 −1 −1 0.9 −1

Background threshold (kHz) 30 30 35 40 60

TABLE 3 MINFLUX scanning parameters for 2D tracking of mobile particles.

2D tracking First iteration Second iteration Third iteration Fourth iteration

L (nm) 282 300 150 100

Pattern shape Hexagon Hexagon Hexagon Hexagon

Collected photons (counts) 40 20 20 20

Laser power multiplier (times) 6.8 6.8 13.44 19.86

Pattern dwell time (µs) 100 100 100 100

Pattern repeat (times) 1 1 1 1

Center frequency ratio (CFR) −1.0 −1.0 0.8 −1

Background threshold (kHz) 15 30 30 50
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We further note that approximately 50% of localizations are
found within a radius of 6 nm, while the overwhelming majority are
located within the bounds of 12 nm from the center. Following these
observations, we generate synthetic blobs as multivariate two- or
three-dimensional normal distributions (Supplementary Figure S1).

While we can arbitrarily choose mean values to spawn the blobs
across a sandbox, we need to give a covariance matrix which
describes the distributions’ extent in space. As we observe the
blobs to be concentric and isotropic, we will simplify the
covariance matrix across all simulations to be diagonalized,
meaning that all axes are independent of one another. The
entries of said diagonal matrices are based on the standard
deviations extracted from observation (Supplementary Figure S2).

2.1.2 MINFLUX SPT data
After verifying the effectiveness of the proposed algorithm when

applied to ground truth simulated data, we additionally acquired a

set of MINFLUX SPT data to serve as our reference set when
applying the artifact removal to real-world conditions.

To this end, we prepared giant unilamellar vesicles (GUVs)
through electroformation using a solution of POPC:Chol 1:1 with
DSPE-PEG20k-Biotin (0.01Mol%) and DOPE Atto
488 (0.01Mol%), similar to the process of Méléard et al. (2009).
We then plasma-cleaned a 25 −mm coverslip to rapture the GUVs
and create GUV patches. We used 1ml of phosphate-buffered saline
(PBS, 137mM NaCl, 10mM phosphate, and 2.7mM KCl) to keep
the supported lipid bilayer (SLB) hydrated. Finally, we labeled the
biotinylated lipid in the SLB with 2μl of Qdot 655 streptavidin
conjugate (10nM concentration, Invitrogen by Thermo Fisher
Scientific) to perform SPT.

Multiple two-dimensional datasets have been taken on the same
sample at different spots to increase variability and statistical
rigidity. In the end, all sub-sets were pooled together, and any
track or blob with less than 500 localizations was discarded to

FIGURE 1
Two-dimensional histogram of 239,041 localizations (A) of an immobileGATTAquant 23-nm bead, acquired using MINFLUX single-particle tracking
over 36 s. Three white circles are shown additionally for reference. The X-axis profile is shown as a 1D histogram in the upper panel, and the Y-axis profile
is in the right-side panel. A common full red line in both graphs marks the cumulative histogram, i.e., the total count of localizations until the respective
coordinate. The dotted red line highlights 50% of all localizations. The extracted standard deviations in X and Y directions for the entire dataset is
shown in (B). Crosses mark the mean value of X/Y standard deviation. A gray box highlights the dataset used in (A).
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eradicate hardly analyzable trace fragments. Thus, both the artifact
and free set range from ~500 to ~5,000 localizations.

Consecutively, all trajectories have been hand-labeled to create a
reference dataset to benchmark the method. The set includes
107 blobs and 528 mobile tracks, which indicates on average the
presence of approximately 20% artifacts per dataset.

2.2 Simulation

2.2.1 Simulated ground truth datasets
As a ground truth dataset to validate our blob identification

algorithm, we generated simulated datasets of blobs and diffusing
particles. To represent particle diffusion, we simulated 250 traces of
a variable number of localizations (between 400 and 600), with a
time interval between localizations of Δt� 500μs between steps. To
introduce a degree of variability in the dataset, the diffusion
coefficient of each simulated trajectory was randomly drawn
from a uniform distribution of diffusion coefficients in the range
of [0.1μm2/s, 1μm2/s].

Each particle started at a position randomly chosen within a
sandbox (1μm x 1μm). We updated each localization (xi, yi)
stepwise and simultaneously for all particles following xi+1 � xi +
rcos(φ) and yi+1 � yi + rsin(φ) with r � u· �����

2D·Δt√ |u ∈[0, 1] and
φ ∈[0, 2π]. In doing so, we ensured being as close as possible to
thermodynamic movement while maintaining idealized simplicity.

Blobs are created by drawing 400 to 600 localizations from a set
of 250 two-dimensional multivariate normal distributions, where
the covariance matrices were diagonalized, and the respective entries
are again drawn from 1D normal distributions based on the mean
and standard deviation of variances extracted from the MINFLUX
tracking data of immobilized fluorescent beads. We did so to ensure
that our simulation represents the variability of experimental data.
Artifacts are randomly spawned in an area smaller than the area
initially explored by synthetic free particles to avoid edge effects.

Ground truth datasets for the three dimensions are similarly
generated, with the added degree of freedom of the third dimension.

2.3 Geometrical features

From our observations and knowledge of the origins of blobs, we
can infer clear features that can be systematically detected in all blobs,
highlighting their similarities. The better we describe them, the more
similar descriptors they will produce, leading to a closer and higher
density distribution in the feature space, aiding us when clustering.

2.3.1 Maximum distance
A straightforward metric to distinguish between blobs

originating from immobile particles and freely diffusing particles
is to calculate the maximum Euclidean distance between any two
points within the dataset. It will be similar for all blobs in the sample;
however, it varies and is potentially larger for free markers. We can
define the maximum distance as

d max � max �a − �xi| |{ }∀ �a∈ P,∀ �xi∈ P\ �a{ }( ), (1)
where P is the set of points in each trajectory.

2.3.2 Convex hull volume and area
We can assume the area or volume explored by any particle to be

described by the area or volume of either a 2D polygon or 3D
polyhedron with boundaries defined by the convex closure of the
track, i.e., the smallest set that contains it as a subset of the Euclidean
space. While blobs will result in regular spherical shapes with
comparable area and volume throughout the dataset, free
particles produce elongated or otherwise irregular shapes with
varying parameters. We compute the convex hull using the Qhull
algorithm (Bradford Barber et al., 1996), as implemented in the
SciPy (Virtanen et al., 2020) package of Python, which we also use to
calculate both the polygon area and polyhedron volume.

2.3.3 Ellipticity
For non-blobs, the convex closure polygon appears as a

stretched ellipsis due to the free movement of the particle if at
least one direction is generally preferred, which is usually the case.
Compared to that, a particle would need to constantly move in a
concentric spiral or otherwise convex isometric around its starting
position to produce a sphere or circle, which is possible but of low
probability. We compare the convex area to the ellipsis calculated
using the maximum Euclidean distance (1) and mean Euclidean
distance to the point cloud’s center of mass.

ELLI2D � Aconvex

Aellipsis
, (2)

ELLI3D � Vconvex

Vellipsoid
,

with

Aellipsis � π·d max · dmean � π·d max · �a − �μ μ �∣∣∣∣ �P. (3)

The same is applied for comparing the volume of the convex
polyhedron to the volume of an ellipsoid using the following
expression:

Vellispoid � 4π
3
· d max · d2

mean. (4)

2.3.4 Center sphericality
Due to the isotropic distribution of localizations around the center

of mass expected in blobs, the convex polygon resembles a circle, and
the polyhedron resembles a sphere. Due to the bell-curve-shaped
density profile along each axis, we expect and observe a significant
difference between the convex closure and the area or volume described
by a circle or sphere with the radius equal to the mean distance of each
point to the center of mass. We effectively compare the area or volume
of the highest density to the territory explored in total. In parallel to the
ellipticity (2), we define the center sphericality as follows:

SPHE2D � Aconvex

Acircle
, (5)

SPHE3D � Vconvex

Vsphere
.

2.3.5 Convex density of points
Based on the convex polygon area and convex polyhedron

volume, respectively, we calculate the density of localizations in
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the total area and volume explored, highlighting fast and freely
moving particles with a low density and separating them from
densely packed blob tracks.

ρ2D � #P
Aconvex

, (6)

ρ3D � #P
Vconvex

.

2.4 Evaluation metrices

2.4.1 F1-score
The F1-score is a widely used metric in statistical analysis of

binary classification to evaluate accuracy. It is the harmonic mean of
precision and recall (Taha and Hanbury, 2015) and thus represents
both simultaneously. It is calculated as follows:

F1 � 2 · precision · recall
precision + recall

� 2·TP
2·TP + FP + FN

, (7)

where TP is the true positive, FP is the false positive, and FN is the
false negative of the separation. F1-score values are in the range of
[0,1], where larger values mean higher accuracy.

2.4.2 Silhouette score
Performing cluster evaluation on the model itself, the silhouette

score S (Rousseeuw, 1987) compares the mean distance between any
selected sample and all other points within the clusterDi and the mean
distance of any selected sample of one class to the next nearest cluster
Di+1 to quantify the sharpness of separation. It is calculated as follows:

S � Di+1 −Di

max Di, Di+1( ). (8)

The silhouette score yields values in the range of [−1,1], where
larger values indicate clean separation of clusters.

2.4.3 Adjusted Rand index
The similarity of label assignment can be quantified using the

Rand index (Hubert and Arabie, 1985), a symmetrical measure
between the number of pairs that are both in the same ground truth
and clustered set A as well as pairs that are in different ground truth
and clustered sets B. To set a common baseline for reliable
interpretation, the Rand index is adjusted (Steinley, 2004) so that
it yields 0 for random labeling and 1 for consistent labeling. The
adjusted Rand index ARI is calculated as follows:

ARI � RI − E RI[ ]
max RI( ) − E RI[ ]. (9)

The Rand index RI is defined as follows:

RI � A + B

C
nsamples

2

, (10)

for the ground truth class assignment C.

2.4.4 V-measure
Given the ground truth, the V-measure is the harmonic mean of

clustering homogeneity and completeness (Andrew Rosenberg

J. V-measure, 2007), representing both in one combined metric.
It is calculated as follows:

V � 1 + β( ) · homogeneity · completeness
β · homogeneity + completeness

, (11)

where β is a weight parameter set to 1 in this work.
The values are derived in the range of [0,1], where 1 is produced

when each cluster contains only one species (homogeneity), and all
candidates are assigned their ground truth label.

2.4.5 Feature correlation
We evaluate the correlation between two feature axes by means

of Pearson’s correlation coefficient (PCC) (Weisstein, 2023) as the
ratio between the axes’ covariance and the product of their standard
deviation. This yields a measure for the linear relationship between
said features on a scale of [−1,1], where the extrema indicate ideal
anti-correlation/correlation, respectively. PCC is calculated as
follows:

PCCF1 ,F2 �
cov F1, F2( )

σF1σF2
.

2.5 Automatic annotation

2.5.1 Blob score
When applying Blob-B-Gone to unknown datasets without

prior training, we lack control over the assignment of blobs to
clusters during the process. Though visual confirmation by plotting
is a possibility, it is hardly scalable and prone to bias. Thus, we
introduce the Blob score B, which is the mean ratio between central
sphericality and maximum distance, computed for both clusters to
determine the set that is more likely to contain artifactual blobs:

Bcluster � SPHE/d max. (12)
We expect small distances and large center sphericality for

artifacts, resulting in larger B-scores, and vice versa for the free
tracks. Hence, using this metric, we automatically annotate both
divided sub-sets fully automatically to make further processing easy.

We deliberately do not use the Blob score as a means of
clustering since it is highly specific and, thus, has a higher bias
toward a limited type of data, which results in diminished reliability
when presented with inputs diverting from that.

3 Results

3.1 Simulated data

For each trace in the simulated datasets, we calculate a five-
dimensional descriptor in the feature space using the features
described in the Methodology section. Due to the considerable
difference in the value across all features, the descriptors span an
inhomogeneous space. To correct for that, we normalize and
standardize all axes individually to match a zero-mean unit-
variance distribution, thus removing feature bias and improving
the rigidity of clustering. In order to evaluate the performance of the
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algorithm, we generate ground truth datasets by combining
simulated blobs and freely diffusing particle trajectories, both in
two and three dimensions. The chosen geometrical features are
calculated for each of these point clouds, and we subsequently
initialize k-means clustering with two suspected underlying
populations. We compute the separation using the scikit-learn
(Pedregosa et al., 2011) (Python) implementation of the greedy
k-means++ (David Arthur, 2007) algorithm in a single-shot
manner, without the need for prior training.

To quantify the performance of the algorithm, we calculate the
silhouette score for goodness of clustering, the adjusted Rand index
to evaluate the labeling, the V-measure to check cluster formation,
and the F1-score in addition to the confusion matrix.

The results obtained when applied to the two-dimensional
simulation dataset are shown in Figure 2. Out of 500 traces
(250 free and 250 blobs), 499 are assigned the correct label and
only one diffusing track was inaccurately flagged as a blob, leading to

an F1-score of 0.998 (2D). The incorrectly labeled track, highlighted
in red (Figure 2C), shows that this trajectory has a high concentric
density of localizations and a more regular, almost circular, convex
outline. Therefore, this object closely resembles a blob trajectory in
terms of center sphericality, localization density, and ellipticity.

For clearer insights, we performed principal component analysis
(Jolliffe and Cadima, 2016) (additional PCA plots are found in
Supplementary Figure S3) reducing the feature space to two
dimensions (Figure 2B), to better visualize the agglomeration of
descriptors into clusters. The blob cluster (blue) appears as densely
packed compared to the free (red) particles, indicating high
similarity among its content. This was expected as we
deliberately chose the features to highlight these geometric
correlations.

We note that the cluster of free particles (red), though still visibly
grouped, is spread far more than the blob cluster, indicating that the
set of features chosen produced a higher variance of descriptors.

FIGURE 2
Application of Blob-B-Gone to the simulated two-dimensional dataset leads to the separation listed in the confusion matrix (A). (B) Principal
component analysis of the standardized feature space reducing the dimensionality from 5D to 2D. The gray box includes metrics (silhouette score [-1,1],
adjusted Rand index [-1,1], V-measure [0,1], and F1-score [0,1]) computed for the 2D single-shot k-means clustering. Each cluster mean is marked as a
center of mass in black, and the decision boundary between the assigned clusters is visualized in magenta and calculated as the normal of the
segment connecting the cluster means in the middle. The black arrow connects an incorrectly labeled trace to a respective time-scale colored (dark->
bright) scatterplot. The black outline marks their convex hull. For comparison, all traces in each cluster are shown in (C,D) in various shades of the color
corresponding to their predicted label. The color-scales are used to aid discerning individual tracks. On the left side, another black arrow highlights the
incorrectly flagged blobs.
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This is caused by a higher variety in the distribution used to produce
data, which is randomized free diffusion. Nonetheless, both
populations appear clearly separated, implying that the features
chosen still describe the data efficiently.

The track incorrectly flagged as an artifact is located on the
far outer rim of the blob cluster, close to the diffusing one, as
marked by the decision boundary in magenta (Figure 2B). We
conclude that this instance of mislabeling is a direct
consequence of using single-shot k-means and could be
avoided by adjusting the boundary or switching to a
k-nearest-neighbor algorithm. However, this would require
training prior to application. The advantage of using
k-means, however, lies in the fact that it is easily scalable to
a large number of data points and is capable of performing
single-shot clustering without annotated data, which is
advantageous in terms of resources and general applicability.

We apply the same procedure to the three-dimensional
dataset. In this case, the clustering algorithm achieves a

perfect separation between the blobs and freely diffusing
particles, producing an exceptional F1-score of 1.0 and a
diagonalized confusion matrix (Figure 3A), indicating that all
data points have been assigned the correct label. In principal
component analysis (Figure 3B), we further notice an even tighter
clustering and clearer separation compared to the previous case
(Figure 3B), indicating that the additional non-trivial dimension
causes the feature ensemble to be even more representative of the
particle trajectories.

Finally, we again apply Blob-B-Gone to both datasets
ignoring the ground truth to evaluate the automatic
annotation using the B-score introduced previously. The
metric delivers a clear 37: 1 ratio between blobs and free
particles when applied to the clusters produced when
presenting the 2D data, allowing us to unambiguously
distinguish and annotate the results. Equivalent to the even
sharper separation in the feature space encountered in the 3D
case, we receive a 44: 1 (blob: free) B-score ratio.

FIGURE 3
Applying Blob-B-Gone to the simulated three-dimensional dataset leads to the separation listed in the confusionmatrix (A). (B) Principal component
analysis of the standardized feature space reducing the dimensionality from 5D to 2D. The gray box includes metrics (silhouette score [-1,1], adjusted
Rand index [-1,1], V-measure [0,1], and F1-score [0,1]) computed for the 3D single-shot k-means clustering. Each cluster mean is marked as a center of
mass in black, and the decision boundary between the assigned clusters is visualized in magenta and calculated as the normal of the segment
connecting the cluster means in the middle. For comparison, all traces in each cluster are shown in (C,D) in various shades of the color corresponding to
their predicted label. The color-scales are used to aid discerning individual tracks.
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3.2 MINFLUX SPT data

After successfully applying the proposed method to simulated
data in two and three dimensions, we investigate its performance on
in vitro MINFLUX SPT data.

On average, we found approximately 20% blob artifacts per set,
which renders our base dataset imbalanced. To ensure symmetric
feature generation and comparability between the performances of
both classes, we first equalize the population counts in the dataset by
randomly picking traces from each set. However, given that during a
real scenario, Blob-B-Gone will be applied to an imbalanced dataset,
we also assess this case.

When facing MINFLUX data with the same procedure as
presented for the simulated data, the automatic annotation again
yields a clear 1: 33 (blob: free) B-score ratio for either set. In both
cases, the same artifact has been mislabeled a free trace, leading to
almost diagonalized confusion matrices (Figures 4A, C) and F1-
scores of 0.995 (balanced) and 0.994 (imbalanced). Comparatively
lower silhouette scores of 0.577 (balanced) and 0.661 (imbalanced)

imply a narrower cluster separation, which we highlight in the
respective PCAs (Figures 4B, D).

Even though the clusters are more spread out due to a higher
variability in geometric structure in the experimental dataset, we still
observe a clear separation between the two for the balanced set. In
the case of the imbalanced dataset, both clusters reach closer to the
separation border.

In total, we notice two mislabeled trajectories. One only appears
in the imbalanced dataset and is likely caused by the cluster
proximity. The other is a trajectory common to the balanced and
imbalanced cases. We mark these outliers with black arrows and
show their outline in the PCA plots of Figure 4.

The full-set-exclusive data point has a typical blob appearance,
though the localizations do not appear as dense in the center, which
probably causes it to be located on the outer rim of the blob cluster. It
would, thus, be reasonable to assume that it originates from the
dominant influence of the free trajectories.

The outlier found commonly in both sets stretches a rather long
distance and convex area due to the “hooked” tail shape. The data

FIGURE 4
Comparison between the performanceof Blob-B-Goneapplied to a balanced dataset (A,B) asopposed to an imbalanced dataset (C,D). To construct the
balanced set, traces were randomly drawn from the original imbalanced hand-labeled MINFLUX SPT. The separation achieved by the algorithm is
demonstrated by the confusion matrices in (A,C) and underlined by the principal component analysis of the standardized feature space reducing the
dimensionality from 5D to 2D in (B,D). The gray box includes metrics (silhouette score [-1,1], adjusted Rand index [-1,1], V-measure [0,1], and F1-score
[0,1]) computed for the 2D single-shot k-means clustering. Each clustermean ismarked as a center ofmass in black, and the decision boundary between the
assigned clusters is visualized inmagenta and calculated as the normal of the segment connecting the clustermeans in themiddle. The black arrows highlight
the incorrectly labeled traces to respective time-scale colored (dark->bright) scatterplots. The black outline marks their convex hull.
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point exhibits a significant shift along the first principal component
compared to other blobs in both plots. The significant contrast,
present in both balancing scenarios, could imply an inaccurately
assigned ground truth label. However, the scatterplot strongly
suggests that this is an artifact.

The shift described previously originates from an asymmetric
contribution of the maximum distance and convex hull area feature
values when compared to the sphericality, ellipticity, and convex hull
density along the first principal component, which is expected
considering what the features were designed to represent and
highlight. We can observe this directly within the first PCA
eigenvectors (Figure 5) for either case.

Apart from the asymmetry of the first two components within
the primary eigenvectors, the principal component (PC) weights for
both cases investigated are remarkably similar, which is reassuring,
since it underlines a certain degree of rigidity during feature space
construction. In terms of absolute contribution per feature, we
notice a balanced distribution among the primary PC, while it
seems that the convex hull area contributes more significantly to
the second PC. Approximately 75% of information is contained
within the first principal component, as shown by the explainable
variability ratio (EVR) values in Figure 5. We thus expect to find
close similarity to the main correlations between the feature axes.
We thus constructed cross-correlation matrices to highlight
dependencies between feature axes using the PCC
implementation of the pandas Python module (McKinney, 2010;
The pandas development, 2023). In addition, we introduce
correlation clustering and show the results as a cluster map using
Python’s seaborn implementation (Waskom, 2021) (Figure 6). To
ensure comparability between feature axes, we restrict ourselves to
the balanced case.

The added dendrogram highlights clustered feature behavior
and significance accordingly. Along the tree hierarchy, we find direct
correspondence between the grouped correlation and the PCA
weight distributions (Figure 5). Here, we find again the

asymmetric behavior given the high correlation between the
maximum distance and convex hull area feature, which in turn
are anti-correlated with the convex hull density, sphericality, and
ellipticity, as highlighted by the uppermost clade. As the
observations match the intent underlying the initial feature
design, we can reasonably conclude that we successfully
highlighted the geometric systematic behavior. Additional
correlation heatmaps for simulation and the imbalanced set can
be found in Supplementary Figures S4, S5.

4 Discussion

In this work, we have presented Blob-B-Gone, a simple
computational tool to isolate and distinguish between trajectories
of freely diffusing particles and immobile (or highly constrained)
particles, as detected in MINFLUX microscopy. Other artifacts, e.g.,
particle/stage drift, known a priori, should instead be addressed
using similarly specialized methods prior to Blob-B-Gone to ensure
accurate results. Despite the development taking place on the
MINFLUX particle tracking dataset, the method can be applied
to any single-particle tracking capable microscopy method. The
algorithm itself merely requires two spatial coordinates per sample
event, e.g., X and Y, to operate, which can originate from any particle
tracking procedure.

The advantage of the approach presented herein lies in its sole
reliance on the geometric properties of the point cloud of the single-
particle localizations rather than other descriptors of more complex
origin, such as diffusion coefficients. Moreover, we demonstrated
how efficient clustering of single-particle trajectory, in certain
scenarios, may be achieved without machine learning and large
datasets of annotated data for training in a more straightforward and
accessible way. The framework was originally developed to fully
automate the classification of immobile tracers (i.e., blobs) and
trajectories of diffusing markers in high-throughput single-

FIGURE 5
Principal component analysis eigenvector values for the first two components listed together with their explained variability ratio (EVR) for Blob-B-
Gone applied to the balanced (A) and imbalanced (B) datasets of MINFLUX SPT.
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particle tracking measurements as a big data problem. To this end,
we have assessed its performance for idealized two- and three-
dimensional simulated traces as well as hand-annotated in vitro
MINFLUX SPT data on a sample routinely prepared in our
laboratory.

Though this method was designed to extract blobs from rather
homogeneous systems, we speculate that this approach could
feasibly produce similar results in more complex scenarios,
provided that more clusters are anticipated in the calculations to
account for different diffusing behaviors. This is provided that a
system expresses more complex movements in significant numbers
to construct a balanced dataset.

Nonetheless, our method, as demonstrated by the application to
the aforementioned datasets, has proven to be highly effective, with
F1-scores close to 1.0 for simulation and MINFLUX data (Table 4).
For simulated data, the designated descriptors enable a clean
separation in the feature space (Figure 2B, 3B), with silhouette
scores of 0.706 (2D) and 0.732 (3D). Though the cluster split is not
as vast in the MINFLUX SPT sets (Figures 4B, D), causing smaller
silhouette scores of 0.577 (balanced) and 0.661 (imbalanced), we
retrieved adjusted Rand indices and V-measures close to 1.0 across

all sets (Table 4). This indicates significant reliability in highlighting
similarities and differences between all trace populations with a
homogeneous label spread.

As an exemplary case, we investigated the primary and
secondary PCA eigenvectors (Figure 5) for the balanced SPT
data. These portrayed an almost uniform contribution between
all features toward the final clustering, which implies that all of
them successfully grasped an individual aspect of the traces
presented. Additionally, we observed an expected center-
asymmetry when comparing the weights of features highlighting
a stretched outline to those of that describe spherically condensed
point spreads. This matches the correlation pattern found between
individual feature axes (Figure 6). Using feature cross-correlation
matrices, we successfully identified that this behavior originates
from the initial design of the clustering. This demonstrates that
purely geometric descriptors of the point clouds obtained from
single-particle tracking applications could provide a very practical
way to classify diffusion modes.

When facing more complex structures and artifacts, it is likely
that the performance of the tool as mentioned here will deteriorate
due to a higher and more imbalanced variability in the trajectory

FIGURE 6
Symmetric correlation matrices of the geometric feature space color-coded by their correlation coefficient [anti-correlation (−1), correlation (1)]. A
dendrogram highlights correlation clusters, i.e., over-arching generally similar behavior among feature axes. The blob feature space (A) is compared to
the freely moving particle feature space (B) to underline the descriptive performance of the features presented.

TABLE 4 Evaluation metrics across all datasets considered in this work.

Dataset F1-score Silhouette score Adjusted Rand index V-measure B-score ratio

2D simulated 0.998 0.706 0.992 0.981 37:1

3D simulated 1.000 0.732 1.000 1.000 44:1

Balanced 0.995 0.577 0.981 0.962 33:1

Imbalanced 0.994 0.661 0.984 0.960 33:1
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datasets. This can originate from a host of different causes, such as
particle–environment interaction, which will, in turn, produce a
substantial overlap of clusters in the feature space we defined.
Nevertheless, the performance may be restored, for example, by
introducing more initial clusters, thus sensitizing the separation
algorithm. A priori knowledge of the system, expected diffusion
behavior, and, consequently, trajectory shapes, could be utilized to
apply weights to features according to system-specific criteria, helping
in reducing cluster overlap. Therefore, an extension of the proposed
method, with labeled data, supervised training, and k-nearest-
neighbor classification, could be adapted to perform a more rigid
classification of any specific system. This would come at the cost of
higher resources, computational time, and annotated datasets.
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