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Ancient DNA is highly degraded, resulting in very short sequences. Reads
generated with modern high-throughput sequencing machines are generally
longer than ancient DNA molecules, therefore the reads often contain some
portion of the sequencing adaptors. It is crucial to remove those adaptors, as they
can interfere with downstream analysis. Furthermore, overlapping portions when
DNA has been read forward and backward (paired-end) can be merged to correct
sequencing errors and improve read quality. Several tools have been developed
for adapter trimming and read merging, however, no one has attempted to
evaluate their accuracy and evaluate their potential impact on downstream
analyses. Through the simulation of sequencing data, seven commonly used
tools were analyzed in their ability to reconstruct ancient DNA sequences
through read merging. The analyzed tools exhibit notable differences in their
abilities to correct sequence errors and identify the correct read overlap, but the
most substantial difference is observed in their ability to calculate quality scores for
merged bases. Selecting the most appropriate tool for a given project depends on
several factors, although some tools such as fastp have some shortcomings,
whereas others like leeHom outperform the other tools in most aspects. While the
choice of tool did not result in ameasurable differencewhen analyzing population
genetics using principal component analysis, it is important to note that
downstream analyses that are sensitive to wrongly merged reads or that rely
on quality scores can be significantly impacted by the choice of tool.
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1 Introduction

Next-generation sequencing (NGS) has ushered in a new era of genomics by enabling
researchers to sequence DNA at an unprecedented rate, leading to a significant increase in the
number of available genome references. Illumina is currently the NGS platform with the highest
market share. Library preparation for Illumina sequencing involves three main steps: DNA
fragmentation, the addition of adaptors to bind to the flowcell (i.e., the solid medium to allow
sequencing), and the amplification of DNA templates for sequencing. DNA templates are then
sequenced through the synthesis of complementary DNA strands and optical base calling.
Reversible terminator nucleotides are used, with one nucleotide incorporated at a time while
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capturing its fluorescent signal through high-precision optical imaging.
This process is repeated for a specific number of cycles, resulting in read
lengths typically ranging from 75 to 250 base pairs (bp). An additional
round of sequencing can be performed on the same molecules where
the reads are reverse complemented, bound to the flowcell and the
nucleotides are read from the other end and the other strand. Reads
produced that way are called paired-end reads, the first read is called the
forward readwhereas the second is the reverse read. The basecaller is the
software used to call nucleotides from raw intensity values. However,
due to certain factors, nucleotides can be misread and the basecaller
therefore also provides quality scores for each base call, indicating the
probability of a sequencing error for that base Liu et al. (2012); Mardis
(2008).

One instance where the fragmentation step is not required is
working with DNA extracted from fossils, sediments, or museum
samples, otherwise called ancient DNA (aDNA). This DNA is
naturally degraded and therefore extracted fragments can be on
average very short (< 50 bp). While other idiosyncrasies of aDNA
including contamination and chemical damage create specific
challenges for downstream analyses, degradation of the DNA
molecule needs to be addressed in the earliest stages of the
bioinformatics processing Orlando et al. (2021).

While removing lingering sequencing adapters from sequencing
reads is important for modern DNA as it can lead tomismappings or
misassemblies, it is a crucial step for aDNA. The short fragment size
entails that the vast majority of templates will be shorter than the
read length and therefore have lingering sequencing adapters, often
for the majority of the read (see Figure 1). Furthermore, if the reads
are paired-end, after performing adapter trimming, both the
remaining forward and reverse reads should be the same length
and the reverse complement of each other as it is the same molecule.
An additional bioinformatics step is to merge both the remaining

forward and reverse reads into a single sequence, as this can correct
potential sequencing errors and lead to more accurate data. If
paired-end reads are produced and if the length of the template
is larger than the read length but still shorter than twice the read
length, then both reads should partially overlap (see Figure 1).
Similarly, both reads can be merged into a single one, where
corrections can be applied to the overlapping portion to mitigate
sequencing errors. For aDNA, this bioinformatics step can be
construed as reconstructing the original aDNA fragment from
either single-end or paired-end reads.

Several tools have been developed to reconstruct aDNA
fragments from sequencing data. These include AdapterRemoval
Schubert et al. (2016), bbmerge Bushnell et al. (2017),
ClipAndMerge Peltzer et al. (2016), fastp Chen et al. (2018),
leeHom Renaud et al. (2014), SeqPrep John (2016), and adna-
trim Li (2018). The aforementioned programs have been used in
several studies. They use different algorithms, handle mismatches
between both reads differently, and produce different quality scores.
In aDNA studies, often previously published samples from different
groups are merged together to answer biologically relevant
questions. It is unknown however if different adaptor trimming
and read merging strategies lead to batch effects.

In this study, we benchmark different tools which have been
designed and used in aDNA studies to reconstruct aDNA from
sequencing data. More specifically, using simulated NGS data, we
evaluated how these tools perform at various simulated lengths of
the template, how robust they are to sequencing errors, and how
they compute consensus bases in the presence of matches/
mismatches between 2 nucleotides. Finally, we sought to evaluate
if using different trimming programs had any impact on the sample
placement within a principal component analysis (PCA), which is a
very common analysis in aDNA studies.

FIGURE 1
(A) Example of 4 cases of adapter removal for paired-end sequencing data where the fragment size is: 1. shorter than the read length 2. exactly the
read length 3. greater than the read length but shorter than twice the read length, thus resulting in partial overlap 4. more than twice the read length. The
desired output for all subcases involves producing a single DNA sequence, except for case 4. where the pairs should be left as they are. (B) The fragment
size distribution for ancient DNA, data from the A9121 sample from Hajdinjak et al. (2018). (C) The fragment size distribution for modern DNA, data
from the HG002 sample from Zook et al. (2016).
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2 Materials and methods

2.1 Generating simulated data

For a detailed description of the generation of simulated data,
see Supporting Material. In brief, we generated simulated aDNA
data using the telomere-to-telomere assembly of a human genome
T2T-CHM13 and raw sequencing reads for two individuals from the
National Institute of Standards and Technology’s Genome in a
Bottle (GIAB) project Nurk et al. (2022); Zook et al. (2016). We
simulated DNA fragments and paired-end reads using gargammel
Renaud et al. (2017) and ART Huang et al. (2012), with varying
sequence length distributions, error rates, and Phred quality scores.

2.2 Trimming and merging

We compared seven different tools for adapter clipping and paired-
end read merging: AdapterRemoval Schubert et al. (2016), bbmerge
Bushnell et al. (2017), ClipAndMerge Peltzer et al. (2016), fastp Chen
et al. (2018), leeHom Renaud et al. (2014), SeqPrep (John, 2016), and
seqtk/adna-trim (Li, 2018; Li, 2019). Only leeHom and seqtk/adna-trim
were specifically designed for aDNA analysis, although the merging
algorithm of AdapterRemoval is also specifically claimed to be suited for
aDNA processing. To enable a representative comparison, we
standardized some parameters across the tools. Specifically, the
minimum number of overlapping bases was set to 10 and length

filtering was disabled across all tools except leeHom, which instead
uses a specific parameter for aDNA processing. Detailed descriptions of
the parameters used for each tool and results with default minimum
overlap and length filtering settings can be found in the Supporting
Material.

2.3 Evaluating base quality score accuracies

We evaluated the accuracies of the merged per-base Phred
quality scores by comparing the Phred values to the actual error
rates. To calculate the confidence intervals for the observed error
rates, we used the Clopper-Pearson method Clopper and Pearson
(1934). We then used the inverted ranges of the Phred-scaled
confidence intervals as weights to calculate a weighted coefficient
of determination (R2) for each tool. For a detailed description of this
process, see Supporting Material.

2.4 Population analysis

We compared our aDNA data to the genetic profiles of Eurasian
populations from the Affymetrix Human Origins array Lazaridis
et al. (2014). Genotyping was performed using BWA mem Li and
Durbin (2010), followed by subsampling and pseudohaploid calling
with samtools Danecek et al. (2021) and PileupCaller Schiffels
(2022). Principal component analysis (PCA) was conducted with

Tool References Version Description Non-standard
parameters

Examples of
aDNA studies

AdapterRemoval Schubert et al.
(2016)

v2.3.2 Modified Needleman-Wunsch algorithm for finding the best
alignment between paired-end reads. Quality scores serve as
position specific scoring matrix. The most likely sequence is
chosen

–collapse 8; 25; 6

–minlength 1

–minalignmentlength 10

–qualitymax 93

bbmerge Bushnell et al.
(2017)

v38.91 Adapter trimming and read merging by overlap detection
using multiple heuristics controlled by several constants

mininsert = 1 40; 41; 14

mininsert0 = 1

minoverlap = 10

minoverlap0 = 1

ClipAndMerge Peltzer et al.
(2016)

v1.7.8 Smith–Waterman algorithm for read pair alignment. Using
error rate cut-offs for detecting adaptors

-l 1
-p 10

16; 37; 17

fastp Chen et al. (2018) v0.21.1 Adapter trimming and read merging by finding the overlap of
each read pair using cut-offs. Bases that fall out of the
overlapped regions are considered adapters

–merge 39; 30; 43

–disable_length_filtering

–overlap_len_require 10

leeHom Renaud et al.
(2014)

v1.2.17 Adapter trimming and read merging using Bayesian maximum
a posteriori probability

–ancientdna 4; 42; 36

SeqPrep John (2016) v1.3.2 If adapters are detected using cut-off values, the two reads are
forcefully merged, otherwise quality score aware cut-offs are
used for merging reads

-L 1 13; 28; 10

-o 10

adna-trim Li (2018) v1.3-r106 Adapter trimming if length threshold is fulfilled. Base with
higher quality score is chosen or difference of quality scores in
case of mismatch

-l 1 22; 35; 38

-o 10
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smartpca Galinsky and Mah (2022). Within cluster variance was
calculated to estimate the influence of the choice of trimming and
merging tools on PCA results, more details on its calculation can be
found in the Supporting Material.

2.5 Measuring runtime and memory usage

Runtime and memory usage were measured for each
trimming and merging tool using snakemake’s Köster and
Rahmann (2012) benchmarking functionality. For more details
on the machine and memory measurement, please see the
Supporting Material.

2.6 Code availability

Code and workflows are available at https://github.com/
liannette/mergingtools_benchmark.

Please refer to the supplement for the complete methodology,
including details on reference datasets, genotyping, PCA, within
cluster variance calculation, and runtime and memory usage
measurement.

3 Results

3.1 Merge rate and sequence accuracy

Here, the tools are evaluated regarding their efficacy in
reconstructing the sequences of DNA insert molecules from
raw paired-end reads. To quantify the differences between the
sequence of a merged read and the original DNA insert
sequence, the edit distance (also known as Levenshtein
distance) is used, as it measures the number of single-
character edits required to transform one sequence into
another. In other words, the edit distance indicates how
many errors are present in the merged read, with an edit
distance of 0 indicating that the merged read perfectly
reconstructs the sequence of the DNA insert, which is the
preferred outcome. The errors in the merged reads originate
either from sequencing errors, or from misidentification of the
correct positions for adapter trimming or read merging,
although adapter trimming is generally straightforward,
making it a negligible error source. Substitution errors that
occurred during sequencing in overlapping regions of raw
paired-end reads may be corrected through merging. Low
edit distances indicate the presence of substitution errors
which have not been corrected, whereas edit distances larger
than 25 can be attributed to larger deletions due to incorrect
merging. In addition to measuring the edit distance, we also
analyzed the tools regarding false-negative and false-positive
merging. A false negative is defined as a read that should have
been merged but was not, which leads to undesirable data loss.
Conversely, we have simulated fragment sizes of 1,000 bp that
should not have been merged, as the reads do not contain any
overlap. However, if they were merged, such sequences would be
labeled as a false positive. False-positive merging creates

incorrectly merged reads, which contaminates the data and is
especially prominent if the sequenced library contains a lot of
long DNA insert molecule.

The accuracy of each tool in reconstructing the sequence of the
DNA insert molecules for different insert lengths is depicted in
Figure 2.

3.1.1 False-negative merging
To reiterate, paired-end reads that have a sufficient read

overlap for merging, but remain unmerged, are classified as
false negatives. As the minimum read overlap of merging was
standardized to 10 bp (see 2.2), it is not surprising that none of
the tools are able to merge reads from inserts with a length
exceeding 240 bp. But interestingly, AdapterRemoval, leeHom
and SeqPrep are able to merge reads from extremely short inserts
that have a length of less than 10 bp, despite them being shorter
than the minimum read overlap. Among insert lengths ranging
from 10 to 240 bases, high rates of false-negative merging were
found for ClipAndMerge and SeqPrep, particularly for insert
lengths that surpass the read length. Unmerged reads were also
observed across all insert lengths for bbmerge and, to a much
lesser degree, for seqtk/adna-trim. For bbmerge, the merge rate is
highest when the overlap is maximized, which is the case for
inserts the size of the read length. Additionally, seqtk/adna-trim
was incapable of merging reads from inserts with a length of
125 bp, equivalent to the read length, which might be due to a bug
in the software. False-negative merging behavior was almost non-
existent in AdapterRemoval, fastp, and leeHom.

3.1.2 False positive merging
In the event that non-overlapping paired-end reads are merged,

it is deemed a false-positive. With a read length of 125 bp, the paired-
end reads that originate from DNA inserts of 250 bp or more lack
any overlapping bases. False-positive merging rates for each tool
were calculated as the percentage of merged reads for DNA inserts of
1,000 bp length, and are presented both in the grey bars next to all
figures in Figure 2 and numerically in Table 1. Among the analyzed
tools, AdapterRemoval had the highest false-positive merging rate
with over 6 percent, while bbmerge has the lowest false-positive
merging rate with less than 0.1 percent. Some tools also incorrectly
merge paired-end reads, even when there is adequate overlap for
correct merging. Merged reads with an edit distance exceeding 25 for
DNA inserts with lengths ranging from 10 to 240 bp are considered
to be a result of this. This negative behavior is most pronounced for
AdapterRemoval, where the amount of incorrectly merged reads
increases with the insert size, ultimately reaching a maximum of
over 3 percent for an insert size of 240 bp, indicating that
AdapterRemoval is prone to misidentify correct overlap
positions. The same can also be observed for ClipAndMerge,
fastp and leeHom, but at much lower rates.

3.2 Robustness to sequencing errors

This experiment evaluates the ability of each tool in
reconstructing the sequences of DNA inserts following different
empirical insert length distributions and their robustness to higher
rates of sequencing errors. The latter was achieved through quality
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shift adjustments of the sequencing simulator (further details can be
found in the Supplementary Material). The results are illustrated in
Figure 3.

Three aDNAmolecule length distributions (A9180, Vi33.19 and
chagyrskaya8) and one distribution of modern, cfDNAwere used for
this experiment. Histograms of the four insert sizes distributions are

FIGURE 2
Sequence accuracy of merged reads for different insert sizes. Paired-end reads of DNA inserts with different lengths were simulated and then
trimmed and merged with the different tools. High edit distances (in darker colors) correspond to high sequence dissimilarity between the merged read
and theDNA insert, and unmerged reads are colored in gray. The green line at 125 bpmarks the read length. Paired-end reads of inserts with a length up to
this value overlap completely. For higher insert lengths, the read overlap decreases, and the proportion of bases that are unique to only one of the
paired-end reads increases. For an insert length of 250 bp and higher, the paired-end reads do not overlap.
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depicted in Figure 4. Among the analyzed distributions,
A9180 exhibits the shortest insert sizes, predominantly ranging
between 10 and 30 bp. It is also the only distribution containing
lengths under 30 bp. For Vi33.19 and chagyrskaya8, insert sizes
between 40 and 50 bp are most frequent, however,
chagyrskaya8 contains also a substantial quantity of lengths
exceeding 125 bp, which is not the case for Vi33.19. Most
cfDNA molecules span between 125 and 225 bp, with a
secondary, smaller distribution at 275–375 bp. At a read length
of 125 bp, the vast majority of paired-end reads from aDNA can
potentially be merged, whereas for cfDNA, a fraction of reads will
remain unmerged due to the lack of overlap.

First, the three aDNA insert size distributions will be examined
in detail. At lower sequencing error rates (quality shifts 0 to −10),
most tools exhibit similar performance, though some tools fail to
merge some reads. This behavior is particularly pronounced for
bbmerge. The merged reads with the most errors are generated by
fastp. Especially once the sequencing quality falls below a specific
threshold (quality shift −9), can an abrupt increase in not-perfectly
reconstructed sequences be observed for fastp. AdapterRemoval and
leeHom display the highest merge rates and perform almost
identically for the aDNA distributions. SeqPrep does not merge
some reads at high sequence error rates, but this behavior acts as a
sort of filter for reads with a high sequence dissimilarity. In
summary, AdapterRemoval and leeHom demonstrate the most
robust behavior, meaning that they are capable of merging reads
at high sequencing error rates.

Looking at the results for the cfDNA insert size distribution, we
see that a significant number of reads remain unmerged across all
tools, even at low error rates. This can be attributed to the presence
of DNAmolecules longer than 250 bp in cfDNA, resulting in paired-
end reads with no overlap. ClipAndMerge, however, stands out as it
has a higher amount of unmerged reads compared to the other tools.
The overall higher amount of longer DNA molecules in cfDNA also
accounts for the elevated number of merged reads with high edit
distances compared to aDNA, as this not only results in more
nucleotides per merged read, but also a smaller read overlap. For
bbmerge, fastp and SeqPrep, the merge rate declines dramatically at
high sequencing error rates (quality shift of −10 or lower), indicating
that these tools are more sensitive to sequencing errors in the
overlap. The highest overall merging rate is again exhibited by
AdapterRemoval and leeHom. However, of all the tools,
AdapterRemoval has the largest number of reads with an edit

distance higher than 25 across all quality shifts, indicating that
those reads are incorrectly merged.

3.2.1 Correcting sequencing errors through
merging

The probability of at least one sequencing error occurring within
the insert sequence increases with the number of bases in the insert.
As a consequence, the percentage of not perfectly reconstructed
sequences tends to rise with increasing insert length. Nonetheless, a
distinction can be made between paired-end reads with full and
partial overlaps. For inserts with a length shorter or equal than the
read length, 125 bp, every base pair of the insert is sequenced twice,
and as such, is present in both reads. Sequencing errors at any
position can, in theory, be corrected by using information from the
other read. For inserts that are longer than the read length, some
base pairs are, however, only sequenced in one of the reads, making
it impossible to correct sequencing errors in those positions. For
DNA inserts lengths shorter than the read length, the reads merged
with fastp contain significantly more reads with sequencing errors
compared to the other tools. For all the analyzed tools, except fastp,
the number of reads with edit distances greater than zero increases
with the insert length at a slower rate for lengths up to 125 bp,
compared to insert lengths exceeding 125 bp.

3.3 Per-base merging behavior

In the overlapping region of a paired-end read, each nucleotide
base and corresponding Phred quality score is present twice, once on
the forward and once on the reverse read. This information is
collapsed into a single base and quality score when merging the
reads. This experiment evaluates what values each of the tools
outputs for any combination of base and quality scores on the
forwards and reverse reads.

3.3.1 Matching bases
The heatmaps in Figures 5, 6 visualize the per-base merging

behaviors when the base is identical on both the forward and the
reverse read. The merging of the base is unambiguous in this case,
but the strategies for merging of Phred quality scores vary among the
analyzed tools. Some tools generate a new Phred quality score that
exceeds either value from the paired-end read, while others select the
greater Phred quality score from either read, and some simply select
the Phred quality score from the forward read. Sequencing the same
base on both reads increases the confidence in the accuracy of that
base, thus, the most accurate approach is to increase the Phred
quality score in the merged read. Among the analyzed tools,
AdapterRemoval, leeHom, and SeqPrep exhibit this behavior.
LeeHom and SeqPrep can generate Phred quality scores of up to
60, while AdapterRemoval can even generate values up to 93,
although this requires specifying a parameter, as the default
maximum Phred value of AdapterRemoval is 41. In contrast,
ClipAndMerge and seqtk/adna-trim simply select the greater
Phred quality score. The merging behavior of bbmerge lies
between the two aforementioned approaches, although it is more
similar to the second one. The most simple behavior is displayed by
fastp, which just selects the Phred quality score of the forward read
and ignores the reverse read entirely.

TABLE 1 False positive merging rate, calculated as the percentage of merged
paired-end reads with no overlap.

Tool Estimated false-positive merging rate [%]

AdapterRemoval 6.54

bbmerge 0.0832

ClipAndMerge 0.597

Fastp 2.65

leeHom 1.44

SeqPrep 0.192

seqtk/adna-trim 0.814
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FIGURE 3
Sequence accuracy of merged reads for different insert size distributions. Paired-end reads of DNA inserts with different length distributions were
simulated and then trimmed and merged with the different tools. A9189, Vi33.19 and chagyrskaya8 refer to insert size distributions of aDNA, whereas
cfDNA represents the insert size distribution of cell-free DNA. High edit distances (in darker colors) correspond to high sequence dissimilarity between
the merged read and the DNA insert.

Frontiers in Bioinformatics frontiersin.org07

Lien et al. 10.3389/fbinf.2023.1260486

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1260486


3.3.2 Mismatching bases
The heatmaps featured in Figures 7, 8 illustrate the per-base

merging behavior of the analyzed tools when the nucleotide base
differs between the forward and the reverse read. Again, the tools
exhibit distinct behavior patterns in these situations. When a
mismatch occurs, the confidence in the accuracy of the merged
base should be reduced, particularly when the quality scores of both
reads are similar. AdapterRemoval, bbmerge, leeHom, SeqPrep, and
seqtk/adna-trim adopt this approach, selecting the base with the
highest Phred quality score and using the quality score information
from the other read to appropriately adjust the Phred quality score
of the merged read. Conversely, ClipAndMerge selects both the base
and quality score from the read with the highest Phred quality score,
without incorporating information from the other read to modify
the Phred quality score in the merged read. fastp, on the other hand,
generally obtains the base and quality score from the forward read,
except when the quality score is below 15 on the forward read and at
least 30 on the reverse read, in which case fastp derives the
nucleotide and quality score from the reverse read. This behavior
is surprising and indicates that fastp is not as capable as the other
tools to reduce sequencing errors.

In the case of all tools except fastp, an interesting scenario arises
when these tools must choose between bases with equal Phred scores
during the read merging process. In such instances,
AdapterRemoval and leeHom make a random selection between
the two bases, while ClipAndMerge and SeqPrep opt for the base
from the forward read, and seqtk/adna-trim selects from the reverse
read. Notably, bbmerge stands out as the only tool that generates an
N in this situation.

3.4 Phred quality score accuracy

In this experiment, the Phred quality score accuracy of the tools
is analyzed by measuring how close the theoretical error
probabilities of the Phred quality scores are to the observable
error rates. Figure 9 illustrates the Phred-scaled observed error
rates for each merged Phred value, combining the data from five

datasets utilizing different quality shifts. Figures displaying the
results for each quality shift separately can be found in the
Supporting Material (Supplementary Figures S2–S8). To indicate
how well the Phred values of the observed error rate fit the merged
Phred values overall, the weighed coefficient of determination, also
called R2, was calculated for each tool from the combined data, using
the inverse range of the confidence intervals as weights to reduce the
influence of values with large uncertainty. The weighed R2 for each
of the analyzed tools, whose values can range from 0 to 1, with
1 indicating a perfect fit, can be found in Table 2.

The worst fit between the observed error rates andmerged Phred
values, as indicated by the R2 value, is seen for seqtk/adna-trim,
followed by bbmerge. For both tools, the Phred values of the
observed error rates are often higher than the merged Phred
values, which means that the actual error rates of merged bases
are lower than indicated by their Phred quality scores. For leeHom
and SeqPrep, the actual error rate for the (maximum) merged Phred
value of 61 is lower than expected. Furthermore, for leeHom and
AdapterRemoval more errors were observed for some Phred values
around 14 and 25. However, this is only the case at very high
sequencing error rates (see Supplementary Results), which is not
typically the case with most real data. For fastp, the Phred value
calibration is nearly perfect, except for Phred values lower than 15.
The best R2 value is displayed by ClipAndMerge, indicating a near
perfect fit of the Phred calibration.

3.5 Principal component analysis for
population analysis

To examine the potential impact of the different tools, a PCA
was performed. Reads of an Ashkenazi Jewish individual (HG002)
and a Han Chinese individual (HG005), modified to follow an
aDNA insert length distribution, were preprocessed with each of
the tools and then genotyped at typical aDNA genome coverages.
For each tool and genome coverage, ten samples were generated.
Figure 10 shows the first two principal components calculated from
the genotype data of present-day Eurasian individuals, on which the

FIGURE 4
Empirical insert length distributions. To evaluate the tools’ ability to reconstruct the sequence of fragmented DNAmolecules, DNA inserts following
specific length distributions were simulated. In addition to the three aDNA insert length distributions A9180, Vi33.19 and chagyrskaya8, which were
generated from different Neanderthal bone samples, also one insert size distribution was used, which was obtained from a sample of cfDNA.
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HG002 and HG005 samples of approximately 0.25X coverage were
projected. All the HG002 and HG005 samples project in the same
area as their respective populations, irrespective of the tool used for
adapter trimming and read merging. Figures for higher coverages,
including zoomed-in plots, in which the samples belonging to the
different tools can be distinguished, can be found in the supplement
(Supplementary Figures S15–S19). To estimate the accuracy of each
tool when performing a PCA, the variability between the samples
was assessed by calculating the within-cluster variance using the
coordinates on the first ten principal components. A small within
cluster variance indicates that the projections of the samples lie close
to each other in the PCA space, which indicates robust results. As
seen in Figure 11, the within cluster variance does not significantly

differ between the tools, in other words, the choice of tool did not
impact the accuracy of the performed PCA.

3.6 Runtime and memory usage

The runtime and memory usage of each adapter trimming and
read merging tool were measured while processing 1 million reads
following an aDNA insert size distribution. The tools differ
substantially in their resource consumption, shown in Table 3.
When comparing the results, it has to be taken into account that
ClipAndMerge was utilizing three threads, whereas all other tools
were run single-threaded for this experiment.

FIGURE 5
Per-basemerging behavior of several tools formatching nucleotides (1 of 2). Results are for (A)AdapterRemoval, (B) bbmerge, (C)ClipAndMerge and
(D) fastp. The results for leeHom, SeqPrep, and seqtk/adna-trim can be found in Figure 6. The heatmaps illustrate how distinct Phred quality scores are
integrated when overlapping positions with matching nucleotides on both reads are merged. The resulting merged Phred quality score values are color-
coded.
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Among the tools, fastp stands out as having the highest memory
usage among the analyzed tools, followed by ClipAndMerge and
bbmerge. The tool with the lowest memory usage is SeqPrep,
although it has also by far the longest runtime, almost 4-fold
higher than any other tool. A comparably long runtime was also
observed for leeHom and ClipAndMerge, despite the latter used
three threads. The tool characterized by the shortest runtime is
seqtk/adna-trim, followed by fastp, bbmerge and AdapterRemoval.
Other considerations related to runtime and memory are the option
of piping commands, which not possible with AdapterRemoval,
among the possibility of multithreading, which is not supported by
SeqPrep, whereas ClipAndMerge number of used threads is fixed at
three.

4 Discussion

4.1 Merged Phred value calculation and
accuracy

In order to provide the most accurate Phred quality score for a
merged base, the information about a nucleotide match/mismatch
should be incorporated by the tools. The confidence in a base call
being correct should increase if the same base is called on both reads
in an overlapping part of a paired-end read, and decrease if a
different base is called in the other read. fastp and
ClipAndMerge are considered the least capable among the
examined tools in improving read quality, as they always adopt

FIGURE 6
Per-base merging behavior of different tools for mismatching nucleotides (2 of 2). Results are for (A) leeHom, (B) SeqPrep and (C) seqtk/adna-trim.
The results for AdapterRemoval, bbmerge, ClipAndMerge and fastp can be found in Figure 5. The heatmaps illustrate how distinct Phred quality scores are
integrated when overlapping positions with matching nucleotides on both reads are merged. The resulting merged Phred quality score values are color-
coded.
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the Phred value from the selected nucleotide instead of calculating a
new quality score for a merged base, even when there is a nucleotide
mismatch. However, it should be noted that ClipAndMerge
generates quality scores that almost perfectly correlate with the
actual error rates. It might therefore be relevant for niche
applications that depend on highly accurate Phred value
calibrations. In contrast, seqtk/adna-trim, and similarly bbmerge,
generate a decreased quality score when mismatching nucleotides
are merged, but neither of the tools calculates an increased Phred
value when merging matching nucleotides. This ambiguous strategy
also leads to the least accurate Phred calibrations. The most
advanced per-base merging strategies are employed by

AdapterRemoval, leeHom, and SeqPrep, as those tools always
calculate a new Phred quality score for the merged reads, taking
the quality scores from both reads and whether the bases match or
not into account. To summarize, AdapterRemoval, leeHom and
SeqPrep are the most suitable tools for downstream applications that
rely on accurate base quality scores, one example being Bayesian
variant calling methods. If the base quality scores are only used to
identify sequencing errors, for example, to perform quality
trimming, bbmerge and seqtk/adna-trim offer sufficient
functionality. On the other hand, it is advisable to avoid using
fastp and ClipAndMerge for any application that uses base quality
scores.

FIGURE 7
Per-basemerging behavior of several tools for mismatching nucleotides (1 of 2). Results are for (A) AdapterRemoval, (B) bbmerge, (C)ClipAndMerge
and (D) fastp. The results for leeHom, SeqPrep, and seqtk/adna-trim can be found in Figure 8. The heatmaps illustrate how distinct Phred quality scores
are integrated when overlapping positions with matching nucleotides on both reads are merged. The resulting merged Phred quality score values are
color-coded, while the letter assigned to each field indicates the nucleotide generated for the merged read. Specifically, when a G is assigned, the
base is obtained from the forward read, while a T is derived from the reverse read.
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4.2 Correcting sequencing errors

Almost all the analyzed tools select the nucleotide with the highest
quality score when merging. Only fastp chooses in some cases the base
with the lower Phred value, limiting its ability to correct sequencing
errors. Specifically, fastp corrects sequencing errors on the forward read
onlywhen a high Phred value is found on the reverse read,meaning that
sequencing errors on the forward read are not corrected when the
sequencing quality is below a certain threshold. Completely overlapping
reads merged with fastp contain more sequencing errors compared to
the other tools. Furthermore, all tools, except for fastp, exhibit differing
rates of sequencing error increase depending on the insert length. This

difference is especially apparent when comparing completely
overlapping reads to partially overlapping reads, which indicates that
some sequencing errors are indeed corrected in the overlapping parts.
Therefore, it is recommended to avoid fastp for processing aDNA data,
as it retains more sequencing errors in the merged reads as any of the
other tools.

4.3 Incorrect merging and not-merging

In general, there is a trade-off between incorrectly merged reads
and wrongly unmerged reads. For some downstream analyses,

FIGURE 8
Per-base merging behavior of different tools for mismatching nucleotides (2 of 2). Results are for (A) leeHom, (B) SeqPrep and (C) seqtk/adna-trim.
The results for AdapterRemoval, bbmerge, ClipAndMerge and fastp can be found in Figure 7. The heatmaps illustrate how distinct Phred quality scores are
integrated when overlapping positions with matching nucleotides on both reads are merged. The resulting merged Phred quality score values are color-
coded, while the letter assigned to each field indicates the nucleotide generated for the merged read. Specifically, when a G is assigned, the base is
obtained from the forward read, while a T is derived from the reverse read.
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incorrectly merged reads would not have a big impact, therefore
obtaining the highest possible merge rate is desired. One example
would be alignment to a reference genome, where the incorrectly
merged reads would either most likely not align at all or result in low
alignment scores, making it easy to filter them out. For other

applications on the other hand, such as de novo genome
assembly, incorrectly merged reads pose a big challenge, and
generating fewer reads, but with a higher quality, is preferred.

Among all tools, leeHom and AdapterRemoval have the highest
merge rate. Both tools are able to merge almost all reads with

FIGURE 9
Observable error rates for merged Phred quality score values. The Phred-scaled observable error rates are plotted in black. A high Phred value
translates to a low error rate. Confidence intervals for the observable error rates were calculated for α = 0.01. The observable error rates were calculated
by combining data generated for different simulated sequencing qualities. The red line indicates the perfect fit between observed error rate and merged
Phred value, and the number of occurrences of a Phred value in the merged reads is visualized as blue bar plots.
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sufficient overlap, even at high sequencing error rates. However,
AdapterRemoval has the highest tendency to incorrectly merge
reads among all tools, often merging non-overlapping paired-end
reads and misidentifying correct overlap positions. A similar
tendency is seen for fastp. Generally, incorrect merging behavior
is primarily present at insert lengths close to double the read length,
when the read overlap is small. As aDNA molecules are typically
shorter, this aspect has not a big influence when reconstructing the
sequences of DNA molecules following the insert size distributions
of aDNA. However, the effect is clearly visible when working with
DNA insert sizes matching those of cfDNA. A similar effect was

observed for ClipAndMerge, but with wrongly unmerged reads
(false-negatives) instead of incorrectly merged reads.
ClipAndMerge has especially low merge rates for insert sizes
between the read length and double the read length
(125–250 bp), which is a range that encompasses a significant
proportion of cfDNA, but not of aDNA molecules. If the goal is
to minimize the number of incorrectly merged reads and sequencing
errors, bbmerge would be the best choice. However, bbmerge’s high
false-negative merging rate, especially at higher sequencing error
rates, makes it a suboptimal choice when working with aDNA,
where data is already scarce, or any other analysis where it is desired
to merge as many reads as possible. The differences in the merge
behavior can be explained by the different strategies employed by the
tools to detect a read overlap. Most tools use a two-step approach,
first using local alignment to identify the adapter sequences and then
performing read merging using threshold values for mismatches or
edit distance in the overlap. Some tools also consider the quality
scores, ClipAndMerge, for example, ignores mismatches if one base
has a low quality score, and bbmerge determines the overlap
position based on multiple heuristics controlled by predefined
constants. Those cut-off values or constants determine how
sensitive or robust a tool is to false-positive and false-negative
merging. The user is often able to modify those values, although
it can be expected that in the majority of cases the default values are
used. The only tool that does not depend on arbitrary cut-offs is
leeHom, which employs a Bayesian maximum a posteriori
algorithm, performing adapter trimming and read merging in

TABLE 2 Weighted R2 values indicating the error rate accuracy of merged
Phred quality scores, calculated by combining data of different sequencing
qualities.

Tool R2

AdapterRemoval 0.9954

bbmerge 0.9277

ClipAndMerge 0.9999

Fastp 0.9943

leeHom 0.9725

SeqPrep 0.9707

seqtk/adna-trim 0.8032

FIGURE 10
The first two principal components of a PCA of present-day Eurasian individuals; with projected low coverage (0.25X) samples for HG002 and
HG005. The projections of all samples for the Ashkenazi Jewish individual (HG002) and the Han Chinese individual (HG005) fall within proximity to their
respective populations.
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one step. Given a prior belief on the fragment length distribution,
leeHom uses the quality scores to calculate the error probability for
each overlap position, including no overlap, and then chooses the
case with the highest posterior probability. In this study, the prior
distribution was adapted using the–ancientdna parameter, whereas
at default settings a uniform prior is applied.

Overall, leeHom’s merging algorithm outperforms the other
approaches. Even at high rates of sequencing errors, leeHom is able
to correctly merge nearly all overlapping paired-end reads while
introducing only low amounts of contamination in the form of false-
positively merged reads. A good alternative to leeHom is seqtk/
adna-trim. Although it fails to merge a small percentage of reads, it
produces fewer incorrectly merged reads than leeHom. However,
bbmerge is the most suitable tool when the presence of incorrectly
merged reads is very problematic for further analyses, such as de
novo genome assembly. ClipAndMerge and SeqPrep are not
recommended due to their reduced ability to merge paired-end

reads with a smaller overlap, whereas AdapterRemoval and fastp
should be avoided as they have a tendency to incorrectly identify the
correct overlap positions and display a high false-positive
merging rate.

4.4 Effect on downstream analyses

To investigate the potential impact of different tools on
downstream analyses, a PCA based on genome-wide SNP data
was performed, a commonly employed analysis for determining
ancestry. Among the tested tools, no measurable differences in the
results were observed, suggesting that reads processed with any of
the tools can be combined without introducing batch effects. It is
important to note, however, that the workflow is to a high degree
robust against incorrectly merged reads and imprecise base quality
scores, which are key differentiating factors among the tools.

FIGURE 11
Within-cluster variance of samples projected onto the PCA. For each tool, the alignment was subsampled to simulate different genome coverage
depths, before genotyping the samples and projecting them onto the PCA. To estimate the accuracy of the tools in reproducing the same results, the
process has been repeated ten times for each coverage and tool. The variability between the PCA projections was assessed using the first ten principal
components to calculate the within-cluster variance, where a high value indicates a high variability. Overall, the within-cluster variance is
comparable across the tools.

TABLE 3 Runtime and memory usage of the analyzed adapter trimming and merging software tools.

Tool Utilized threads Adaptable thread number Pipeable Runtime [s] Memory usage [MB]

AdapterRemoval 1 Yes No 14.6 ± 0.2 25.56 ± 00.08

bbmerge 1 Yes Yes 37.5 ± 1.0 315.75 ± 39.20

ClipAndMerge 3 No Yes 172.0 ± 3.7 704.89 ± 09.77

Fastp 1 Yes Yes 34.5 ± 0.3 1,009.18 ± 03.89

leeHom 1 Yes Yes 164.3 ± 0.5 73.80 ± 01.11

SeqPrep 1 No Yes 633.6 ± 2.1 1.26 ± 00.01

seqtk/adna-trim 1 Yes Yes 16.5 ± 1.3 70.41 ± 00.01
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Incorrectly merged reads have no negative effect if they fail to align
to the reference genome, and pseudo-haploid genotyping was
performed by randomly selecting a read for each SNP position,
irrespective of the base quality scores. It is therefore possible that the
choice of the tools have a greater influence on downstream analyses
that are more sensitive to either of those two factors.

4.5 Conclusion

We find that the analyzed tools exhibit notable differences in
their abilities to correct sequence errors and identify the correct
read overlap, but the most substantial difference is observed in
their ability to calculate quality scores for merged bases. In this
regard, we find that fastp might not be suitable for aDNA as it
displays inferior sequence correction capabilities, whereas
leeHom outperforms the other tools in most aspects except for
runtime. Not only does leeHom apply the most statistically
correct method when calculating merged Phred values, it also
correctly identifies the read overlap in most cases and is robust
against sequencing errors. AdapterRemoval offers favorable
quality score predictions, but often misidentifies the correct
read overlap and has a high rate of false positives. bbmerge
seems sensitive to sequencing errors, and its predicted quality
scores suffer from poor correlation to their actual error rates.
However, it is the recommended tool in cases where it is preferred
to have a reduced amount of merged reads in favor of minimal
incorrectly-merged reads. adna-trim offers good accuracy and
the best speed, but seems to overestimate the error rate of merged
portions. ClipAndMerge and SeqPrep seem to have built-in
cutoffs that limit their ability to accurately infer longer

templates and lower robustness to sequencing errors.
Furthermore, ClipAndMerge’s calculation of quality scores
does not incorporate mismatch information and should be
avoided if the identification of sequencing errors is important
for further analysis steps. Some tools are characterized by
especially large resource usage, with SeqPrep having an
exceptionally large runtime, and fastp having an exceptionally
large memory usage. Choosing the appropriate trimming and
merging tool for a given project depends on the time and memory
that is available, the length of the DNA library molecules, the
sequencing quality and what downstream analysis will be
performed. Table 4 provides an overview of the performance
of the tools against each criterion, and the overall suitability for
its use with aDNA. Although the analyzed tools differ profoundly
in their algorithms and the resulting ability to reconstruct aDNA
sequences, they had no measurable effect when analyzing
population genetics using PCA. However, the choice of
merging tool may have a bigger impact on downstream
analyses that are sensitive to incorrectly merged reads or that
rely on Phred quality scores, as those are the main aspects in
which the tools differ from each other. This should be tested in
future experiments.

4.6 Permission to reuse and copyright

This is an open-access article distributed under the terms of the
Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted

TABLE 4 Summary of the performance of the tools for adapter trimming and read merging.

Tool Merge rate Sequencing error
correction

Phred values
calculation

Runtime Memory
usage

Suitability for aDNA
analysis

AdaperRemoval - - highest rate of incorrect
merging

+ chooses the base with
the highest quality
score

++ considers both
mismatch and
match

++ shortest
runtime, but not
pipeable

+ partly recommended, prone to
misidentify correct overlap for
longer fragments

bbmerge + lowest incorrect merging
rate, but fails to merge some
reads and sensitive to seq.
errors in overlap

+ chooses the base with
the highest quality
score

+ considers only
mismatch

+ - only recommended if
downstream analyses are
highly sensitive to incorrectly
merged reads

ClipAndMerge - reduced ability to merge
reads from longer templates

+ chooses the base with
the highest quality
score

- no recalculation of
the quality score

- fixed thread
number of 3

- not recommended, inferior
quality score calculation and
low merge rate for longer
fragments

fastp - - high rate of incorrect
merging

- biased to bases from
the forward read

- no recalculation of
the quality score

+ - - should be avioded, due to
inferior sequence correction
capabilities

leeHom ++ best merge rate, but
misidentifies the overlap in
some cases

+ chooses the base with
the highest quality
score

++ considers both
mismatch and
match

- + overall recommended for
most applications

SeqPrep - reduced ability to merge
reads from longer templates

+ chooses the base with
the highest quality
score

++ considers both
mismatch and
match

- - multithreading
not supported

++ partly recommended, low
merge rate for longer
fragments

adna-trim + low rate of incorrect
merging, but fails to merge
sometimes

+ chooses the base with
the highest quality
score

+ considers only
mismatch

++ + suitable, not able to merge all
reads, but low incorrect
merging rate
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