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Over the last decade, single-molecule localization microscopy (SMLM) has
revolutionized cell biology, making it possible to monitor molecular
organization and dynamics with spatial resolution of a few nanometers.
Despite being a relatively recent field, SMLM has witnessed the development of
dozens of analysis methods for problems as diverse as segmentation, clustering,
tracking or colocalization. Among those, Voronoi-basedmethods have achieved a
prominent position for 2D analysis as robust and efficient implementations were
available for generating 2D Voronoi diagrams. Unfortunately, this was not the case
for 3D Voronoi diagrams, and existing methods were therefore extremely time-
consuming. In this work, we present a new hybrid CPU-GPU algorithm for the
rapid generation of 3D Voronoi diagrams. Voro3D allows creating Voronoi
diagrams of datasets composed of millions of localizations in minutes, making
any Voronoi-based analysis method such as SR-Tesseler accessible to life
scientists wanting to quantify 3D datasets. In addition, we also improve
ClusterVisu, a Voronoi-based clustering method using Monte-Carlo
simulations, by demonstrating that those costly simulations can be correctly
approximated by a customized gamma probability distribution function.
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Introduction

SMLM has induced a major paradigm shift from conventional light microscopy
modalities: SMLM datasets are composed of the precise coordinates, in 2D or 3D, of the
molecules being acquired. As pixel-based analysis methods were not adapted, these point
clouds have required the development of a whole new set of analysis tools based on geometry
and spatial organization (Khater et al., 2020). Among those, Voronoi-based methods have
emerged as one of the standard in the field, whether it be for clustering (Andronov et al.,
2016), segmentation (Levet et al., 2015; Peters et al., 2017) or colocalization (Levet et al.,
2019; Ejdrup et al., 2022) and motion (Beheiry. et al., 2015) analysis.

Nevertheless, the rapid adoption of SMLM by life scientists has highlighted an important
limitation of existing analysis methods. As datasets composed of millions of localizations are
now routinely acquired in biology labs and facilities, it has become obvious that very few
methods were capable of scaling to this magnitude, and that especially in 3D. This results in
the necessity to define small ROIs composed of 104–105 localizations for analysis, as
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quantifying a whole dataset in one go is out of reach. For instance,
and while 3D analysis with Voronoi diagrams is available for a few
years now, it takes several hours to quantify datasets in the 1.106

localization range (Andronov et al., 2018). This unfortunately lacks
the interactivity required when analyzing an unknown biological
model, as life scientists may need to fine-tune their analysis
parameters through several attempts.

In this paper, we propose to optimize two Voronoi-based
quantification methods for segmentation and clustering, SR-Tesseler
(Levet et al., 2015) and ClusterVisu (Andronov et al., 2016; Andronov
et al., 2018), to make them interactive for analyzing 3D SMLM datasets

in the millions range. Our contributions are twofold. First, we have
developed a new hybrid CPU-GPU algorithm (called Voro3D) for the
rapid generation of 3D Voronoi diagrams. Voro3D allows constructing
diagrams composed of millions of localizations in a few minutes,
achieving state of the art timing for heterogeneous point clouds.
Second, we have shown that clustering can be performed without
requiring the use of costly Monte Carlo simulations (Andronov et al.,
2016; Andronov et al., 2018), as the cell size distribution of randomly
placed localizations can be approximated by an analytical function. All
these developments are available in our newly released PoCA platform
(Levet and Sibarita, 2023).

FIGURE 1
Comparison of the vicinity sampling of a specific point (green) with different spatial subdivision techniques and distributions. (A) Supervised spatial
subdivision techniques (kd-tree, n = 10; quad-tree, side = 25) properly sample the point vicinity (orange) in the homogeneous case (left) but fail to
correctly capture some region of the vicinity (blue) for heterogeneous distributions (right). (B) On the contrary, unsupervised techniques (Delaunay
triangulation and Voronoi diagram) properly sample the point vicinity (orange) for both homogeneous and heterogeneous distributions.
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Methods

3D Voronoi diagram generation

Voronoi diagram is a well-known space-subdividing technique
used in dozens of different domains (Atsuyuki et al., 2003) that also
met great success in the context of SMLM (Beheiry. et al., 2015; Levet
et al., 2015; Andronov et al., 2016; Peters et al., 2017; Andronov et al.,
2018; Levet et al., 2019; Ejdrup et al., 2022). Depending on the
application, it can be generated with or without its global
combinatorial information (i.e., the global mesh geometry) using
a variant of the Bower-Watson (Bowyer, 1981; Watson, 1981) or
Lloyd (Lloyd, 1982) algorithms. As expected, algorithms generating
the global combinatorial information are costlier, thus necessitating
access to CPU clusters (Chrisochoides and Nave, 2003; González,
2016) or machines with large number of cores (CGAL, 2020), two
equipment that may be out of reach for most biology labs. On the
other hand, and when this combinatorial information is
unnecessary, each Voronoi cell can be computed individually
without requiring synchronization of the global geometry. In this
case, each cell only requires to gather its direct neighbors to be
generated. Algorithms based on this idea combine supervised spatial
subdivisions (subdivision techniques requiring a user-defined
parameter for gathering neighbors) with parallelization (Rycroft,
2009; Ray et al., 2018) to speed up the computation speed
(Figure 1A). Nevertheless, these implementations are based on
the assumption that the originating point clouds are evenly
distributed, i.e., that their spatial distribution is homogeneous,
which is in general not the case for SMLM data. In Ray et al.
(2018), the authors managed to create 3D Voronoi diagrams of
millions of points in a few seconds on the GPU. This impressive
result was achieved by retrieving the k-closest neighbors of each
point with a kd-tree, and by using them to brute force the Voronoi
cell construction. Nevertheless, this implies that the k-nearest
neighbors surrounding a point represent a proper sampling of its
vicinity, a hypothesis that is only certified in the case of a
homogeneous distribution combined with a sufficient number of
neighbors (Figure 1A top).

To adapt this process to inhomogeneous point cloud data, we
used the Delaunay triangulation, which is the dual of the Voronoi
diagram, to compute the Voronoi diagram (Algorithm 1). We
integrated a very efficient CPU implementation available in the
CGAL (2020) library, that allows computing a 3D Delaunay
diagram of 10 million of localizations in around 10 s with a
standard computer. Using the connectivity provided by the
Delaunay triangulation, all the direct neighbors pn of a given
point p, i.e., the points part of the tetrahedrons originating from
p, can be efficiently retrieved. Contrary to the k-nearest
neighbors, pn is guaranteed to accurately describe the vicinity
of p in all directions (Figure 1B top). We then modified the
algorithm provided in (Ray et al., 2018) to brute force the
Voronoi diagram construction on the GPU using pn
(Figure 1B bottom), allowing creating the 3D Voronoi
diagrams of inhomogeneous SMLM point cloud data
composed of millions of localizations in a few minutes.
Implementation discrepancies between CGAL and the GPU
code (Ray et al., 2018) forced us to develop a function
gathering all the localizations’ direct neighbors in an array

(Algorithm 1 line 2). In addition, the Voronoi cells are not
returned in (Ray et al., 2018) since their application only
required to compute the cells volume, a feature for which it is
unnecessary to explicitly create the cells. Consequently, we added
a CPU function to create the Voronoi cells from the convex hull
of the cells’ points (Barber et al., 1996).

Algorithm 1. Voro3D pseudocode.

Voronoi-based clustering

To perform statistical clustering, Andronov et al. compared
experimental SMLM datasets with Monte Carlo simulations
(Andronov et al., 2016; Andronov et al., 2018) (Figure 2).
They generated a user-defined number of simulations having
the same number of localizations and volume but exhibiting a
random spatial distribution (Figures 2A, B). By comparing the
cell size distribution (i.e., volume for three dimensional datasets)
of the experimental dataset with the mean cell size distribution of
all the simulations, they were able to automatically determine a
threshold to segment clusters (Figures 2C, D). Their technique
has a strong limitation: as their implementation of the 3D
Voronoi diagram was not optimized, and since the global
computation time linearly scales with the number of
simulations, 3DClusterVisu took up to 6 h for analyzing
datasets in the 1.106 localizations range.

Voronoi diagrams of random spatial distributions are called
Poisson Voronoi diagrams and have been extensively studied
(Hermann et al., 1989; Kumar et al., 1992; Masaharu, 2003; Ferenc
and Néda, 2007; Hinde and Miles, 2007; Zaninetti, 2009; González and
Einstein, 2011). Of particular interest is the cell size distribution
g(y) � S, with S the cells’ size, which is used in ClusterVisu
(Andronov et al., 2016; Andronov et al., 2018). Its normalization
f(y) � g(y)/〈S〉, with 〈S〉 the mean of the cells’ size, can be
expressed as an analytical function with closed form, but only for
the one dimensional case (Ferenc and Néda, 2007). However there exist
several probability distribution functions that provide an approximate
numerical solution, based on Gamma distributions (Enderlein et al.,
1961) having two (a and b) (Ferenc andNéda, 2007) or three (a, b and c)
(Masaharu, 2003; Hinde and Miles, 2007) parameters:

f y( ) � c
b

a/

c

Γ a /

c( )y
a−1 exp −byc( )

f y( ) � ba

Γ a( )y
a−1 exp −by( )
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with a and c two shape parameters and b a scale parameter. From all
the proposed distributions, we used the ones from Ferenc and Néda
(2007):

f2D y( ) � 343
15

���
7
2π

√
y

5 /

2 exp −7
2
y( ), (1)

f3D y( ) � 3125
24

y4 exp −5y( ) (2)

The error between the cell size distribution of simulated
datasets and this analytical distribution has been quantified to

be less than 0.04% and 1%, for 2D and 3D, respectively (Ferenc
and Néda, 2007).

Nevertheless, blinking of the molecules is not taken into account
by this numerical approximation. Monte Carlo simulations, on the
other hand, should be able to integrate this blinking behavior in the
cell size distribution, as long as the simulator provides a realistic
simulation of blinking, a task known to be difficult. Another
difference between the numerical approximation and Monte
Carlo simulations is the cell size distribution envelope provided
by running several simulations (Figure 2C). This envelope helps to

FIGURE 2
ClusterVisu method. (A) Clustered simulation exhibiting 20 clusters (left) with corresponding Voronoi diagram (middle) and cell size distribution
(right). (B) Simulations of randomly placed points (left) having the same density and area of the clustered simulation with corresponding Voronoi diagrams
(middle) and cell size distributions (right). (C) Threshold (green) is identified as the intersection between the cell size distribution of the clustered
simulation (red) and the mean of the cell size distributions of all the random simulations (blue), with the envelope being displayed in orange. (D)
Corresponding Voronoi cells selection (left) and clusters (right).

Frontiers in Bioinformatics frontiersin.org04

Levet 10.3389/fbinf.2023.1249291

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1249291


assess how much an experimental dataset deviates from a random
distribution of points. Another potential solution to quantify this
deviation is to compute the Ripley’s functions (Ripley, 1977; Nieves
et al., 2023).

Results

Voro3D is available in our newly released SMLM analysis platform
called PoCA (Levet and Sibarita, 2023). While PoCA is developed in
C++ and can therefore be executed on any computer, Voro3D is
implemented in Cuda (Nickolls et al., 2008) and therefore requires a
computer equipped with a Nvidia graphics card (https://www.nvidia.
com/). To our knowledge, the only two libraries implementing 3D
Voronoi diagrams for heterogeneous point clouds that are directly

accessible are SciPy (Virtanen et al., 2020) (Supplementary Material)
and CGAL (2020), which was included in one of our precedent
software platform (Levet et al., 2019). We therefore compared the
execution time of Voro3D versus SciPy and CGAL for datasets
exhibiting a random spatial distribution and ranging from 103 to
107 localizations (Figure 3A). Voro3D is consistently faster than the
other two solutions. It achieves generating a 3DVoronoi diagram from
a dataset composed of 10 million localizations in close to 1 min and a
half, a time suitable with an interactive analysis. Importantly, the
implementation of Voro3D available in PoCA takes longer as more
operations are performed. In addition to the three steps of the
pseudocode (Algorithm 1), there are two additional steps pertaining
to computational operations performed on the Delaunay triangulation
and the Voronoi diagram, such as computation of the tetrahedra
volume or creation of the OpenGL rendering buffers (Figure 3B). Time
ratio between the different steps shows the extreme efficiency of both
the Delaunay triangulation generation (multithreaded on the CPU, 10.
4 s for 10 million localizations) and the construction of the Voronoi
cells (GPU, 1.55 s for 10million localizations).Most of the time is spent
on operations performed on CPU without multithreading (92%), such
as computational operations on the Delaunay triangulation (43%) or
gathering the direct neighbors for the Voronoi cell construction (45%).
Finally, the Voronoi GPU code (Ray et al., 2018) computes the
Voronoi cells as a combination of tetrahedra, i.e., Voronoi cells are
not explicitly constructed and returned. We therefore added an
optional function to compute the Voronoi cells based on the
convex hull (Barber et al., 1996) (Algorithm 1). This function is
time consuming as it is single-threaded and non-optimized
(Figure 3C).

While Voro3D already greatly improves the computation time of
3DClusterVisu (15 min with Voro3D versus 6 h for the original
3DClusterVisu (Andronov et al., 2018) for a dataset composed of
780,000 localizations), using an analytical function approximating the
cell size distribution eliminates any additional computational time.
Therefore, to demonstrate that Eq. 2 is a good approximation for
3DClusterVisu (Andronov et al., 2018) we first generated a simulated
dataset composed of 20 clusters (Figure 4A, referred as experimental),
and then computed fifty Monte Carlo simulations having the same
localization density but with a random spatial distribution (referred as
simulations). The cell volume probability distribution function (PDF) of
experimental and simulations were both normalized to be comparable
with the analytical PDF (Figures 4B, C). Importantly, we also removed
Voronoi cells that were on the border of the dataset volume (i.e., they
were cut by the dataset bounding volume) to prevent any edge effect.
We found that the simulations and analytical PDFs were not
significantly different (Figure 4B, Wilcoxon rank test p-value =
0.1211), a property that also transfers to the computed thresholds
(Figure 4C, Tsimulations = 0.307, Tanalytical = 0.312). Finally, objects created
with these thresholds exhibited similar shapes and volumes (Figures 4D,
E) and their volume distributions were not significantly different
(Kolmogorov-Smirnov test p-value = 0.818). We also compared the
volume of each object in the simulations with its counterpart in the
analytical and quantified themean difference to be less than 1%. Finally,
we also compared clustering betweenMonte-Carlo simulations and Eq.
2 on an experimental dataset of Xenopus laevis nuclear pore complexes
stained with WGA-ATTO520 (Löschberger, 2021) available for
download on ShareLoc (Ouyang et al., 2022) (Figure 5A). Similarly
to the simulations, the number of segmented clusters is very similar

FIGURE 3
Comparison of timings for different algorithms. (A) Comparison
of timings for SciPy, CGAL, PoCA and Voro3D for datasets ranging
from 1,000 to 10,000,000 localizations. (B) Normalized timings for
each step of the 3D Voronoi diagram generation implemented in
PoCA. (C) Timings for computing the convex hull of the Voronoi cells
for datasets ranging from 1,000 to 10,000,000 localizations. For
comparison, the timings for generating the 3D Voronoi diagram for
10,000,000 localizations with Scipy (dark yellow), CGAL (blue) and
Voro3D (green) are plotted.
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(ClusterVisu, n = 1,108; Eq. 2, n = 1,112; Figure 5B) and their
distributions of volume are not significantly different (Kolmogorov-
Smirnov test p-value = 0.788, Figure 5C).

Discussion

As 3D SMLM is increasingly adopted by biology labs by ways
of imaging facilities, the bottleneck has shifted from not having
the technology to image to not being able to analyze and extract

meaningful quantifications from the acquired datasets. In the
context of 2D SMLM analysis, Voronoi diagrams has become a
method of reference (Levet et al., 2015; Andronov et al., 2016;
Peters et al., 2017; Andronov et al., 2018; Levet et al., 2019) thanks
in part to its rapidity that gave life scientists interactive feedbacks
on quantifications. Unfortunately, 3D Voronoi analysis was
extremely time-consuming, preventing its use for datasets
composed of millions of 3D localizations.

In this paper, we presented a novel hybrid CPU-GPU algorithm
called Voro3D for the fast computation of 3D Voronoi diagrams. This

FIGURE 4
Comparison of clustering with Monte-Carlo simulations and a customized gamma distribution on simulations. (A) Simulation of a 3D dataset
exhibiting 20 clusters. (B) Comparison of the distribution of normalized Voronoi cells volume between Monte-Carlo simulations (blue) and Eq. 2 (dark
yellow). (C) Computed threshold (green) with Monte-Carlo simulations (left) and Eq. 2 (right). (D) Segmented clusters with Monte-Carlo simulations (left)
and Eq. 2 (right). (E) Comparison of the segmented cluster volumes with Monte-Carlo simulations (blue) and Eq. 2 (dark yellow).
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algorithm achieves state of the art computation time for point clouds
exhibiting heterogeneous spatial distribution. While its implementation
in PoCA is slightlymore computationally expensive, it is still compatible
with an interactive analysis. Voro3D also improves the computation
time of any method based on Voronoi diagrams, such as ClusterVisu
(Andronov et al., 2016; Andronov et al., 2018). Nevertheless, we also
demonstrated that the main component of ClusterVisu, the cell size
probability distribution function, can be correctly approximated by a
customized gamma distribution. This results in the capability of
computing clustering of SMLM datasets with no other additional
cost than the Voronoi diagram computation.

From the three steps of the Voro3D algorithm, inspection of the
computation time has shown that the majority of the computation time

is spent on transferring the localizations’ neighbors from the Delaunay
triangulation to the Voronoi diagram (Delaunay computation: 12%,
transferring neighbors: 86%, Voronoi computation: 2%). This transfer
step is currently required because of discrepancies between the CGAL
and Cuda implementations. Multi-threading this step could reduce
evenmore the Voro3D computation time. Similarly, construction of the
Voronoi cells is currently time consuming as it is a single-thread CPU
process. Constructing the cell at the same time than the tetrahedral
decomposition happening in the GPU could massively improve its
computation time.

Voro3D is natively included in PoCA and our implementation
of ClusterVisu (with Monte Carlo simulations and our analytical
approximation) is available as a PoCA’s plugin.

FIGURE 5
Comparison of clustering with Monte-Carlo simulations and a customized gamma distribution on an experimental dataset. (A) Localization dataset
of Xenopus laevis nuclear pore complexes stained with WGA-ATTO520, scale bar = 500 nm. (B) Segmented clusters obtained with ClusterVisu (left) and
Eq. 2 (right), scale bar = 500 nm. (C) Comparison of the segmented cluster volumes with Monte-Carlo simulations (blue) and Eq. 2 (dark yellow).
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