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Many proteins display a non-random distribution on the cell surface. From dimers
to nanoscale clusters to large, micron-scale aggregations, these distributions
regulate protein-protein interactions and signalling. Although these
distributions show organisation on length-scales below the resolution limit of
conventional optical microscopy, singlemolecule localisationmicroscopy (SMLM)
canmapmolecule locations with nanometre precision. The data from SMLM is not
a conventional pixelated image and instead takes the form of a point-pattern—a
list of the x, y coordinates of the localised molecules. To extract the biological
insights that researchers require cluster analysis is often performed on these data
sets, quantifying such parameters as the size of clusters, the percentage of
monomers and so on. Here, we provide some guidance on how SMLM
clustering should best be performed.
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Introduction

Cellular processes heavily rely on the ability of key proteins to form aggregates, also
called clusters. Immune cells for instance are regulated through subtle variations in signalling
protein clustering characteristics. These clusters have now been shown to involve only a
small number of proteins and range from 10 nm to 50 nm in size (Griffié et al., 2015). Until
the development of super resolution microscopy (SRM), light microscopy, bound by the
diffraction limit (>200 nm), was unable to resolve cells’ nanoscale architecture, including
clusters. SRM in comparison encompasses imaging techniques with a spatial resolution
below 200 nm. SMLM in particular achieves a resolution close to molecular scale (typically
10 nm) in cells (Lelek et al., 2021). It enabled, for the first time, the visualisation and
quantification of protein nanoscale organisation including clusters, pores and filaments.

SMLM relies on the separation in time of fluorophores’ emission (i.e., blinks), which are
collected over thousands of frames. Ideally, on each frame only a very small subset of well
spatially separated fluorophores are emitting, allowing to extract from their diffraction
limited point spread function their precise localisation. Therefore, the output of an SMLM
acquisition does not consist of a conventional pixelated image, but rather of a spatial point
pattern (SPP, i.e., scatter plot of collected localisations (x, y) in 2D (x, y, z) in 3D). Ultimately,
it is the estimated uncertainty associated to every localisation that is often used as a proxy for
spatial resolution. SPPs require totally different statistical tools for their analysis compared to
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pixelated images. Although relatively uncommon in microscopy,
this type of dataset has been analysed for decades in fields such as
ecology and epidemiology. This has provided a baseline for the
development of a vast range of cluster analysis tools dedicated to
SMLM (Khater et al., 2020). Here, we will discuss the dos and don’ts
when analysing SMLM SPP for cluster quantification.

Dos

Pre-processing matters!

SMLM data sets require comprehensive curation before analysis
(Figure 1). This includes drift correction and filtering badly localised
emitters. Multiple blinking, which translates into localising the same
fluorophoremultiple times over the acquisition, also has to be addressed
as it leads to self and artificial clustering (Annibale et al., 2011; Baumgart
et al., 2016). In the case of PALM, there are 2 powerful existing strategies
to account for multiple blinking. The first relies on the relative short
timescale over which the reblinks tend to happen in order to merge
them (Annibale et al., 2011). The secondmore recent solution is model-
based and has been shown to provide artifact free point distribution for
cluster analysis with unprecedented reliability (Jensen et al., 2022). In
both cases, multiple blinking correction should be included in the
analysis pipeline upstream of the cluster analysis. When it comes to
STORMhowever, the issue has not been fully addressed and remains an
open avenue of research (Bohrer et al., 2021). A good practise however
remains to merge blinks that extend over multiple frames.

Multiple blinking is not the only pre-processing requirement
for most cluster analysis tools. A field of view is typically made of
millions of localisations, with strong variations in overall point
density (e.g., in and outside the cell) and clustering (e.g., sizes),
for which most methods fail to provide accurate clustering
descriptors. This results from widespread cluster analysis
methods [e.g. DBSCAN (Ester et al., 1996), localised Ripley’s
K (Owen et al., 2010)] reliance on fixed user parameters which
cannot fit all noise and clustering variations in the same ROI as
well as across ROIs. The computational cost of handling millions
of points is also a key limitation, apart from graph-based methods
specifically repurposed for large data sets (e.g., whole cell, field of
view) (Levet et al., 2015). Both factors indicate the overall need to
define regions of interest (ROI) in which the number of points
does not limit the computation and the clusters within the picked
ROI display similar characteristics. In cases where broad cluster
density/size range (within the same ROI or across the data sets) as
well as uneven background cannot be addressed with ROI
picking, a Bayesian-based cluster analysis tool will typically
provide more reliable results as it picks the best parameters
pair, in regard to a realistic model on protein aggregation in
cells, independently for each ROI (Rubin-Delanchy et al., 2015;
Griffié et al., 2016). In all cases, ROI should also be associated to
edge correction strategies. Most cluster analysis tools now
include edge correction directly in the analysis pipeline (e.g.,
symmetry, framing) but the user must be aware of which strategy
is implemented to provide an ROI of bigger size for instance if
required.

FIGURE 1
Pre-processing workflow. (A) Whole cell acquisition across a field of view (FOV). (B) Artefact correction following acquisition including drift
correction, multiple blinking correction and filtering. (C) Segmentation of FOV into ROIs of fixed size. (D) Point clouds arising from one such ROI. (E) Use
of the Ripley’s H function to determine the degree of clustering across the ROI. Non-negativity across radial values suggests clustering at that scale.
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Is cluster analysis needed?

Randomness in biology is hardly ever uniform, but rather
consist of heterogenous distribution in which each point has an
equal probability to be at any location in the ROI, also called
complete spatial randomness (CSR). CSR can manifest in SPPs in
which clustering like structures can be seemingly present. When
looking for clusters, it is therefore crucial to avoid fitting your
data and analysis to your prior and hypothesis. An efficient way
to differentiate a CSR from a clustered distribution is to use
Ripley’s K curve analysis (Kiskowski et al., 2009; Owen et al.,
2010). These curves are calculated by averaging over the point
population and ROI, the local density for various scales and are
today implemented as pre-made functions in most coding
interfaces. It provides a very robust statistical tool to
differentiate with high confidence if the protein distribution
studied is CSR or clustered and hence suited to further cluster
analysis (assuming multiple blinking has been accurately
corrected for). Ripley’s K curves however do not provide
cluster identification and visualisation or detailed information
on clusters’ composition and sizes. In cases where multiple
blinking cannot be easily addressed (e.g., STORM), the
clustering landscape may still be accessible through
experimental SMLM approaches as suggested by Arnold et al.
(2020).

Finally, most available cluster analysis tools focus on circular
shapes and are overall unsuitable for multiscale or shape
independent segmentation. As a result, virtually all available
cluster analysis tools are unsuitable to quantify filamentous
structures, and only some can accommodate for elongated
aggregates or rings (Ester et al., 1996; Pike et al., 2020). Whilst
novel dedicated approaches have started to emerge for filamentous
mesh quantification in SMLM data sets (Peters et al., 2018), it overall
remains an active topic of research.

Optimise and report user defined
parameters

There are a wide variety of cluster analysis algorithms
available, even when only considering those that have been
tested and validated for use on SMLM data (Khater et al.,
2020). While they all have advantages and disadvantages
compared to each other, one property that almost all share is
the use of user-defined analysis settings. These are numbers that
the user must enter into the algorithm to dictate what kind of
structural features should be highlighted in the data. A common
necessity is for two parameters—one somehow related to the
spatial scale of objects of interest and the other related to the
density of points within the clusters, i.e., is the user looking for
big or small clusters and are they looking for sparse or dense
clusters? Naturally, the choice of these parameters can strongly
influence the output of the analysis. In some sense, there is no
right or wrong answer to the choice because which clusters in
the data are most relevant depends on the biological questions
being asked. A minimum requirement is therefore to simply
report the choice of parameters when describing the method so
the results can be reproduced. However, if something about the

data is known a priori, it is possible to optimise the choice of
analysis parameters. For example, using a success or
performance metric, analysis can be performed while
scanning the values of analysis parameters and the best
performing parameters chosen for continued use. This can be
done especially if one can simulate data that closely
recapitulates the experimental case (Nieves et al., 2023) or if
prior knowledge can be summarised about the expected
clustering properties (Rubin-Delanchy et al., 2015).
Furthermore, Nieves et al. (2023) provides a detailed
performance assessment on the vast majority of the cluster
analysis tools described in this minireview in order to help
user identifying which algorithm may be best suited to their
data sets.

Don’ts

Analyse blindly

Most researchers will typically seek a completely automated
analysis pipeline. This not only saves time but there is also a
perception that it reduces user bias if a human makes no decisions
within any particular analysis. While these are worthy goals,
SMLM clusters analysis algorithms are not yet capable enough
to warrant this level of confidence. A frequent occurrence in SMLM
are unexpected features in the data sets. These might be real but
rare biological structures, misplaced artefacts of the sample such as
fiducial markers or other contaminants or unexpected artefacts of
the imaging and analysis such as cell edges, uncorrected drift or
sparse data. Inputting such data sets into the algorithms will
produce meaningless results and bias biological conclusions. All
images undergoing analysis should therefore be inspected visually
to ensure the data structure is compatible with the proposed
analysis. In addition, several algorithms exist which can help
the user locate and assess potential data artefacts and allow
them to therefore perform analysis with confidence. These
include HAWKMAN (Marsh et al., 2021) and SQUIRREL
(Culley et al., 2018).

Treat results as absolute quantification

SMLM data sets are artifact prone. This results both from the
sample preparation stage and the processing stage. For sample
preparation, most SMLM acquisitions rely on immunolabelled
sample or transfection. Both strategies come with sampling
issues. At the processing stage, STORM does not have reliable
strategies to account for multiple blinking to date and, for both
PALM or STORM, a subset of the fluorophore population will not be
detected at all. For all these reasons any quantification extracted
from cluster analysis tools should be treated as relative rather than
absolute. Typically, this translates into using the term “localisation”
when talking about the clusters’ composition, rather than protein.
Cluster analysis tools are thus suited for relative comparison in
between conditions rather than the description of the exact protein
composition of identified aggregates. If absolute quantification is
required for the biological issue at hand, there are today emerging

Frontiers in Bioinformatics frontiersin.org03

Panconi et al. 10.3389/fbinf.2023.1237551

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1237551


experimental and statistical means to by-pass this issue with PAINT
(Simoncelli et al., 2020) but they remain very low throughput.

Discussion

Overall, SMLM is a powerful tool for obtaining the precise locations
of membrane proteins on the cell surface. However, to derive
biologically meaningful conclusions such as describing the nanoscale
clustering of those proteins, that data must be processed and analysed.
We propose that users adopt a standardised analysis pipeline for their
analysis which is broken down into a number of stages. First, data
curation in which imaging artefacts such as drift and multiple-blinking
can be corrected and data formatted into standardised ROIs. Second,
data validity. A visual inspection of the ROIs to identify artefacts and the
use of image quality algorithms will ensure data passed down the
pipeline is valid. In particular Ripley’s K-function should be used to
confirm the presence of clustering. Third: Cluster analysis. Using prior
or preliminary data, data analysis parameters should be optimised and
reported and the results subjected to a secondary visual inspection.
Finally, interpretation. Keeping inmind that none of the above steps can
be completed perfectly. Each will add some uncertainty and bias to the
final output and will sit on top of the artefacts arising during sample
preparation, imaging and localisation. As a general rule therefore, users
should be wary of treating outputs as absolute and SMLM cluster
analysis is most powerfully utilised to compare between experimental
conditions.
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