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As biological imaging continues to rapidly advance, it results in increasingly
complex image data, necessitating a reevaluation of conventional bioimage
analysis methods and their accessibility. This perspective underscores our
belief that a transition from desktop-based tools to web-based bioimage
analysis could unlock immense opportunities for improved accessibility,
enhanced collaboration, and streamlined workflows. We outline the potential
benefits, such as reduced local computational demands and solutions to common
challenges, including software installation issues and limited reproducibility.
Furthermore, we explore the present state of web-based tools, hurdles in
implementation, and the significance of collective involvement from the
scientific community in driving this transition. In acknowledging the potential
roadblocks and complexity of data management, we suggest a combined
approach of selective prototyping and large-scale workflow application for
optimal usage. Embracing web-based bioimage analysis could pave the way
for the life sciences community to accelerate biological research, offering a
robust platform for a more collaborative, efficient, and democratized science.
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1 Introduction

Bioimage analysis has become an indispensable tool in modern biological research, playing
a crucial role in advancing our understanding of complex biological systems. The rapid
development of imaging instrumentation has resulted in the generation of massive image data
sets, capturing information from the molecular to the organismal level (Hallou et al., 2021;
Chandrasekaran et al., 2023). Concurrently, advances in artificial intelligence (AI) and
computer vision have revolutionized bioimage analysis by enabling the automated
extraction of quantitative data from these large-scale image collections (Ravindran, 2022).
Furthermore, bioimage analysis has become integral to spatial multi-omics research, where the
integration of imaging data with transcriptomics, proteomics, and metabolomics data allows
for a more comprehensive understanding of biological systems (Lundberg and Borner, 2019).

Despite the significant advancements in bioimage analysis, researchers still face challenges
when it comes to collaboration, data sharing, and the implementation of diverse analysis
approaches (Soltwedel and Haase, 2023). The ever-increasing size and complexity of image
datasets necessitate efficient storage, retrieval, and processing solutions. At present, the
exchange of image data often relies on physical harddrives, institutional storage services, cloud
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storage tools like Dropbox, or occasionally public shared image databases
combined with ontologies for annotation. However, these methods can
be cumbersome andmay not fully address the requirements for seamless
collaboration and data sharing.

Furthermore, diverse research teams and institutions often use
different imaging modalities, file formats, and analysis pipelines,
which can create hurdles in the seamless exchange of data and
knowledge (Moore et al., 2021). Compounded by the mandate from
organizations such as theNational Institutes ofHealth (NIH) requiring all
data associated with a publication to be made available, the traditional
desktop-based computationmodel, where data is uploaded as a final step,
can pose challenges especially (thought not exclusively) when personnel
may turn over during the publication process,making original sourcefiles
harder to trace. The current single-user, single-desktop paradigm that
dominates much of the current bioimage analysis landscape can hinder
collaboration, as it requires specialized software and hardware resources
that may not be universally available to all researchers. In contrast, a
browser-based model, wherein data would be uploaded as an initial step,
may offer a more seamless, efficient, and inclusive workflow.

In this paper, we explore the prospects formoving beyond the desktop
and embracing web-based approaches to overcome these challenges and
enhance the practicality of bioimage analysis for researchers worldwide.

2 Current approaches to bioimage
analysis collaboration

Conventional methods of sharing image files and analysis
workflows often involve sending files via email, using cloud

storage tools like Dropbox or Google Drive or sending physical
hard drives via regular mail. However, these methods can be
inadequate for handling large datasets shared among many users
(Figure 1). Dedicated image data servers, such as OMERO (Allan
et al., 2012), have been developed to address this issue by providing
more efficient storage and management of large-scale datasets.

For public access, especially after publication, researchers
commonly use shared databases such as the Image Data
Repository (IDR) (Williams et al., 2017), the BioImage Archive
(Hartley et al., 2022) and The Cell Image Library (Ellisman et al.,
2021). These platforms facilitate the exchange of information and
promote interoperability between analysis tools by providing
standardized metadata and file formats. Ontologies, such as the
EDAM Bioimaging Ontology (Kalaš et al., 2020), are also used for
standardization of metadata, which greatly facilitates the exchange
of information and helps the interoperability between analysis tools.
The use of standardized file formats and metadata enables more
efficient data sharing and collaboration while reducing the need to
move data around.

Overall, current approaches to bioimage analysis collaboration
rely on a combination of conventional file-sharing methods,
dedicated image data servers, shared databases, and ontologies
for metadata standardization. These methods often require
moving data around, which is why they rely on standardized file
formats for better compatibility and efficiency.

As we transition towards a more connected research
environment, a growing number of researchers are uploading
their data to cloud servers. This includes not only global services
like AWS and GCP but also private institutional servers or inter-

FIGURE 1
Desktop vs. Web bioimage analysis tools. Comparison of (A) conventional desktop-based bioimage analysis software with (B) the emerging web-
based bioimage analysis software.When using conventional software, onemust work to handle installation of software on a local computer, the hardware
requirements, and the difficulties in collaboration and reproducibility due to varying software versions and platform dependencies. Web-based tools,
while they have their own disadvantages, have significantly improved ease of access, reduced computational requirements for the end user, and
enhanced collaboration through shared resources and data. The figure emphasizes the potential benefits of transitioning from desktop to web-based
bioimage analysis tools in life sciences research. Image credit: Flaticon.com.
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institutional servers connected via high-speed fiber networks, such
as the JANET network in the UK (British Library. Research and
Development Department, 1990). Such networks offer high-speed
connections and substantial storage capacity, allowing local storage
to serve merely as a buffer, providing a more sustainable storage
solution.

Despite this shift, the current bioimage analysis software
ecosystem remains primarily desktop-centric (Levet et al., 2021),
necessitating users to download either complete images or data
chunks to their local machines for analysis. This approach conflicts
with the pricing models of many cloud providers, which typically
offer inexpensive or free uploading and storage but impose more
substantial fees for downloading data. This discrepancy underlines
the necessity of transitioning to web-based tools, which can conduct
analyses directly on cloud-stored data.

Comparison of a) conventional desktop-based bioimage analysis
software with b) the emerging web-based bioimage analysis
software. When using conventional software, one must work to
handle installation of software on a local computer, the hardware
requirements, and the difficulties in collaboration and
reproducibility due to varying software versions and platform
dependencies. Web-based tools, while they have their own
disadvantages, have significantly improved ease of access, reduced
computational requirements for the end user, and enhanced
collaboration through shared resources and data. The figure
emphasizes the potential benefits of transitioning from desktop to
web-based bioimage analysis tools in life sciences research.

3 Web-based opportunities for
bioimage analysis

Web-based bioimage analysis offers a promising alternative to
conventional desktop-based analysis software. This approach
encompasses native web tools as well as cloud-utilizing tools to
enable researchers to initiate and carry out image analysis entirely
through a web interface.

Native web tools are applications built specifically for the web,
allowing users to perform tasks such as image visualization,
processing, and analysis directly within their web browsers
(Ouyang et al., 2019; Manz et al., 2022). Accessing web resources
encompasses the use of both native web tools and cloud-based
applications, which leverage online databases, libraries, and
repositories to enhance bioimage analysis workflows. For
example, OMERO servers are used by institutions for managing
image databases stored on servers (Allan et al., 2012). Cloud
resources enable researchers to offload computationally intensive
tasks to remote servers, providing scalable computational power,
storage, and specialized hardware for a wide range of applications.
As an example, CDeep3M (Haberl et al., 2018) provides a plug-and-
play cloud based deep learning solution for image segmentation of
light, electron and X-ray microscopy.

One notable advantage of web-based tools is the ability to
exchange data and analysis workflows through clickable URLs
instead of explicitly downloading and uploading image files
(Williams et al., 2017; Ouyang et al., 2019). This feature greatly
improves user experiences, especially when working with tissue

scans and large image files, as it simplifies data sharing and
allows for streamlined collaboration among researchers.

Web-based bioimage analysis has the potential to address many
of the limitations associated with the single-user, single-desktop
paradigm by offering a more flexible, accessible, and collaborative
platform for researchers. In the subsequent sections, we will discuss
the benefits, existing tools, and challenges related to web-based
bioimage analysis, as well as how the research community can
transition from desktop-based to web-based analysis tools.

4 Benefits of web-based bioimage
analysis

Web-based bioimage analysis offers a range of benefits that can
improve the overall user experience, accessibility, and efficiency of
biological research. One notable advantage is the lower
computational comfort required for researchers who primarily
focus on imaging rather than analysis (Figure 2). By offering
user-friendly interfaces and streamlined workflows, web-based
tools can help bridge the gap between image acquisition and data
analysis, making it easier for researchers with limited computational
expertise to engage in meaningful bioimage analysis.

An analysis of the Scientific Community Image Forum (Rueden
et al., 2019) (https://image.sc), a popular online expertise sharing
resource for bioimage analysis, reveals that a significant portion of
discussions revolve around installation issues. Analysis performed for
this paper showed that approximately 7%–8% of recent posts in the
forum (approximately 1 in every 12–14) contain the word “install”.
Furthermore, installation topics come up at least once in ~19% of the
~500 most recently posted threads, and are mentioned in the opening
post 9.9% of the time. This suggests that about 1 in 10 threads in the
forum are likely started due to an installation issue, and 1 in 5 threads
end up discussing it at some point.

The high frequency of installation-related discussions highlights
the challenges researchers face when setting up and using traditional
desktop-based bioimage analysis tools. By contrast, web-based tools
can significantly alleviate these challenges by moving the installation
burden entirely to the developer or by offering easy installation and
updates, eliminating the need for complex configuration processes,
and ensuring cross-platform compatibility.

Transitioning to web-based bioimage analysis offers numerous
advantages over the traditional desktop approach, beyond ease of
installation, sharing, and collaboration, allowing researchers to
efficiently transition from testing selective prototyping workflows on
small data subsets (e.g., the CellPose (Stringer et al., 2021) web
application at https://www.cellpose.org/) to applying proven methods
to full-scale datasets. Notably, it addresses the challenge of having to
download entire datasets to local computers for visualization or
processing using desktop software. Instead, web-based tools allow
for the processing of data directly in the cloud, transmitting only
necessary portions to the user’s browser for review. This not only
optimizes the use of available bandwidth but also aligns well with the
pricingmodels of many cloud services. In effect, this approach allows us
to harness the sustainable storage capacity and computational power of
the cloud to enhance the efficiency and effectiveness of bioimage
analysis.
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5 Existing tools for web-based
bioimage analysis

Various tools have now been developed to facilitate web-based
bioimage analysis. These tools can be categorized into scalable
storage image formats, browser-based visualization and
computing, and cloud or server-based image analysis platforms.

Scalable storage image formats, such as OME-NGFF (Moore
et al., 2021), enable remote visualization in tools like Fiji (Schindelin
et al., 2012)’s MoBIE (Pape et al., 2023). OME-NGFF is suitable for
storing massive datasets in chunks and serving them using object
storage, such as S3 or HTTP servers. Browser-based visualization
tools, including Kitware’s ITK VTK Viewer (McCormick et al.,
2023), Viv (Manz et al., 2022), OpenSeadragon (Github, 2023),
TissUUmaps (Solorzano et al., 2020), and webknossos (Boergens
et al., 2017), offer easy-to-use and performant visualization due to
their utilization of browser GPU standards, such as WebGL or
WebGPU. These tools are ideally suited for accessing chunked
storage formats like OME-NGFF or OME-Zarr (Moore et al., 2023).

For initial exploration and selective prototyping workflows,
browser-based computing tools are of great value, browser-based
computing tools, such as Piximi (Goodman et al., 2021), ImJoy and
ImageJ.JS (Ouyang et al., 2019), can perform computation locally in
web browsers. While useful and secure, since computation happens
locally, their performance is limited by memory and compute
constraints (e.g., 4 GB memory per tab in Chrome browser) and
lack of direct access to GPU accelerators, such as CUDA.

In contrast, for applying workflows to large-scale data, cloud or
server-based image analysis platforms often offer a scalable solution.
Tools, such as ImJoy (with Jupyter (Kluyver et al., 2016)/BinderHub
(Project Jupyter et al., 2018) backend), DeepCell Kiosk (Bannon

et al., 2021), Terra (Broad Institute of MIT and Harvard, Microsoft,
and Verily), Galaxy (Galaxy Community et al., 2022), KNIME
(Berthold et al., 2007), CDeep3M (Haberl et al., 2018), Bisque
(Kvilekval et al., 2010), BAND (EMBL, 2023), Cytomine (Marée
et al., 2016), Colab notebooks, and ZeroCostDl4Mic (von Chamier
et al., 2021), provide a more scalable way of storing, sharing, and
processing image data. These platforms are especially helpful for AI-
based analysis pipelines, given the ongoing trend towards
foundation models (Bommasani et al., 2021), such as Segment
Anything (Kirillov et al., 2023), diffusion models (Ho et al.,
2020), or transformer-based large language models for generating
code (Chen et al., 2021) (e.g., in Python) for automated image
analysis. In cloud environments, containers are often used to create
reproducible environments, orchestrated by cluster software like
Kubernetes.

6 Challenges in implementing web-
based bioimage analysis

While web-based bioimage analysis offers substantial
benefits, transitioning to this model comes with numerous
inherent challenges that require strategic navigation. For
instance, browser-based tools might encounter performance
limitations due to memory and computational constraints.
Furthermore, privacy concerns may arise when users are
hesitant to upload sensitive image data to servers managed by
third-party service providers. Nevertheless, hybrid computing
models, such as the one demonstrated in the Segment Anything
demo application, provide promising solutions. These models
blend the flexibility of browser-based computation with the

FIGURE 2
Computational comfort of scientists in a variety of work types. Approximately 500 respondents who use scientific imaging in the life or physical
sciences were asked to describe their work on a scale from “entirely imaging” and “entirely image analysis”; in parallel, they were asked to report their
comfort developing new computational skills. While the highest comfort levels are present in all groups, they aremore common in users who spendmore
time performing analysis, and the lowest levels of comfort are represented almost entirely in the lower bins of computational work level. Data are
normalizedwithin eachwork level by the number of responses in that level: 1:18, 2:63, 3:88, 4:185, 5:59, 6:45, 7:45 Data from (Sivagurunathan et al., 2023).
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robust power of server-side computation. But this transition is
not without its obstacles.

One of the most significant hurdles is the handling of massive
image datasets that are fundamental to bioimage analysis.
Uploading these considerable amounts of data to the cloud is
not only a time-consuming task but also presents logistical
difficulties, even with high-speed networks within the
institution/university. Moreover, conventional methods, which
necessitate periodic downloading of data, can lead to additional
costs and potential delays.

There are, of course, additional challenges to overcome when
implementing these solutions.

1) Algorithmic challenges: Algorithms need to be tailored to fit the
browser environment, which is typically single-threaded and
memory-constrained. Optimization is often required to run
efficiently within the browser. Remote servers can be used to
complement storage and compute limitations.

2) Cross-language and algorithmic accessibility: With
WebAssembly, algorithms implemented in languages such as
C/C++ can be compiled to run in the browser. However, not all
languages are readily compatible with web-based platforms,
requiring additional effort for adaptation.

3) Deep learning integration: Modern web browsers support deep
learning frameworks like TensorFlow.js, some even leveraging
WebGPU. However, due to browser constraints, remote servers
or local compute engines (e.g., Jupyter servers) are often
necessary for more demanding tasks.

4) Handling big data: Although browsers can store data, they are
better suited as clients for data handling when dealing with large
datasets. Efficient data management strategies are needed to
accommodate big data in web-based bioimage analysis.

5) Performance optimization: Striking a balance between limited
local compute power and storage in the web browser, and
reducing data transmission with remote servers, is crucial.
Utilizing browser-based compute engines like WebWorkers
and WebGPU can help optimize performance.

6) Efficient data transfer: Data compression techniques and
browser-based compute can help reduce latency and data
transmission. Efficient data transfer methods are essential for
maintaining responsive web-based bioimage analysis tools.

7) Security concerns: In addition to conventional security measures
such as encryption, edge computing using the browser can help
alleviate privacy concerns. Ensuring data security and user
privacy is vital when implementing web-based bioimage
analysis tools.

8) Funding challenges: It may be challenging to gauge the cost
needed to support the server infrastructure when hosting one’s
own server, especially if wide adoption increases traffic. Most
projects are funded on short-term grant models, making it
challenging to secure the future of a server long term,
especially as funding mechanisms for maintenance are scarce
relative to those for tool creation.

9) Additional challenges: Usability, maintenance, and support for
web-based tools are also important considerations. Ensuring that
tools are user-friendly and well-documented, while providing
ongoing support and updates, will contribute to the success of
web-based bioimage analysis platforms.

Addressing these challenges requires a collaborative effort from
the research community and developers to create robust, efficient,
and user-friendly web-based bioimage analysis tools.

7 Transitioning from desktop-based to
web-based analysis tools

The transition from conventional desktop-based bioimage
analysis to web-based platforms heralds a significant evolution in
bioimage analysis. This shift necessitates a fundamental change in
the traditional approach, where data, computation, and user
interface (UI) reside together with the user. In the web-based
model, data and computation are hosted remotely, leaving only
the UI with the user. This setup means that only a small portion of
raw data and relevant statistics need to be transferred to the user for
inspection, validation, and workflow development.

To address data transmission issues, it is beneficial to design
cloud and web-native software that aligns with cloud providers’
pricing models, keeping most data in the cloud. Techniques like
pyramid-like chunked image viewers supporting OME-NGFF (e.g.,
Viv, itk-vtk-viewer) could serve to transfer only necessary data
portions to the user, reducing the need for full dataset downloads.

Several key considerations could further facilitate this transition.

1) Adapting Current Tools for Web-Based Use: Existing bioimage
analysis tools should be adapted to operate within the web
environment. This process may require code refactoring,
optimizing algorithms for browser-based execution, and integrating
tools with web-based platforms and services. For desktop tools to run
remotely in a cloud environment, “headless” execution and batch
processing capabilities with a scripting interface are crucial. New
software should adopt distributed software design principles,
separating the user interface from computational components.
This allows the UI to run in the browser while computations
occur on a remote server, achieved by Remote Procedure Calls.

2) Development of Adaptable Compute Engines: An essential step
towards effective web-based bioimage analysis is the creation of
adaptable compute engines capable of adjusting to various cloud
environments. This approach acknowledges the advent of “Sky
Computing,” which foresees a more collaborative and
interconnected cloud environment (Stoica and Shenker, 2021).
A community-driven effort is needed to create a compatibility
layer on top of diverse clouds, whether private or public, which
could enable greater interoperability for developers.

3) Coding Efforts: Transition to web-based tools often requires
learning new programming languages and frameworks like
JavaScript, WebGL/WebGPU, or Unity. However, with tools
like WebAssembly and web compilers, developers can port
existing libraries to run in the browser, like ImageJ.JS that
was compiled from Java to JavaScript with a compiler named
CheerpJ. Developers must also familiarize themselves with
cloud-based services and remote computing resources to
leverage scalable storage and computation.

4) Community Involvement: Successful transition to web-based
bioimage analysis tools calls for substantial community
involvement, encompassing researchers, developers, and industry
partners. Collaboration is pivotal for the development and
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maintenance of web-based tools, sharing best practices, and tackling
common challenges. An open-source development approach, along
with sharing code, data, and resources, fosters a more inclusive and
efficient research community.

By addressing these areas, the research community can
collectively foster a new generation of powerful, accessible, and
collaborative web-based bioimage analysis tools, surmounting the
limitations of traditional desktop-based methods.

8 Conclusion

Web-based bioimage analysis has the potential to profoundly
transform the methodologies of biological research. By transitioning
from desktop to the web, it is possible to offer improved accessibility,
scalability, and reproducibility, ultimately democratizing resources for
researchers globally and enhancing collaboration across various domains.

Overcoming the hurdles associated with implementing web-
based bioimage analysis tools requires the collaborative effort of the
research community, developers, and industry partners. By adapting
and optimizing existing tools and approaches, embracing new
programming languages and frameworks, and fostering
community involvement, we can collectively advance towards a
web-based paradigm that is mutually beneficial.

As we shift from desktop-based to web-based analysis tools, the
maintenance of user experience, performance optimization, and
security is of utmost importance. Developing efficient, user-friendly,
and secure web-based bioimage analysis platforms is a shared
responsibility. We must continue to innovate, share experiences, and
foster a culture of open dialogue to facilitate this progress.

In conclusion, web-based bioimage analysis stands at the
precipice of the future of biological research. By cooperating to
overcome challenges and build robust, accessible tools, we can
unravel the full potential of web-based bioimage analysis, paving
the way for revolutionary discoveries in the life sciences.
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