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Understanding protein sequences and how they relate to the functions of proteins
is extremely important. One of the most basic operations in bioinformatics is
sequence alignment and usually the first things learned from these are which
positions are themost conserved and often these are critical parts of the structure,
such as enzyme active site residues. In addition, the contact pairs in a protein
usually correspond closely to the correlations between residue positions in the
multiple sequence alignment, and these usually change in a systematic and
coordinated way, if one position changes then the other member of the pair
also changes to compensate. In the present work, these correlated pairs are taken
as anchor points for a new type of sequence alignment. Themain advantage of the
method here is its combining the remote homolog detection from our method
PROST with pairwise sequence substitutions in the rigorous method from
Kleinjung et al. We show a few examples of some resulting sequence
alignments, and how they can lead to improvements in alignments for
function, even for a disordered protein.
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Introduction

Protein sequence alignments are commonly used to identify the similarities and
differences between proteins, crucial procedures in bioinformatics analyses. Alignments
are vital for understanding protein function, evolution, and the various relationships among
mutations. The amino acid substitution matrix used in a protein sequence alignment is the
central component that affects the quality of any resulting alignment. The usual substitution
matrix is a matrix with each element representing the propensity of one amino acid type to
change to another specific type of amino acid. The early PAM (Point Accepted Mutation)
substitution matrices were introduced byMargaret Dayhoff and colleagues in the early 1970s
(Dayhoff, 1972). PAM matrices are based on the observation that the conservation of a
particular amino acid decreases with the evolutionary distance between sequences. The most
commonly used BLOSUM (BLOcks SUbstitution Matrix) family of amino acid substitution
matrices was developed by Steven and Jorja Henikoff in the late 1980s (Henikoff and
Henikoff, 1992). These matrices are based on short, non-gapped sequence alignment
“blocks” that are relatively well-conserved across evolutionary distances. The BLOSUM
matrices are named according to the percentage of identity among the sequences used to
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generate the matrix. For example, the BLOSUM62 matrix was
derived from a set of protein sequences that are at least 62%
identical to each other. The BLOSUM62 matrix has become the
most commonly used matrix in many sequence alignment-based
tools, such as BLAST (Altschul et al., 1990), Clustal Omega (Sievers
and Higgins, 2014), MAFFT (Katoh et al., 2002), and MUSCLE
(Edgar, 2004). Later, more advanced matrices were developed for
universal application (Kann et al., 2000; Prlic et al., 2000; Muller
et al., 2002; Crooks and Brenner, 2005; Lemaitre et al., 2011; Yamada
and Tomii, 2014; Leelananda et al., 2016; Keul et al., 2017). More
specific substitutionmatrices were developed for different families of
proteins or different types of structures (Yu et al., 2003; Vilim et al.,
2004; Edgar, 2009; Song et al., 2015; Trivedi and Nagarajaram,
2019).

In contrast to substitution matrix-based tools, many protein
sequence alignment tools, including HMMER (Johnson et al., 2010),
SAM (Karplus et al., 1998), HHpred (Soding et al., 2005), and
HHblits (Remmert et al., 2011) are based on HiddenMarkovModels
(HMMs). HMM approaches employ a statistical model that is
trained on a group of protein sequences to develop a “profile” for
identifying sequence motifs. The HMMprofile contains information
about the frequency of each amino acid at each position in the
reference protein sequences. This data is utilized to produce a
scoring system that reflects the probability of observing a specific
amino acid at a particular position in the query sequence. However,
it requires the use of a set of seed sequences to create the profile.

The relationship between protein sequences is unambiguous
when the pairwise sequence identity is high (>40%). However, as the
identities become lower in the range of 20%–35%, commonly
referred to as the twilight zone protein sequence (Rost, 1999), the
alignments and relationships become less certain. In this range
named ProtSub, the similarity between proteins is more
challenging to ascertain, and the boundaries between similar and
non-similar structures are blurry (Rost, 1999; Weisman et al., 2020).

Coevolution methods effectively identify evolutionary
correlations between residue positions that exhibit dependent
sequence variations. However, this information is usually ignored
by sequence alignment methods. Many successful applications of
coevolution methods have been developed. EVcouplings (Marks
et al., 2012; Hopf et al., 2019) and others (Dunn et al., 2008; Morcos
et al., 2011; Jones et al., 2012; Ovchinnikov et al., 2014; Seemayer
et al., 2014; Ovchinnikov et al., 2017) have been successful in
determining 3D structures by predicting intramolecular residue
contacts based on residue pairs that are correlated. Based on the
principle of interacting residues are often coevolving, protein-
protein interactions can also be inferred from intermolecular
coevolved protein residues (Cong et al., 2019; Green et al., 2021).
EVmutate utilizes a probabilistic graphical model to infer the effects
of mutations at given positions (Hopf et al., 2017). Recently, we have
integrated coevolutionary dependence information into a
substitution matrix, which generates improved sequence
alignments consistent with structure alignments for twilight zone
protein sequences (Jia and Jernigan, 2021). The ProtSub matrix
allows more substitutions, as are observed in the correlated pairs.
The results are more compact alignments with fewer gaps/
insertions. Using the correlated pair information, we have
developed a double-point amino acid substitution matrix named
ProtSub400 (PS400), consisting of 400 × 400 elements (See Methods

section for more information). These newly introduced substitution
matrices incorporate a certain degree of structural information.

Previous protein sequence alignment tools have the significant
limitation that they depend, in the substitution matrix, on
similarities among single amino acid types and do not account
for any information from protein structures. To overcome this
limitation, people have begun to utilize protein structures to
generate sequence alignments. Recent advances in deep learning-
based protein structure prediction have increased the number of
available protein structures significantly, with these structure
predictions reaching near-experimental quality. The Protein Data
Bank (Bittrich et al., 2021) includes ~1 million Computed Structure
Models (CSMs) from AlphaFold (Jumper et al., 2021) and
RoseTTAFold (Baek et al., 2021). The European Bioinformatics
Institute has deposited over 214 million predicted structures, while
the ESMAtlas database contains over 617 million metagenomic
structures predicted using ESMFold (Lin et al., 2023). Structure-
based homolog detection tools such as FoldSeek (van Kempen et al.,
2022) are also being used to obtain more accurate protein homolog
matches. As a result, structure alignments are now being used to
improve sequence alignments. However, structure-based alignments
do have some limitations. They do not usually account for the
dynamic nature of structures, which can undergo conformational
changes as they function. In addition, sequence variations can create
conformational differences for proteins within the same family.
Structure alignment algorithms for sequence alignments depend
on the 3D coordinates of the amino acids aligning closely. Large
domain motions are well-known to make structure alignment
difficult to perform globally, resulting in some poor alignments.
Furthermore, protein structure alignments cannot be applied to
disordered proteins since they lack well-defined three-dimensional
structures and typically have a dynamic ensemble of conformations.
Finally, structure alignment algorithms can be computationally
intensive, particularly for large proteins.

In this study, we present a novel approach named PROSTAlign
to accurately align homologous proteins, especially for proteins with
low sequence identities and structural differences. First, we employ
our newly developed homolog search tool, PROST, to identify the
homologous proteins (Kilinc et al., 2023) (not aligning them).
PROST utilizes a protein embedding distance, which is generated
by using a large protein language model, to evaluate accurate
homolog relationships, and it outperforms all other traditional
homolog search tools. Next, we adopt a new dynamic
programming-based algorithm that utilizes a 20 × 20 amino acid
substitution matrix and a 400 × 400 substitution matrix to obtain
more accurate protein sequence alignments. The 20 × 20 matrix, as a
conventional substitution matrix, describes single amino acid
substitutions, while the 400 × 400 matrix describes correlated
paired substitutions, i.e., a pair of amino acids changing to a
different pair. The approach used here was previously introduced
by Kleinjung et al. (2004) to utilize a 400 × 400 substitution matrix
plus a contact matrix to generate accurate sequence alignments. That
contact matrix was extracted from protein structures. However,
instead of inferring protein structure information, we use a
contextual correlation matrix generated from the pre-trained
protein language model, ESM-1b (Rives et al., 2021). The
advantage of using this correlation matrix is that it contains not
only residue proximity information but also additional contextual
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dependencies between amino acid positions such as long-range
allosteric effects. The ESM-1b architecture contains 34 layers,
each containing a self-attention module. The self-attention
module is responsible for computing context vectors that capture
dependencies between different parts of the input sequence. These
context vectors are then transformed into a final position-wise
correlation map. This map, similar to coevolution correlations,
reflects not only residue proximity information but also other
contextual dependencies. Our results show that this new
approach achieves better congruence between sequence
alignments and structure alignments for twilight-zone pairs of
protein sequences. Additionally, it can generate correct sequence
alignments for homologous proteins having different conformations
since it uses only sequences. Moreover, this approach has the ability
to align disordered proteins correctly based on their functional
domains.

Results and discussion

Congruence between sequence alignment
and structure alignment

Proteins with the same functions generally have similar folds,
which implies that structural alignment data can be used to evaluate
the quality of protein sequence alignments, especially for alignments
of twilight zone protein sequence pairs. Our previous work
introduced a novel 20 × 20 substitution matrix (ProtSub) that
incorporated coevolution information and produced sequence

alignments that agree better with structure alignments for
twilight zone protein sequence pairs. In this study, we improve
our alignments.

Further by incorporating the protein language model
correlation map and using the pair-to-pair 400 ×
400 substitution matrix for those pairs. We select a set of
2,002 non-redundant protein pairs from the CATH
S20 database (Sillitoe et al., 2021) having different fold
characteristics. Each protein pair belongs to the same
homologous family, with a sequence identity of around 20%,
and the two have nearly identical structures. In the
PROSTAlign procedure, we evaluate two types of double-point
amino acid matrices (400 × 400). PS400 represents the log-odds
ratio-based score obtained from strongly coevolved residue
positions (See Methods section for more information). The
second matrix, CAO120, is derived from a Markov model of
protein side-chain contact evolution (Kleinjung et al., 2004). To
make a comparison, we collect a set of classical and newly
developed amino acid substitution matrices to align the test
protein pairs. The alignment process is performed using the
Needleman-Wunsch algorithm, as implemented in the EMBOSS
software (Rice et al., 2000). To obtain a comprehensive evaluation,
we iterate through a wide range of gap penalties, including gap
opening and gap extension. For each pair of proteins, we calculate
the RMSD between aligned sequence segments from their
structures. The value of RMSD is normalized by the number of
aligned residues. As shown in Table 1, PROSTAlign yields lower
RMSD values than the others (highlighted in bold in Table 1),
which demonstrates the gains in the agreements between sequence

TABLE 1 Comparison of normalized root mean squared deviations (RMSD) for 2,002 non-redundant protein pairs from the CATH S20 database (Sillitoe et al., 2021),
based on sequence alignments with different substitution matrices. Bold numbers are the best cases for each column.

Average RMSD (gap opening, gap extension)

Substitution matrix 4, 0 4, 2 8, 0 8, 2 12, 0 12, 2

BLOSUM45 Henikoff and Henikoff, (1992) 0.276 0.220 0.276 0.268 0.299 0.478

BLOSUM62 Henikoff and Henikoff, (1992) 0.286 0.273 0.341 0.828 0.433 2.612

Crooks Crooks and Brenner, (2005) 0.310 0.272 0.370 1.561 0.476 4.208

EPAM120 Dayhoff, (1972) 0.300 0.295 0.384 2.637 0.566 5.467

EPAM250 Dayhoff, (1972) 0.248 0.221 0.281 0.311 0.293 0.451

MIQS Yamada and Tomii, (2014) 0.240 0.210 0.266 0.280 0.285 0.394

moll60 Lemaitre et al., (2011) 0.305 0.292 0.383 1.446 0.462 3.879

Optima Kann et al., (2000) 0.268 0.234 0.303 0.353 0.332 0.965

PFASUM100 Keul et al., (2017) 0.288 0.274 0.342 0.992 0.440 3.017

PFASUM50 Keul et al., (2017) 0.267 0.214 0.267 0.267 0.314 0.463

Prlic Prlic et al., (2000) 0.257 0.213 0.251 0.213 0.250 0.235

ProtSub Jia and Jernigan, (2021) 0.236 0.203 0.245 0.215 0.263 0.314

VTML250 Muller et al., (2002) 0.275 0.232 0.281 0.333 0.311 0.511

PROSTAlign (CAO120) 0.162 0.143 0.151 0.142 0.148 0.142

PROSTAlign (PS400) 0.161 0.145 0.152 0.140 0.147 0.140
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and structure alignments. The results show strong similarities from
the use of either the PS400 or the CAO120 matrix.

Aligning remote protein homologs with
different conformations

The use of structure alignment as a metric for assessing sequence
alignment precision can lead to erroneous conclusions, primarily
because of conformational changes. Proteins are not static but
have important dynamics that are a critical aspect of their
functional mechanisms such as catalysis, regulation, and signaling.
Furthermore, conformational changes can also arise from sequence
variations among homologous proteins within the same family,
leading to differences in their conformations. Protein structure
alignments rely on the 3D coordinates of atoms to align protein

structures. Anishchenko et al. Anishchenko et al. (2017) have pointed
out that conformational changes can result in false predictions of
residue contacts.

We demonstrate that our approach is able to correctly align
sequences of two homolog proteins with conformational differences.
In the SwissProt database (Bairoch and Apweiler, 2000), the
structures of the 54S ribosomal protein L24 from baker’s yeast
(UniProt ID: P36525) and fission yeast (UniProt ID: O60091) are
AlphaFold2 predictions.

Although these two structures have nearly identical secondary
structure arrangements in sequential order, the TM-score (Zhang
and Skolnick, 2005) of the two structures is 0.39, which would
indicate the two proteins have different folds. There is one domain
that can be superimposed together, while the second domain cannot.
Their sequence identity is 30.2%.We use FATCAT (Li et al., 2020), a
structure matching tool that takes into account the protein

FIGURE 1
Two homologous protein structures of the 54S ribosomal protein L24 with conformational differences align better with PROSTAlign. (A) we show
that the contact maps for two structures have some significant differences, but their contextual correlation maps are similar. On the right, two protein
structures are colored according to their structural domains. The two parts can be aligned using TM-align are highlighted in green and magenta. Other
domains cannot be aligned structurally due to conformational changes are in blue and red-brown. (B) shows the sequence alignment generated by
PROSTAlign. Our method correctly aligns the two sequences. The sequence alignment generated based on the structure alignment is shown at the
bottom, which fails to align the conformational differences (highlighted in blue and red).
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dynamics, to measure structural similarity and the result indicates
that both structures share significant similarities, with a p-value of
1.89e-05. As shown in Figure 1. A (right), the two structures exhibit
distinct conformations, with the part of the structures (highlighted
in green and magenta) that superimposes well. The sequence
alignment generated by PROSTAlign, as shown in Panel B (top),
correctly aligns the sequences of the superimposed parts well. In
addition, the sequence alignment aligns the second domains better
as well for the helix domains showing in red-brown and blue
separately on each structure. The sequence alignment based on a
structure alignment generated using TM-align is shown in Panel B
(bottom), containing long mismatched segments where there are
structural differences and is also a less compact alignment.

In Panel A (left), the residue contact maps of the two proteins are
clearly different due to the conformational differences. These
differences explain why the structure alignment does not provide
the correct sequence alignment. However, the contextual correlation
maps generated from ESM-1b are somewhat more similar,
providing pairwise information that helps overcome the problem
of conformational changes and generate a better sequence
alignment. Contextual dependence is a key aspect of the protein
language models that captures the global relationships between
different parts of a protein sequence. Therefore, aligning two

proteins by using this map is analogous to aligning two networks
described by position correlations, which we use here to an
improved sequence alignment.

Aligning intrinsically disordered proteins

Intrinsic disorder refers to the lack of any single stable, ordered
structure in a protein or a region of a protein. Proteins that contain a
significant extent of disordered regions are referred to as intrinsically
disordered proteins (IDPs). IDPs do not adopt any single, well-
defined 3D structure but instead usually are represented as
ensembles of rapidly interconverting conformations that are
highly flexible and dynamic. Despite being unstructured, IDPs
play important roles in many cellular processes, including
signaling, transcriptional regulation, and molecular recognition.
In addition, IDPs are also involved in a number of diseases,
including cancer and neurodegenerative disorders. Uversky
(2013) estimated that 30%–40% of eukaryotic proteins contain
significant disordered regions based on various computational
and experimental approaches (Uversky, 2013). The DisProt
database (Quaglia et al., 2022) collects experimentally
characterized disordered proteins and protein regions.

FIGURE 2
Comparisons of the human (P17096) and Chironomus tentans (Q23794) High Mobility Proteins. (A) Visualization of the two protein structures with
A.T hook parts highlighted in green. (B) The sequence alignments at the top is generated by PROSTAlign, showing the three hook parts between the
human andChironomus tentans are aligned well. The sequence alignment at the bottom is generated by TM-align with only one A.T hook region partially
aligned but other two are not aligned.
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The distribution of conformations of an IDP can be different in
different contexts or under different conditions, which makes it
difficult to establish a consistent alignment across multiple
structures. In well-folded proteins, the residue contact map, as
predicted from the sequence correlations, can provide useful
information about the protein’s 3D single dominant structure
and function. However, since IDPs exist as an ensemble of
alternative conformations that are highly flexible and dynamic,
the contact map of a disordered protein can vary widely
depending on the specific conformation(s) that are present in the
ensemble for a specific condition. Therefore, using the correlation
map from the protein language model is more reliable for IDPs.

Aligning the sequences of intrinsically disordered proteins is
challenging due to their lack of a well-defined 3D structures, since
structure usually imposes strong constraints on sequence. While
computational methods such as generating specialized
substitution matrices for IDPs have shown promise in
predicting and aligning disordered protein functional domains,
the accuracy of these methods is still limited by the complexity
and dynamic nature of disordered proteins (Trivedi and
Nagarajaram, 2019). Also, the availability of predicted
structures cannot help align IDP sequences because structure
alignment algorithms are designed to align protein sequences
based on their 3D structure similarities. IDPs lack a stable, well-
defined structure, so it is not possible to use structure alignments
to generate a reliable sequence alignment. Despite these problems
there can be advantages from achieving the proper alignment of
disordered protein sequences as we show in the following
example that demonstrates that our new alignment procedure
can provide useful sequence alignments even for disordered
proteins.

Here, with the help of the predicted contextual correlation
map and the ps400 substitution matrix, PROSTAlign aligns
intrinsically disordered proteins accurately according to their
known functional domains. The high mobility group (HMG)
proteins are a family of non-histone chromatin-associated
proteins that play crucial roles in DNA organization and gene
regulation. HMG proteins exhibit disordered regions or domains
within their overall structure, which contribute to their ability to
interact with a variety of different proteins and nucleic acids.
These proteins are highly conserved across species and are found
in both eukaryotic and prokaryotic organisms (Reeves and
Nissen, 1990). Figure 2 demonstrates PROSTAlign’s capability
to align sequences of disordered proteins based on their
functional motifs. In this example, we have aligned the
sequences of HMG-I from Chironomus tentans (UniProt ID:
Q23794) and HMG-I/HMG-Y from humans (UniProt ID:
P17096), both of which have three DNA binding motifs
referred to as A.T hooks. These motifs are named for their
ability to specifically bind to AT-rich regions of DNA. The
two predicted protein structures we collected from the
UniProt database are found to be highly disordered, making
structural alignment inaccurate (Figure 2.A). Due to the
disordered characteristics, contact maps of disordered proteins
contain mostly trivial contacts formed from residues next to each
other along the sequence. Sequential contacts do not provide
much that is useful in terms of defining the structures. The
contextual correlation matrix generated by ESM-1b captures

dependent information between residues with long sequence
separations, and PROSTAlign utilizes this matrix to generate
precise sequence alignments. As shown in Figure 2. B, the
sequence alignment generated by PROSTAlign correctly
matches the three known A.T hook regions together, whereas
the structure alignment approach can only partially matches one
of the three regions.

Conclusion and discussion

With the explosive growth in reliably predicted protein
structures, sequence alignments can be improved by
referencing structure alignments. However, in our study, we
highlight the limitations of structure-based alignments and
propose a language model correlation-based alignment
procedure. By integrating the contextual correlation map
from the protein language model, single-point and double-
point substitution matrices are used in the alignment
procedure, we can achieve significantly better agreements
between sequence alignments and structure alignments. Our
proposed procedure overcomes the difficulties caused by
conformational changes by methods that rely upon the
structural contact map, by instead using the correlations
derived from the large protein language model ESM-1b.
Moreover, for proteins not having any structural information,
such as intrinsically disordered proteins, our procedure can
generate alignments that more accurately match known
functional domains as shown in the example in Figure 2. This
is a powerful tool for accurately aligning protein sequences,
particularly for those with conformational variations and those
lacking structural information. Conservation is an important
consideration for sequences and this study suggests the
importance of considering correlated pairs in sequence
substitutions as a type of conservation. Strongly correlated
positions in a protein sequence often exhibit compensatory
mutations, where a mutation at one position is accompanied
by a specific mutation at another position, maintaining the
protein’s overall properties and functional stability without
causing significant changes. Therefore strongly correlated
positions can be considered to be an additional type of
conservation that is particularly important for structures.

The major strength of our new method, as well as its limitation,
is that it generates global alignments. Global alignments are
suitable for comparing sequences of complete proteins but
cannot provide local alignments that capture the similarities
between subdomains of input sequences. The reason is that
ESM1b, the model upon which our method is based, was
trained using a large set of complete protein sequences rather
than functional or structural subdomains. Therefore, the
contextual information captured by our model pertains to the
complete protein sequence. The contextual information may not
be accurate when using partial sequences, such as specific
functional or structural domains and may lead to unreliable
alignments in those cases. To address these limitations, we are
developing a new version of PROST to provide contextual
information for subdomains, which later can be used by
PROSTAlign to generate local alignments.
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Methods

Main workflow

A schematic fur the sequence alignment method is depicted in
Figure 3. The input to the PROSTAlign tool is a pair(s) of protein
sequences to be aligned. The first step is to calculate the embedding
distance to determine the input relationship. In the second step, a
contextual correlation matrix is generated based on either one of the
input sequences. If the proteins are closely related, a smaller cutoff is
applied to generate the correlationmatrix and uses a larger weight for the
400 × 400 pair substitutionmatrix. However, if the proteins are not close
homologs, the 400 × 400 matrix will have a smaller weight, and the 20 ×
20 substitution matrix will be the primary matrix used to generate the
alignments. This is because if two proteins are homologs, they share a
similar correlation matrix, which is protein-family specific. This
correlation matrix can be used as a generalization of the contact map
(Jia et al., 2023) to enhance the alignment. In cases where the proteins are
more distantly related, we put more weight on the conventional 20 ×
20 substitution matrix (ProtSub), which is derived from a large set of
protein families. The final sequence alignment is then generated by the
algorithm introduced by Kleinjung et al. (2004). Instead of using a
contact map, PROSTAlign uses a correlation map as an input to the
algorithm. In the aligning process, each substitution score is a result of
combining scores from single-point mutations and double-point
mutations. The single-point mutation score is evaluated using a 20 ×
20 amino acid substitution matrix (S20×20), while the double-point
mutation score is evaluated using a 400 × 400 pairwise amino acid
substitution matrix (S400×400). Four parameters significantly influence
the final score: a weight for single-point mutations (w1), set to 1.0 by
default, the relative weight for the double-point mutations (w2), ranging
from 0.0 to 0.9 and is set to 0.1 by default, the gap-opening penalty (p),
and the gap extension penalty (q). Thus, at each step, a pair of mutation
scores are calculated as following:

S(i, k) � w1S20×20(i, k) + w2S400×400(i, j, k, l)
S(j, l) � w1S20×20(j, l) + w2S400×400(i, j, k, l)

Here the i, j, k, l are amino acid types.

PROST tool and contextual correlation
matrix

PROST is a fast homolog search tool based on a pretrained
optimized deep learning model described in Reference (Kilinc et al.,
2023). It compares protein sequence embeddings by taking vector
differences to evaluate the relationship between a pair of proteins.
For a protein with N residues, the ESM1b embedding results in a
matrix with dimensions of 34 × N × 1,280, where 1,280 represents the
embedding length of a residue and 34 is the number of output layers
from the language model. Our optimization study found that the
combination of layers 26 and 14 yielded the highest accuracies for
homolog detection. To achieve the smallest memory footprint while
retaining the accuracy of homolog detection, we applied a 2-dimensional
inverse discrete cosine transform (2D-iDCT) to reduce the embedding
matrix of layer 26 to 5 × 44 and layer 14 to 3 × 85. To evaluate the
embedding distance, we take the sum of absolute differences between
each element in the two sets of representation matrices. As a result,

PROST is faster and more accurate than traditional sequence matching
tools in identifying putative remote homologs for proteins with relatively
low sequence identities. The main advantage of PROST is its high
efficiency in identifying remote homologs, while not using any sequence
or structure alignments. Its compact representation of protein sequences
makes the searching procedure computationally efficient. First, PROST
can be used to determine their similarities by evaluating their embedding
distance. Then our procedure generates a pairwise contextual correlation
matrix using ESM-1b (Rives et al., 2021) for the first input sequence. The
correlation matrix describes the contextual dependence information
between each pair of amino acid positions for the input sequence and is
later used in the sequence alignment procedure.

The CAO contact matrix

The CAO matrix was introduced previously by Kleinjung et al.
(2004). It is a 400 × 400 amino acid scoring matrix used in protein
sequence alignments and is based on aMarkovmodel of protein side-
chain contact evolution. It provides scores for evolutionary transitions
(mutations) between possible combinations of residue contacts in a
matrix with 400 × 400 elements, with each cell containing a score for
the transition from a contact pair of amino acids to another sequence
pair for that contact. CAO scores are intermediate between sequence-
based PAM scores and structure-based Root Mean Square Deviation
(RMSD) values, and can be used to score alignments of template and
query sequences by summing up the CAO substitution matrix values
of all contacts.

FIGURE 3
The workflow of PROSTAlign. Two input protein sequences are
used with PROST to develop their homolog relationship and to
generate a contextual correlation map based on one of the
sequences. Subsequently, the alignment algorithm employs the
correlation map, a 400 × 400 pairwise substitution matrix, and a 20 ×
20 conventional substitution matrix to produce a global alignment for
the two input sequences.
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The contact-based alignment algorithm

Kleinjung et al. Seemayer et al. (2014) developed an alignment
algorithm that incorporates the CAO contact scores (a 400 ×
400 matrix) into a dynamic programming (DP) procedure. The
algorithm uses a sliding window approach to probe for potential
positions of a contact in the query sequence by testing all possible
contacts, assuming that the query residues are in contact. CAO
scores are used to assign positive or negative scores to each
hypothetical contact, or correlation. The optimal alignment is
found by forward score addition and back-tracing. The algorithm
has routines for local and global alignments and is complemented
with PAM-type substitution matrix scores to compensate for
potentially missing contact information in the template.

ProtSub matrix

The ProtSub matrix (Jia and Jernigan, 2021) is an amino acid
substitution matrix that effectively incorporates interdependent
amino acid substitutions and includes structural information. The
construction of this matrix involves three main steps: First, we
calculated the evolutionary correlation between position pairs in a
multiple sequence alignment (MSA) for a given protein family. In
(Jia and Jernigan, 2021), mutual information is used for evaluating
the correlation information. Second, pairs are filtered to only include
those with significant correlations and that are spatially proximate in
the corresponding protein structure. Finally, a 20 by 20 amino acid
substitution matrix is derived as log-odds ratios based on the
interdependent amino acid substitutions from the selected pairs.
The resulting matrix permits more substitutions than BLOSUM62.

ProtSub400 matrix (PS400)

The double-point substitutionmatrix is calculated by using highly
correlated substitutions extracted from 5,050 Pfam (Mistry et al.,
2021) multiple sequence alignments. There are 400 × 400 elements in
the matrix. The coevolution correlation is measured using Direct
Coupling Analysis (DCA) (Marks et al., 2012). In contrast to the
marginal probability based correlation method, mutual information,
DCA detects the direct coevolution signals from multiple sequence
alignments. The transitive effects are removed in its global statistical
model, leading to a better prediction of direct residue contacts. For
each protein family, the 15% top-ranked position pairs from the
multiple sequence alignment are selected for the pairwise substitution
frequencies. The elements of the matrix are calculated as log-odds
ratios, where the foreground probability (alternative hypothesis) is
evaluated using the frequency of substitutions of highly correlated
amino acid pairs and the background probability (null hypothesis) is

evaluated by counting the joint frequency of two pairs of amino acids
within the dataset.
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