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In recent years, improvements in protein function prediction methods have led to
increased success in annotating protein sequences. However, the functions of
over 30% of protein-coding genes remain unknown for many sequenced
genomes. Protein functions vary widely, from catalyzing chemical reactions to
binding DNA or RNA or forming structures in the cell, and some types of functions
are challenging to predict due to the physical features associated with those
functions. Other complications in understanding protein functions arise due to the
fact that many proteins have more than one function or very small differences in
sequence or structure that correspond to different functions. We will discuss
some of the recent developments in predicting protein functions and some of the
remaining challenges.
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1 Introduction

During the past quarter century, advances in biochemistry, structural biology,
proteomics, cell biology, genomics, and bioinformatics have yielded an explosion of
information about protein functions. In addition to advancing our understanding of
individual proteins, these advances have helped increase our understanding of
macromolecular complexes, biochemical pathways, and the regulation of biological
processes. This knowledge can be used to identify proteins and functions to target in
developing novel therapeutics, for developing synthetic biological circuits or protein-based
drug delivery systems, or for use in manufacturing and bioremediation. Our ability to predict
protein functions has not kept up with the millions of protein sequences available from
translating protein-coding genes from genome sequencing projects, as can be seen by the
many protein entries listed as “predicted” or “probably” in the UniProt Knowledgebase
(UniProt Consortium, 2021). This perspective article describes some of the recent successes
in the field, the remaining challenges, and suggestions for directions needed for the future.

2 Successes

The critical assessment of functional annotation (CAFA) community challenge
compares the successes of function prediction algorithms and has found significant
improvements over the past 10 years (Radivojac et al., 2013; Jiang et al., 2016; Zhou
et al., 2019). The results from the most recent challenges, CAFA2 and CAFA3, indicated
that the most successful approaches used machine learning and sequence alignment and that
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integrating data from multiple complementary sources can improve
the accuracy of predictions. Amino acid sequences, three-
dimensional structures, protein or RNA expression profiles,
genomic context, and molecular interaction data can all aid in
improving function prediction. The organizers reported that the
GOLabeler method performed significantly better than all other
methods in the challenges. The method integrates the frequency of
Gene Ontology (GO) terms, sequence alignments, patterns of amino
acids, the presence of domains and motifs, and additional
biophysical properties in a learning-to-rank (LTR) application of
machine learning (You et al., 2018). A recent review by Bonetta and
Valentino et al. (2023) describes more generally the machine
learning approaches and techniques used for protein function
prediction in the literature, including feature selections,
algorithms and models, and implementation and evaluation.

Advances in bioinformatics and other computer-based
algorithms have also helped make possible the discovery of vast
amounts of information about protein functions from biochemical,
biophysical, cell biology, and other experimental approaches.
Advances in computational methods have improved the ability to
determine cellular localization when using microscopy, identify gene
neighbors in genome sequences (which indicates proteins might be
involved in the same pathway or structure), identify changing levels
of protein expression under different cellular conditions (for
example, heat shock), or co-expression with other proteins
(suggesting interaction in a biochemical pathway or multiprotein
complex). Advances in bioinformatics have also aided in
interpreting the results of proteomics studies, for example, in
identifying protein fragments from mass spectrometry that help
identify binding partners (proteins, small molecules, and sequences
of DNA or RNA) and the presence of proteins in multiprotein
complexes (for example, proteasomes and ribosomes), although a
protein’s function in those locations and complexes, whether
regulatory, scaffold/structural, or catalytic, is often unknown.

Advances in computational methods have also been important in
determining or predicting protein structures, which can provide some
information about a protein’s function. Advances in cryo-electron
microscopy (Cryo-EM), X-ray crystallography, and NMR have
yielded more protein structures and, importantly, structures of
complexes with other proteins, DNA, RNA, and small-molecule
ligands that provide key information about function. Recent
successes in structure prediction using AI and homology modeling
have yielded more models of protein structures that can also provide
information about the overall fold; however, they do not always provide
detailed information about active and interaction sites (Jumper et al.,
2021). Comparisons ofmultiple protein structures can also help identify
a structural class or a structural motif that can give a general idea of the
function a protein might have.

Information about protein functions and other characteristics
identified through diverse studies can be spread across many journal
articles and other resources. Online databases are valuable tools that
bring together this information. The UniProt Knowledgebase integrates
and organizes information about protein sequences, structures, and
functions for millions of proteins (UniProt Consortium, 2021) The
Protein Data Bank contains over 100,000 experimentally determined
protein structures (Berman et al., 2000). Some databases bring together
information about specific types of proteins. For example, the Enzyme
Portal is a database and tool for information and analysis of enzymes

(Zaru et al., 2022). The MoonProt database is a collection of
information about proteins that have been experimentally
demonstrated to have more than one function (Chen et al., 2018).
DisProt is a collection of information about proteins with regions of
intrinsic disorder (Piovesan et al., 2017; Hatos et al., 2020). Collections
of sequences and structures of many proteins with similar functions can
provide training sets for developing predictive algorithms.

Advances in computational methods and projects for analyzing
large quantities of protein structures, along with information about
their functions, have been important for identifying features
associated with specific functions. For example, the sub-
classification of protein superfamilies into functional families
(FunFams) and functional domains (Scheibenreif et al., 2019; Das
et al., 2021) or the identification of constellations of amino acids in
an enzyme’s active site related to catalytic function (Furnham et al.,
2014; Riziotis and Thornton, 2022) can be used as the basis for
developing novel or improved algorithms for predicting the
functions of other proteins and in the development of novel
insights regarding the functions of the classified proteins.

3 Current challenges

Many challenges remain in predicting protein functions,
including the lack of characteristics or features correlated with
some types of functions upon which to build an algorithm; the
presence of many homologous proteins with small differences in
sequence or structure that result in the proteins having different
functions; the ability of proteins to have multiple functions; and a
large number of proteins and types of proteins for which assays,
representative structures, or other information about their functions
are not known.

For many biochemical or biophysical functions, a sequence,
structural motif, or other characteristic has not been identified that
correlates with that specific function. For some types of functions, it is
because the physical requirements of the function are only weakly
conserved. For example, protein–protein interaction sites can consist
of a relatively smooth region on the surface that is not well conserved, so
predictions of the locations of pockets on the protein surface or
comparisons of amino acid motifs or constellations are not as
successful as predicting the locations of catalytic sites. Hundreds of
proteins have been found to bind to RNA but do not contain any of the
canonical RNA-binding domains, and formost of these proteins, it is not
known which parts of the proteins interact with RNA. In addition,
relatively small parts of a protein can be involved in a function.
Plasminogen-binding site requirements for several proteins have been
found to mainly involve a lysine at the protein terminus. Intrinsically
disordered proteins or domains (IDPs) do not have a folded three-
dimensional structure and also frequently use small sequences and/or
short helices to interact with other proteins. In addition, when a sequence
or structural motif is found that correlates with a function of the protein,
it might only be one aspect of the function. For example, binding to
DNA might be the main function of some proteins, whereas for other
proteins, DNA binding is just one aspect of a larger function, such as
binding to and then catalyzing the cleavage of the DNA. Similarly, the
binding of a small molecule or ion such as Ca++ could be a mechanism
for regulating the protein’s function, for example, in tropomyosin in
muscle contraction. Some of the best predictors of protein characteristics
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are programs that predict the presence of transmembrane alpha helices,
for example, TMHMM (Sonnhammer et al., 1998). These programs can
predict approximately 25% of proteins that are transmembrane proteins
with significant accuracy, but additional information is needed to
determine the specific function, i.e., whether the protein acts as a
channel, transporter, or receptor or functions as a structural
attachment for the extracellular matrix or the cytoskeleton.

Another challenge in predicting protein function is that predictions
based on sequence or structural homology can be inaccurate because
even proteins with significant amino acid sequence identity can have
different functions. Proteins with small changes in the amino acid
sequence in or near the active site might not share the catalytic activity
of other members of an enzyme family but instead might have a
different function, such as a different catalytic mechanism or a different
substrate. The enolase superfamily contains evolutionarily related
enzymes with similar structures, a (β/α)7β-barrel (TIM-barrel) fold,
and similarities in their active sites and catalytic mechanisms, but the
proteins in different subgroups catalyze different reactions. The
superfamily contains enolases, which convert 2-phosphoglycerate to
phosphoenolpyruvate in glycolysis; muconate lactonizing enzymes,
which break down aromatics derived from lignin into citric acid
cycle intermediates; mandelate racemases that interconvert the (S)-
mandelate and (R)-mandelate enantiomers; 3-methylaspartate
ammonia lyases that break down L-threo-3-methylaspartate to
mesaconate and ammonia; and other enzymes (Hasson et al., 1998;
Schmidt et al., 2001; Gerlt et al., 2005; Gerlt et al., 2012). The
aminotransferase family also contains paralogs that share certain
amino acids in the active site, bind the same pyridoxal phosphate
cofactor through covalent attachment to the sidechain of an active site
lysine, and transfer an amino group from one substrate to another
substrate. While some aminotransferases are specific for aspartate,
others act on branched-chain amino acids or other substrates.

Manymembers of enzyme families have three-dimensional folds
or domains that resemble catalytically active members of the family
but lack catalytic activity altogether. These pseudoenzymes are
found in most enzyme superfamilies, including pseudokinases,
pseudoubiquitin ligases, and pseudonucleases. Relatively small
changes, such as lacking key catalytic amino acids in the active
site, result in a protein that does not have catalytic activity but is
instead involved in another function, for example, regulating a
catalytically active subunit or acting as a scaffold for bringing
together a multiprotein complex. Some pseudoenzymes still bind
to a canonical ligand or cofactor, but instead of catalysis, they have a
role in signaling pathways, transcription, or translation [reviewed in
the work of Eyers and Murphy (2016), Todd et al. (2002), Walden
et al. (2018), Pils and Schultz (2004), Jeffery (2019), Adrain and
Freeman (2012), Zettl et al. (2011), and Murphy et al. (2017a),
Murphy et al. (2017b)].

Predictions of function are also complicated by moonlighting
proteins, proteins that have two or more biochemical or biophysical
functions (Jeffery, 1999; Jeffery, 2017). For example, a protein might
have a catalytic function inside the cell while simultaneously
performing another function on the cell surface, where it acts as
an adhesin that binds other cells. The taxon-specific crystallins are
enzymes that have a second function as structural proteins in the
lens of the eye (Piatigorsky and Wistow, 1989). For example, lactate
dehydrogenase is the epsilon crystallin in birds and crocodiles
(Wistow et al., 1987; Hendriks et al., 1988). Some enzymes have

a catalytic function and also a second function in which they bind to
transcription factors or directly to DNA or RNA to regulate
transcription or translation (Commichau and Stulke, 2015).
Function prediction methods do not always find both functions.
Some of the challenges include finding a true negative test set for
developing predictive algorithms because even homologous proteins
that lack one of the two functions of a moonlighting protein might
have a different second function. There might also be many other
functions that have not yet been identified. Even if multiple
functions are found, there can still be additional functions that
have not been found. Glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) is an enzyme in glycolysis that has also been found to be a
DNA-binding protein and an RNA-binding protein and participates
in multiple multiprotein complexes. GAPDH, like many other
moonlighting proteins, appears to be a typical protein without
unusual features that might suggest it has multiple functions, so
many other proteins might also have multiple functions.
Metamorphic proteins and morpheins, which have multiple
three-dimensional structures (Jaffe, 2005; Porter and Looger,
2018; Dishman and Volkman, 2022), in some cases
corresponding to different functions, are also difficult to predict.
Other proteins might also have alternative structures with other
functions, but often, a single protein fold has been determined
experimentally or predicted computationally, so other structures
and functions might be present but as yet unidentified.

More generally, there are still protein functions that have not
been identified or characterized. Proteins might be found in a
location in the cell or associated with a cellular structure, but
their presence there is not understood. A gene knockout of a
protein might affect multiple biochemical pathways or cellular
processes, but the actual biochemical or biophysical function of
the protein is still unknown. Biochemical assays of activity, such as
for catalytic activity, might not be available and could be challenging
to develop, for example, for functions that involve regulating the
function of another protein, forming part of the structure of a larger
complex, or a scaffold protein whose main function is bringing other
proteins together. Functions found only in few species, in a small
number of cell types, or expressed under specific conditions are
likely to be poorly characterized or not identified. In addition, some
types of proteins have not been as thoroughly characterized as
others, in part because it is not clear if they have functions. For
example, there is a growing awareness that many microproteins,
proteins with fewer than 100 amino acids, can have regulatory,
structural, or other functions (reviewed by Brunet et al., 2020).

Because structural features can be important for helping identify
functions, the ability to predict function can be limited by the
absence of structures for many proteins. Proteins might not be
amenable to structural methods, especially if they might not
crystallize, are too big for NMR, or are too small for Cryo-EM. It
might be challenging to produce enough of a specific protein for
structural studies, or the structure might be unstable when the
protein is isolated from the cellular context. In general, “wet lab”
methods for solving protein structures are far slower than the
identification of protein sequences, so there are far more protein
sequences than structures. Recent significant advances in AI have
made possible predictions of structures for many proteins for which
experimental structures are not available, but the overall protein fold
is only one piece of the puzzle. Structures with bound ligands can be
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important for identifying the catalytic amino acid residues. The
prediction of the structure of a single protein might not reveal its
function within a multiprotein complex. Because many functions
involve multiple conformations, structures with a single
conformation might not reveal potential interaction surfaces.

4 Future directions

The combination of improvements in computational methods with
the increasing amount of information from experimental methods has
the potential to continue to improve protein function prediction.
Computational methods can provide information about sequence and
structural homology, motifs, constellations of key amino acid residues,
locations in a genome, and fast comparisons to information in databases
about well-characterized proteins. Experimental methods can add vital
information about protein binding to substrates and cofactors;
protein–protein interactions; catalytic activity; formation of
multiprotein complexes; timing of expression and co-expression with
other proteins; and binding to DNA, RNA, and other macromolecules.
For many types of functions, high-throughput proteomics studies can be
valuable for providing information about hundreds or even thousands of
proteins at a time, including many proteins for which there was no prior
prediction of a specific function. In addition, in the future, whether high
throughput or not, novel assays will be needed to identify understudied
types of functions.

For determining protein function from structures, there is a strong
need for accurate, high-resolution structure information obtained
through experimental methods—X-ray crystallography, Cryo-EM,
and/or NMR. Recent AI methods can be used to create a testable
model by predicting an overall protein’s three-dimensional fold, but a
prediction of the fold alone is not often sufficient to accurately
determine the function of the protein. As previously described,
many proteins with a wide variety of functions can share a three-
dimensional fold. Detailed information about the arrangement of
amino acids in an enzyme’s active site is needed to predict ligand
binding, specificity, and catalytic mechanism. In many cases, to
correctly predict the catalytic function of an enzyme, the protein
alone is insufficient, and structures with bound substrates and
cofactors are needed. The functions of many enzymes and other
types of proteins also involve multiple protein conformations and, in
some cases, alternative folds of domains or subunits, so multiple
structures are needed to learn about the function. Functions usually
involve complexes with other proteins, DNA, RNA, or other
macromolecules, and the detailed interactions between these
molecules are key to the function, so the structures of these
macromolecular complexes would yield information about how they
interact with these other molecules. At the same time, the increased
number of predicted structures can be valuable for developing testable
hypotheses that can be addressed through further experiments.

Collaborations involving experts in bioinformatics with
biochemical and biophysical experimentalists could enable projects
to test predictions with experiments in an iterative way to add to
our knowledge of confirmed protein functions and also improve
predictive methods. The Enzyme Function Initiative (Gerlt et al.,
2011) was a collaborative project for functional assignment for
members of the enolase protein superfamily with an integrated
sequence–structure–function-based approach. A multidisciplinary set

of teams organized in superfamily/genome, protein, structure,
microbiology, and computation and data/dissemination cores
worked together to select targets, predict and test in vitro substrate
specificities and catalytic activity, determine X-ray crystal structures,
study the in vivo context of the enzyme function, and annotate the
results. The most recent CAFA project also included both
computational predictions and mutational screening in Candida
albicans and Pseudomonas aureginosa to obtain information about
proteins with roles in biofilm formation andmotility (Zhou et al., 2019).

In general, biochemists, biophysicists, and structural biologists
could work together with computational biologists to develop
projects that yield improvements in predictive methods by
considering questions such as the following.

What are some of the predictions of functions that can be tested
through biochemical experiments (binding studies, site-directed
mutagenesis, catalytic activity assays, etc.)? The experimentalists
can help in identifying experiments to test the predictions and
specific proteins that would be amenable to the needed
experimental methods. What types of functions have been found
experimentally that the current prediction methods tend to miss?
What additional structural or functional data would help in
providing the needed training set(s) for improving predictive
algorithms? Which data should not be included in training sets
for a specific algorithm? For example, are some of the structures not
solved at a high enough resolution?

In summary, in recent years, protein function prediction
methods have seen significant advances with increasingly
accurate protein function predictions. Challenges remain in
identifying some types of functions, especially functions that do
not correspond to known sequences or structural motifs, functions
that vary even in very similar protein structures, functions of very
small or intrinsically disordered proteins, functions that have not yet
been identified or characterized, and proteins with combinations of
multiple functions. In the future, the rapidly increasing amount of
diverse kinds of experimental data, in combination with advances in
computational methods that make use of these data, is likely to
continue to improve the accuracy of function prediction and its
applicability to more kinds of protein functions.
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