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Motivation: The prediction of a protein 3D structure is essential for understanding
protein function, drug discovery, and disease mechanisms; with the advent of
methods like AlphaFold that are capable of producing very high-quality decoys,
ensuring the quality of those decoys can provide further confidence in the
accuracy of their predictions.

Results: In this work, we describe Qϵ, a graph convolutional network (GCN) that
utilizes a minimal set of atom and residue features as inputs to predict the global
distance test total score (GDTTS) and local distance difference test (lDDT) score of
a decoy. To improve the model’s performance, we introduce a novel loss function
based on the ϵ-insensitive loss function used for SVM regression. This loss function
is specifically designed for evaluating the characteristics of the quality assessment
problem and provides predictions with improved accuracy over standard loss
functions used for this task. Despite using only aminimal set of features, it matches
the performance of recent state-of-the-art methods like DeepUMQA.

Availability: The code for Qϵ is available at https://github.com/soumyadip1997/
qepsilon.
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1 Introduction

Predicting a protein’s 3D structure from its amino acid sequence has been an area of avid
interest for many years (Al-Lazikani et al., 2001). Recently, significant progress has been
made in this field with the introduction of AlphaFold, a deep learning system that achieved
remarkable accuracy in predicting protein structures (Jumper et al., 2021). While
experimental identification of native protein structures remains a time-consuming and
costly process, computational methods have made it possible to generate thousands of
tertiary structures, known as decoys, in a matter of hours (Shehu, 2015). However,
identifying the best structure remains a challenge. Therefore, it is necessary to employ a
quality assessment stage to identify high-quality, near-native decoys among the generated
decoys (Akhter et al., 2020). This remains true even with AlphaFold’s recent breakthrough
performance (Chen et al., 2023). Furthermore, with the subsequent availability of genome-
wide predicted structures across many species (Varadi et al., 2022), the quality assessment
problem is as relevant as ever.

In this work, we address the decoy quality assessment problem with the help of graph
convolutional networks (GCNs); we introduce a novel loss function inspired by the support
vector regression, ϵ-insensitive loss function, that is designed to take into account our
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intuition about what makes a good quality assessment predictor,
namely, that it focuses on making correct predictions for those
decoys that matter: decoys with high quality. We compare our
method, called Qϵ, to other state-of-the-art methods and
demonstrate that our method outperforms most of those
methods while using only a very basic set of features computed
from a decoy’s sequence, without the need for engineered features.

2 Related work

Current techniques for quality assessment can be divided into
two categories. One is single-model methods that operate on single
structural models to estimate their quality (Wallner and Elofsson,
2003). The second category consists of methods that use consistency
among several candidates to estimate quality (Lundström et al.,
2001). Protein quality assessment methods have been evaluated in
the Critical Assessment of Structure Prediction (CASP) competition
(Moult et al., 1995) since CASP7. The CASP13 single-model
methods, the focus of this work, performed comparably or better
than consensus methods for the first time (Cheng et al., 2019). A
variety of single-model approaches have been proposed, and
currently, machine learning-based methods dominate this area.

Until a few years ago, methods that use standard machine
learning techniques with a large collection of engineered features
computed from sequence and structure were the prevalent
approaches for quality assessment. The ProQ series of methods
(ProQ, ProQ2, ProQ3, and ProQ3D) (Uziela et al., 2017) used
features such as the distribution of atom–atom contacts,
residue–residue contacts, solvent accessibility, secondary
structure, surface area, and evolutionary information. ProQ3
(Uziela et al., 2016) also incorporated features based on Rosetta
energies. ProQ3D (Uziela et al., 2017) used the descriptors of
ProQ3 as inputs in conjunction with a multi-layer perceptron
and was one of the top performers of CASP13.

The current state-of-the-art method for quality assessment uses
deep learning, including various types of 3D convolutional networks
and graph neural networks, which have been demonstrated to be
effective tools for modeling protein 3D structures (Derevyanko et al.,
2018; Fout et al., 2017). Deep convolutional networks as a tool for
the representation of decoy structures were introduced by
Derevyanko et al. (2018). Their method, 3DCNN, used 3D
convolutional networks applied to a volumetric representation of
a decoy structure. The Ornate method by Pagès et al. (2019)
improved upon 3DCNN by defining a canonical orientation for
each residue. The GraphQA method by Baldassarre et al. (2020)
employed a graph convolutional network with an extensive number
of engineered features and achieved state-of-the-art performance on
CASP13 decoys. Chen et al. (2023) used a graph neural network to
estimate the accuracy of AlphaFold models, which is one of the
current state-of-the-art methods, and improved on the results
obtained with DeepAccNet by Hiranuma et al. (2021) while
borrowing many ideas from its architecture. They used a
combination of categorical loss and L2-loss on the lDDT scores
to distinguish between decoys of varying quality levels. The
DeepUMQA method uses 3D convolution over a collection of
residue-level engineered features (Guo et al., 2022), and its

successor, DeepUMQA2 (Liu et al., 2023), is also a state-of-the-
art performer.

Most existing methods for quality assessment rely on engineered
features. In contrast, our approach uses sequence embeddings
computed using protein language models; convolutional layers
applied to both atomic- and residue-level graphs are then used to
put them in the context of the decoy structure. In combination with
a novel loss function specifically designed for the quality assessment
problem, our method can outperform the recent DeepUMQA
method (Guo et al., 2022).

3 Methods

3.1 The quality assessment problem

Computational methods for predicting a protein’s 3D structure
produce large numbers of decoy conformations for a given target
protein. In quality assessment, we seek to rank these decoys based on
their similarity to the experimentally determined native structure.
We address this as a regression problem: our method is designed to
predict the global distance test total score (GDTTS) (Zemla, 2003)
and the local distance difference test (lDDT) score (Mariani et al.,
2013), which are the official CASP scores for global-level decoy
quality. While several recent methods were designed to predict the
lDDT score (Hiranuma et al., 2021; Chen et al., 2023), we used both
scores to allow for direct comparison with GraphQA, which is the
most similar approach to the method presented here and would
allow us to compare withmore recent QAmethods like DeepUMQA
and DeepUMQA2. GDTTS measures the percentage of residues in
the superimposed predicted structure that are within a certain
distance threshold of their corresponding residues in the true
structure. lDDT score is a superposition-free score that
represents the local distance difference among all atoms in a
predicted structure, thereby providing an idea of the local quality
of the predicted structure. Decoy structures with high GDTTS and
lDDT score (> 0.85) indicate that they closely resemble the native
structure. In what follows, we describe Qϵ, a graph convolutional
network that is trained on labeled decoy 3D structures, utilizing a
basic set of features generated from atoms and residues using a
combination of the L1-loss and a modification of the SVM
regression ϵ-insensitive loss function (Drucker et al., 1996).

3.2 Atom- and residue-level graph
convolution

Graph convolution is a powerful approach for representing
protein 3D structures (Fout et al., 2017) and has proven its value
for the quality assessment problem (Baldassarre et al., 2020). In
order to enable us to forgo engineered features, we have chosen to
represent the 3D structure of a decoy using dual graphs at the atom
and residue levels (see Figure 1). Each of the graphs is a nearest
neighbor graph where a pair of nodes is connected by an edge if their
distance in the structure is less than a given threshold, where 6Å was
the selected value in our experiments, and the distance between
residues is the minimum distance between their atoms. We used up
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FIGURE 1
Graph representation of a decoy structure. The structure of a decoy is represented using two graphs: one at the atomic level (left) and one at the
residue level (right). Our graph convolution operation at the atom level differentiates between edges within a residue and edges across neighboring
residues.

FIGURE 2
Qϵ model architecture illustrating how an input decoy structure is propagated through multiple graph convolutional layers (GCNatom for the atom-
level representation andGCNresidue for the residue-level representation of a protein); the outputs of the two sets of convolutional layers are concatenated
and fed through a multi-layer perceptron (MLP) to generate local scores that are then averaged to compute the predicted GDTTS or lDDT score.
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to 20 nearest neighbors to define the edges in both the atom-level
and the residue-level graphs.

We perform graph convolution separately at the atom and residue
levels. First, we describe the atom-level graph convolution (GCNatom).
Each atom i is assigned a feature vector v(l)i that contains the features for
layer l of graph convolution. The representation of a source atom v(l)i is
updated based on its neighbors within the same residue (N (s)(i)) and
the neighbors across residues (N (o)(i)) according to

v l+1( )
i � ReLU(W c( )

l v l( )
i + 1

|N s( ) i( )|W
s( )

l ∑
j∈N s( ) i( )

v l( )
j

+ 1

|N o( ) i( )|W
o( )
l ∑

j∈N o( ) i( )
v l( )
j + b l( )

v ),
(1)

where W(c)
l is the weight matrix with respect to the source atom in

layer l, W(s)
l is the weight matrix with respect to the neighboring

atoms in layer l within the same residue as that of the source atom,
W(o)

l is the weight matrix with respect to the neighboring atoms in
layer l that belong to a different residue than the source atom, and
finally, b(l)v is the bias in layer l for the atom-level GCN. The inputs to
the atom-level convolution are derived from one-hot encoding of
the atom type as described in the following sections.

FIGURE 3
Themodified ϵ-insensitive loss uses a variable-sized band around
the diagonal in which a predicted score is not penalized. The band
becomes smaller as the GDTTS or lDDT score increases, reflecting our
expectation for precise predictions for decoys that are closer to
the native structure.

TABLE 1 Hyperparameter space. Model selection was performed based on performance on the validation set.

Hyperparameter Values Best

Number of graph convolution layers 2, 3, 4, 5, 6 4

Neighbor distance threshold 4, 5, 6, 7, 8, 9 6

Maximum number of same residue atom neighbors 10, 15, 20, 25 20

Maximum number of different residue atom neighbors 10, 15, 20, 25 20

Maximum number of neighbors of a residue 10, 15, 20, 25 20

Dropout rate for the graph convolution layers 0, 0.1, 0.2, 0.3 0.1

Learning rate 0.0001, 0.001, 0.01, 0.1 0.001

The “Best” column provides the chosen value for each hyperparameter.

TABLE 2 Number of targets from CASP competitions in the training, validation, and testing data.

Mode CASP Target Decoy

Training data CASP9 117 31,863

CASP10 100 23,755

CASP11 84 15,573

CASP12 30 5,351

Validation data CASP12 10 1,338

Testing data (GDTTS) CASP13 72 34,654

CASP14 65 38,293

Testing data (lDDT score) CASP13 76 10,739

CASP14 70 10,380

AlphaFold2 CASP15 17 85

Two different CASP13 and CASP14 datasets, one for GDTTS evaluation and the other for lDDT score evaluation, are used to match decoys used in other publications.
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In parallel to the atom-level convolution, we perform
convolution over the residues that make up a decoy structure.
This operation, denoted as GCNresidue, is used to update the
residue-level representation r(l)i , which is the feature vector for
residue i in layer l of the network. This operation is defined as
follows:

r l+1( )
i � ReLU W cr( )

l r l( )
i + 1

|R i( )|W
r( )
l ∑

j∈R i( )
r l( )
j + b l( )

r
⎛⎝ ⎞⎠, (2)

where R(i) is the set of the neighboring residues of residue i,
W(cr)

l is the weight matrix with respect to the source residue in
layer l, W(r)

l is the weight matrix with respect to the neighboring
residues in layer l, and b(l)r is the bias in layer l. The inputs to the

residue-level convolution are embeddings computed using
ProtTrans (Elnaggar et al., 2021) as described in the following
sections.

3.3 Network architecture

The architecture for Qϵ includes four graph convolutional
layers that aggregate information at the atomic level (GCNatom)
and four graph convolutional layers that pass information at the
residue level (GCNresidue). To ensure model stability and
generalization, we apply batch normalization (Ioffe and
Szegedy, 2015) after each application of an activation
function to normalize the activations across the nodes in the

TABLE 3 Performance of Q and other methods in CASP13 and CASP14 GDTTS prediction.

Dataset Method R Rtarget ρ RMSE

CASP13 Qϵ 0.90 0.80 0.89 0.10

GraphQA (Baldassarre et al., 2020) 0.86 0.78 0.86 0.13

ModFOLD7_rank (McGuffin et al., 2019) 0.87 0.74 - 0.16

ProQ4 (Hurtado et al., 2018) 0.70 0.66 - 0.18

VoroMQA-A (Olechnovič and Venclovas, 2017) 0.66 0.56 - 0.21

CASP14 Qϵ 0.81 0.72 0.82 0.13

The global Pearson correlation coefficient (R), Pearson correlation coefficient per target (Rtarget), and Spearman rank correlation between predicted and known GDTTS are provided. The best

performance is highlighted in bold. Performance numbers for the other methods is quoted from Baldassarre et al. (2020).

TABLE 4 Performance of Q and other methods in CASP13 and CASP14 with respect to lDDT scores.

Dataset Method R ρ

CASP13 Qϵ 0.857 0.862

DeepUMQA2 (Liu et al., 2023) 0.919 -

DeepUMQA (Guo et al., 2022) 0.837 0.804

ModFOLD7_rank (Maghrabi and McGuffin, 2020) 0.826 -

ProQ3D (Uziela et al., 2017) 0.801 -

ProQ4 (Uziela et al., 2017) 0.777 -

ProQ2 (Ray et al., 2012) 0.715 -

VoroMQA-A (Olechnovič and Venclovas, 2017) 0.672 -

CASP14 Qϵ 0.826 0.826

DeepUMQA2 (Liu et al., 2023) 0.899 -

DeepUMQA (Guo et al., 2022) 0.799 0.736

DeepAccNet (Hiranuma et al., 2021) 0.829 -

ModFOLD8 (McGuffin et al., 2021) 0.629 -

GraphQA (Baldassarre et al., 2020) 0.706 -

ProQ3D (Uziela et al., 2017) 0.717 -

ProQ2 (Ray et al., 2012) 0.531 -

ProQ4 (Uziela et al., 2017) 0.547 -

The global Pearson correlation coefficient (R) and Spearman rank correlation between predicted and known lDDT scores are provided. The best performance is highlighted in bold.

Performance figures for methods other than Qϵ are quoted from Guo et al. (2022) and Liu et al. (2023).
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graph. To create a coherent representation at the residue level,
we apply a maximum pooling operation to the output of the final
layer of GCNatom. The final residue-level representation is
obtained by concatenating the output of the pooled atomic-
level convolution and the output from the residue-level GCN.
This concatenated output is passed through a multi-layer
perceptron (MLP), which outputs a single output per residue
of the decoy structure. The final output of the network, which is
our predicted value of GDTTS or lDDT score, is then produced
by averaging over the node-level scores. This process is shown in
Figure 2.

3.4 Atom and residue features

Our method performs convolution at both the atom and residue
levels. Here, we describe the features used at both levels.

3.4.1 Atom features
We represent the atoms using one-hot encoding by grouping atoms

into 11 different types (Derevyanko et al., 2018). This grouping reflects
both the type of atom (carbon, oxygen, or nitrogen) and its context
within the residue (e.g., alpha carbon or the different group an atom
belongs to). In doing so, we are able to incorporate important

FIGURE 4
Scatter plots comparing the true and predicted GDTTS for both CASP13 and CASP14 using L1-loss (bottom) and modified ε-insensitive loss (top).
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information of the atoms while also capturing the relationships between
the atoms and their corresponding residues.

3.4.2 Residue features
We compute residue features by feeding the amino acid

sequence of a decoy to the ProtTrans protein language model
(Elnaggar et al., 2021). ProtTrans embeddings provide a very
useful representation of the amino acid sequence, capturing
relationships between residues and their structural context
(Elnaggar et al., 2021). We take the embeddings from the last
hidden state of the transformer attention stack of the ProtTrans
model, with an output embedding of 1,024 dimensions, which serves
as the input to the residue-level GCN.

3.5 A modified ϵ-insensitive loss

In this work, we address quality assessment as a regression
problem with the objective of predicting GDTTS or lDDT score of a
decoy. We propose a novel loss function that captures our desiderata
for a quality assessment model: when it comes to poor decoys, we do
not care about the accuracy of the prediction as long as we can
differentiate it from a good decoy. On the other hand, the more
accurate the decoy, the more accurate we want our prediction to be.
This is especially important given the recent improvement in the
quality of protein structure prediction methods. To achieve this goal,
we modify the ϵ-insensitive loss, which is the loss function employed
in SVM regression (Drucker et al., 1996), as follows:

TABLE 5 Q ablation study.

Method R Rtarget ρ RMSE

Qϵ (with atom and residue features, pre-trained with L1-loss and modified ϵ-insensitive loss) 0.90 0.80 0.89 0.11

Qϵ without modified ϵ-insensitive loss 0.75 0.66 0.69 0.17

Qϵ without L1-loss 0.70 0.59 0.62 0.20

Qϵ with a constant ϵ (0.2) 0.63 0.55 0.66 0.24

Qϵ with only L2-loss 0.65 0.52 0.56 0.23

Qϵ without residue features 0.70 0.65 0.69 0.19

Qϵ without atom features 0.79 0.77 0.76 0.18

Each of the major elements of Qϵ is removed, demonstrating that each of them provides a major contribution to the performance of the method.

TABLE 6 Model selection over the  hyperparameter values.

Score ranges and results Low value Mid value High value

ϵ for 0–0.1 0.40 0.45 0.50

ϵ for 0.1–0.2 0.35 0.40 0.45

ϵ for 0.2–0.3 0.30 0.35 0.40

ϵ for 0.3–0.4 0.25 0.30 0.35

ϵ for 0.4–0.5 0.20 0.25 0.30

ϵ for 0.5–0.6 0.15 0.2 0.25

ϵ for 0.6–0.7 0.10 0.15 0.20

ϵ for 0.7–0.8 0.05 0.1 0.15

ϵ for > 0.8 0.005 0.01 0.015

R on CASP12 (validation set) (GDTTS) 0.84 0.89 0.82

R on CASP12 (validation set) (lDDT score) 0.81 0.84 0.77

R on CASP13 (test set) (GDTTS) 0.86 0.90 0.85

R on CASP14 (test set) (GDTTS) 0.80 0.81 0.79

R on CASP13 (test set) (lDDT score) 0.84 0.86 0.83

R on CASP14 (test set) (lDDT score) 0.82 0.83 0.80

The top half shows the values of ϵ for each score range. The lower half shows the performance for each combination of values (low/mid/high); R stands for the Pearson correlation coefficient.

Results are shown for the validation set (first two rows) and the test set for both GDTTS and lDDT score.
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L y, y′( ) � max 0, |y − y′| − ϵ y( )( ), (3)

where y and y′ are the true and predicted scores, respectively. As in
the standard ϵ-insensitive loss, this defines a tube of size ϵ within
which there is no penalty; outside the tube, the loss grows linearly as
in the L1-loss, which is defined as L(y, y′) = |y − y′|. In our
application, the size of the tube is a function ϵ(y). In this work,
we used a tube defined as shown in Figure 3. The motivation for the
modified ϵ-insensitive loss function is that the model should not try
too hard to accurately fit poor-quality decoys where we do not need
good accuracy anyhow. As decoy quality increases, models are
trained to learn a fit that is much more accurate.

3.6 Network training

We have trained our network to predict GDTTS and lDDT
score. For GDTTS prediction, we first pre-train Qϵ with the L1-loss

for 50 epochs, followed by training with the modified ϵ-insensitive
loss for the next 10 epochs. To train the network with lDDT scores,
we select the best model from GDTTS (“best” with respect to the
validation set) and train it with the modified ϵ-insensitive loss for
another 50 epochs, keeping the same network architecture and
hyperparameters.

The network was implemented in PyTorch (Paszke et al., 2019) and
optimized using the Adammethod (Kingma and Ba, 2014) with default
parameters except for a learning rate of 0.001; training used a batch size
of 70. Since our training set is highly imbalanced, i.e., contains very few
high-quality decoys, we used the imbalanced sampler from the
torchsampler package. During training, we monitored the loss over
the validation set and used the model that gave the minimum loss. Our
implementation used the PyTorch Lightning framework for training and
testing and PyTorch Geometric (Fey and Lenssen, 2019) for performing
graph convolution. Model selection was performed using the
hyperparameters and values described in Table 1. We iterated over
all parameters and, for each one, chose the value that gave the highest

TABLE 7 Performance of Q and other methods in CASP13 and CASP14 with respect to local lDDT scores.

Dataset Method Rlocal

CASP13 Qϵ 0.80

DeepUMQA2 (Liu et al., 2022) 0.868

DeepUMQA (Guo et al., 2022) 0.766

DeepAccNet (Hiranuma et al., 2021) 0.740

CASP14 Qϵ 0.76

DeepUMQA2 (Liu et al., 2022) 0.822

DeepUMQA (Guo et al., 2022) 0.680

DeepAccNet (Hiranuma et al., 2021) 0.672

The local Pearson correlation coefficient (Rlocal) between predicted and known local lDDT scores is provided. The best performance is highlighted in bold. Performance figures for methods other

than Qϵ are quoted from Liu et al. (2022).

TABLE 8 Performance of Q and other methods on the CAMEO dataset.

Dataset Method Model AUROC AUPR

CAMEO-QA Qϵ 6,350 0.93 0.88

DeepUMQA2 (Liu et al., 2023) 6,225 0.94 0.89

ProQ3D_LDDT (Uziela et al., 2017) 6,498 0.90 0.81

DeepUMQA (Guo et al., 2022) 6,247 0.93 0.86

ModFOLD9 (McGuffin et al., 2023) 6,498 0.92 0.87

The best performance is highlighted in bold. All other results have been taken from the CAMEO website.

TABLE 9 Performance of Q and AlphaFold2 on AlphaFold2-generated decoys in CASP14 and CASP15.

Dataset Method R Rlocal ρ

AlphaFold2-CASP14 Qϵ 0.772 0.730 0.832

AlphaFold2 0.85 0.792 0.882

AlphaFold2-CASP15 Qϵ 0.64 0.60 0.60

AlphaFold2 0.75 0.72 0.67

The global Pearson correlation (R), local Pearson correlation (Rlocal), and Spearman rank correlation (ρ) between predicted and known local and global lDDT scores are provided. The best

performance is highlighted in bold.

Frontiers in Bioinformatics frontiersin.org08

Roy and Ben-Hur 10.3389/fbinf.2023.1198218

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1198218


Pearson correlation coefficient on the validation set. Following model
selection, training took approximately 42 h on an NVIDIA RTX
3090 GPU.

3.7 Data

We collected decoys from CASP9 to CASP14 along with their labels
from the CASP website (CASP, 2021). We used CASP9–CASP12 as our
training and validation sets andCASP13 andCASP14 as our test sets (see
Table 2). In order tomatch the decoys used in experiments performed by
others, we created two separate datasets for GDDTS evaluation
(CASP13 and CASP14) and two datasets for the evaluation of lDDT
score prediction (CASP13 and CASP14).

In CASP15, the focus shifted from predicting the accuracy of
single-chain decoys to that of multi-chain complexes
(Kryshtafovych et al., 2023). However, some of the targets were
composed of single chains, and we chose to focus on those targets in
our evaluation, leading to a dataset with 17 targets.

4 Results

We compare Qϵ with other methods that have either state-of-
the-art or very good performance in CASP13 and CASP14. In our
first set of experiments, we sought to compare our method with
GraphQA, which uses a similar graph convolution architecture and
was trained to predict GDTTS (Baldassarre et al., 2020). The results
in Table 3 indicate that Qϵ outperforms GraphQA and several other
recent methods trained to predict GDTTS despite not using
engineered features; a detailed analysis of the contribution of the
various components of the Qϵ architecture is described in an
ablation study in the following section.

The quality assessment community is transitioning to the use of the
lDDT score, so we also compare Qϵwithmore recentmethods evaluated
with lDDT. In this evaluation, the performance of Qϵwas similar to that
of DeepUMQA but outperformed by its successor, DeepUMQA2 (see
Table 4). Results fromEnQA (Chen et al., 2023), whose performancewas
similar to that of DeepUMQA2, are also better than those of Qϵ. Both
methods use more complex architectures and extensive engineered
features; DeepUMQA2 also used evolutionary information, including
structural features from homologous templates.

To understand the contribution of the proposed modified
ϵ-insensitive loss to the performance of Qϵ, a scatter plot of true
versus predicted GDTTS for the decoys in CASP13 and CASP14 is
shown in Figure 4. We observe that the modified ϵ-insensitive loss leads
to better learning of decoys of all quality levels compared to the L1-loss
and leads to a pattern where the predictions are limited to a band around
the true scores, which is a highly desirable property for a quality
assessment method. It was interesting that the width of the band is
similar across all quality levels, despite the loss having a variable width
band compared to the original ϵ-insensitive loss function.

4.1 Ablation study

To demonstrate the contribution of each of the major
components of our method, we performed an ablation study with

respect to GDTTS prediction, and its results are shown in Table 5.
The first component we varied was the loss function. We observe
that the pre-training with the L1-loss is key for the method’s
performance, serving to bootstrap the learning process. We also
observe that performance dropped when using the original
ϵ-insensitive loss function, L1-loss, or L2-loss. This clearly shows
the contribution of the proposed modification to the ϵ-insensitive
loss. Our next observation is that both the residue-level and atom-
level convolutional blocks are crucial for the performance of the
method. This is due to each of them providing different and
complementary information. The residue-level blocks use
ProtTrans embeddings, which have been documented to provide
a variety of information regarding a residue’s evolutionary history
and structural context within the protein (Elnaggar et al., 2021). The
atom-level convolutional blocks provide a more fine-grained view of
a decoy structure, complementing the information at the residue
level.

4.2 ϵ-threshold selection

The modified ϵ-insensitive loss has nine threshold parameters
associated with the epsilon insensitive loss function, one for each bin
of the prediction score. In our experiments, we have used the values
shown in Figure 3. In order to determine that our initial choice was
good, we ran an experiment where we varied all the values in a
coordinated manner: we chose nine values lower or higher than the
initial values (the columns low and high in Table 6). As shown in
Table 6, reducing or increasing the values of all the thresholds in a
coordinated fashion led to reduced accuracy on the validation set. As
a sanity check, we verified that a similar decrease is observed on the
test set as well.

4.3 Local quality assessment with Qϵ

In this section, we demonstrate the ability of Qϵ to make accurate
predictions at the residue level, despite being trained only on global
quality scores. This ability is a byproduct of the architecture of the
network, where the global predicted score is an average of residue-
level node summary scores (see Figure 2). This forces the network to
learn accurate local scores, as demonstrated in the results shown in
Table 7. Similar to the global prediction problem, the performance of
Qϵ is between that of DeepUMQA and DeepUMQA2.

4.4 Results on CAMEO decoys

For further validation of the performance of Qϵ, we evaluated its
performance on decoys from the CAMEO evaluation project (Haas
et al., 2018). We downloaded decoys used from 13 May 2022 to
06 May 2023 and followed the same evaluation protocol used by
CAMEO: the area under the ROC (AUROC) curve and area under
the precision recall (AUPR) curve were calculated using a local
lDDT score threshold of 0.6, and the obtained results are shown in
Table 8. Again, we note that Qϵ was not trained on local scores
(unlike the other methods) and yet is able to perform almost on par
with DeepUMQA2. As mentioned previously, this can be traced to
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the fact that the global prediction score computed by Qϵ is evaluated
by directly averaging local node summary scores, forcing those
scores to reflect a local measure of quality.

4.5 Performance on AlphaFold2 decoys

In CASP14, AlphaFold2 provided, for the first time, decoys with
near experimental resolution (Skolnick et al., 2021), with a median
GDTTS of 92.4, making it the first team to achieve the highest level
of accuracy in CASP. We gathered the decoys submitted by the
AlphaFold team (team no 427) from the CASP14 website and
evaluated Qϵ on their decoys. We also ran AlphaFold2 version
2.3.1 on CASP15 single-chain targets. The results of this
experiment are shown in Table 9. While AlphaFold2 provided
better accuracy than our method, its value provided independent
validation for the quality of AlphaFold2 predictions. EnQA (Chen
et al., 2023) slightly improves on the quality of AlphaFold2 lDDT
score estimates; however, it does so by using the AlphaFold2 scores
as one of its features. Therefore, the results of the EnQA method are
expected to be highly correlated with those of AlphaFold2 and less
useful for independent verification of its predictions.

5 Conclusion and future work

In this study, we proposed a novel loss function to enhance the
performance of deep learning for quality assessment of decoy structures.
Our approach performed close to other state-of-the-artmethods while at
the same time removing the need for engineered features computed from
the protein structure, relying solely on features computed from the decoy
sequence, demonstrating what is possible with a pure deep learning
approach. These features were integrated using graph convolutional
layers that operate at both the atom and residue levels, thereby
improving the network’s performance. The comparison of our
approach with AlphaFold2 indicates there is a need for further
research to provide accuracy estimates that improve on the local
scores computed by AlphaFold2 in order to provide independent
validation of the quality of its predicted structures.

Our approach can be extended in multiple ways. First, although
it performs well in predicting local scores, the method is trained
using only global quality scores. Joint learning of both global and
local scores can potentially improve performance for both tasks.
Second, we treated the prediction of GDDTS and lDDT score as
independent tasks; there is a potential gain in addressing multiple
quality scores at the same time (Baldassarre et al., 2020). Finally, in
this work, we chose to focus on the contribution of the loss function
to method performance, so we used a relatively simple graph

convolutional network similar to that used in GraphQA
(Baldassarre et al., 2020). Finally, we expect that the proposed
loss function can be applied to regression problems, whose
objective is to detect high-quality objects, and has the potential
to be a useful addition to any deep learning toolbox.
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