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Artificial Intelligence (AI) has achieved remarkable success in image generation,
image analysis, and language modeling, making data-driven techniques
increasingly relevant in practical real-world applications, promising enhanced
creativity and efficiency for human users. However, the deployment of AI in
high-stakes domains such as infrastructure and healthcare still raises concerns
regarding algorithm accountability and safety. The emerging field of explainable AI
(XAI) has made significant strides in developing interfaces that enable humans to
comprehend the decisions made by data-driven models. Among these
approaches, concept-based explainability stands out due to its ability to align
explanations with high-level concepts familiar to users. Nonetheless, early
research in adversarial machine learning has unveiled that exposing model
explanations can render victim models more susceptible to attacks. This is the
first study to investigate and compare the impact of concept-based explanations
on the privacy of Deep Learning based AI models in the context of biomedical
image analysis. An extensive privacy benchmark is conducted on three different
state-of-the-art model architectures (ResNet50, NFNet, ConvNeXt) trained on
two biomedical (ISIC and EyePACS) and one synthetic dataset (SCDB). The success
of membership inference attacks while exposing varying degrees of attribution-
based and concept-based explanations is systematically compared. The findings
indicate that, in theory, concept-based explanations can potentially increase the
vulnerability of a private AI system by up to 16% compared to attributions in the
baseline setting. However, it is demonstrated that, in more realistic attack
scenarios, the threat posed by explanations is negligible in practice.
Furthermore, actionable recommendations are provided to ensure the safe
deployment of concept-based XAI systems. In addition, the impact of
differential privacy (DP) on the quality of concept-based explanations is
explored, revealing that while negatively influencing the explanation ability, DP
can have an adverse effect on the models’ privacy.
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1 Introduction

The upcoming implementation of the European Artificial
Intelligence (AI) Act (Commission, 2021) will have a
considerable impact on the requirements posed on the
transparency and interpretability of AI-based systems used in a
wide range of biomedical technology and healthcare domains.
Recent progress in the field of explainable AI (XAI) provides AI
developers and users with a variety of methods and modalities that
can help to interpret decision-making processes and validate system
functions (Tjoa and Guan, 2020). However, there is still no
standardized procedure for the explanation of Deep Learning
(DL) models. Regulations such as the General Data Protection
Regulation (GDPR) (Council of the European Union, 2016)
additionally require that the privacy of all involved data subjects
is ensured throughout all deployment phases. Moreover, model
privacy is crucial to secure the intellectual property of service
providers when hosting AI-based solutions. With more and more
promising AI systems being developed by industry and research, it is
becoming ever more important to assure that their deployment
bears no unforeseen risks for the public and all involved
stakeholders. The occurrence of such potential risks can have
particularly serious consequences in high stakes application
domains such as healthcare or autonomous driving.

The problems of transparency and privacy are traditionally
regarded as separate approaches in the research field of AI.
However, the goals of both directions are strictly opposing in the
context of data-driven algorithms. While transparency and
explainability aim at revealing more information about a
particular decision or the overall decision-making process,
privacy-preserving machine learning tries to focus on dataset-
wide statistics, without allowing too much insight on particular
decision paths. Several recent studies revealed that both
explainability and privacy affect each other significantly in
practical deployment. While many works (Milli et al., 2019;
Aïvodji et al., 2020; Shokri et al., 2021; Duddu and Boutet, 2022)
found that revealing explanations can pose a severe security risk,
others (Bozorgpanah et al., 2022; Saifullah et al., 2022) found that
adding privacy can significantly diminish the quality of
attribution maps.

The most commonly applied explanation methods are based on
input feature attribution. These methods operate on the feature level,
generating explanations in the input space. This introduces strong
limitations due to the often temporal or spatial nature of the input
samples. In complex problem settings, as often found in
biomedicine, this leads to the inability to explicitly draw
attention to feature interactions or higher-level relationships
relevant to the decision-making. This is particularly relevant in
the case of overlapping and distributed biomarkers (such as colors,
shapes, and textures within a tissue). More advanced explanation
approaches operate in a more abstract human-centered concept
space. These concept-level explanations can provide more diverse
and nuanced explanations to users (Lucieri et al., 2022) and have
already been shown to have positive effects on the practical utility of
AI in the clinical context (Chanda et al., 2023). By closing the
interpretation gap between issued explanations and the AI system’s
users, human-centered explanations play a major role in increasing
the utility of XAI in practice and fulfilling the requirements posed by

the AI Act and other regulatory requirements. However, their
increasing relevance raises important questions about the impact
they have on the privacy of an AI system. Most previous works
investigating the interdependency of privacy and explainability
focused on low-level XAI methods based on input feature
attribution (Milli et al., 2019; Shokri et al., 2021; Saifullah et al.,
2022), while Montenegro et al. (2022) investigated privacy-
preserving case-based explanations. We argue that more complex
XAI methods have received too little attention when it comes to an
assessment of their implication on privacy.

This work attempts to fill this gap by assessing if and to which
degree concept-based explanations amplify or mitigate the risk of
privacy leakage. The aim is to quantitatively measure changes in the
theoretical and practical vulnerability of AI models, when issuing
explanations of varying complexity while being exposed to
Membership Inference Attacks (MIAs). Moreover, the usefulness
of privacy-preserving machine learning (i.e., Differential Privacy
(DP)) as a defense mechanism and its impact on the quality of issued
explanations are investigated. For this purpose, MIAs were applied
to three different model architectures, each trained on skin lesion
analysis, diabetic retinopathy detection, as well as a synthetic object
recognition task. MIAs of different complexities are applied to
measure the vulnerability of models in suboptimal and optimal
deployment scenarios. Differentially private model variants are
trained for each task to assess the impact on attack vulnerability
and explanation quality. To the best of our knowledge, this is the first
work to investigate the relationship between concept-based
explanations, DP, and privacy leakage.

The contributions of this work are as follows.

• An upper bound of the theoretical impact of concept-based
explanations on the success of metric- and classifier-based
membership inference attacks is empirically determined,
finding that concept-based explanations indeed lead to the
potential increase in privacy vulnerability.

• Experiments on the practical impact of concept-based
explanations revealed that the actual increase in risk is
negligible for realistic deployment scenarios.

• Differential privacy fails to defend against membership
inference attacks in suboptimal deployment scenarios, and
can even reinforce vulnerabilities.

• There is a strong need for differentially private concept-based
explanation methods.

• Differential privacy is found to negatively influence the
computation of CAVs for explanation.

The remainder of this paper is structured as follows: Section 2
provides the relevant background, as well as an outline of the used
datasets and the experimental setting. First, membership inference
attacks and differential privacy are introduced, followed by the most
relevant XAI methods and an overview of the related work in the
intersection of privacy and explainability. The three datasets used in
experimentation are then described, followed by a detailed outline of
used classification models, training procedures for classifiers and
concept-based explanation vectors, as well as the experimental
setups for attribution computation and membership inference
attacks. The result section (Section 3) reports all the
performances of the different classification models, followed by
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the results of membership inference attacks in theoretical and
practical scenarios, when providing different degrees of
explanation outputs. In addition, the effect of differential privacy
on the computation of concept activation vectors is quantified. All
results and corresponding findings are discussed in Section 4,
followed by a discussion of the limitations. The paper is
concluded in Section 5, summarizing the findings and providing
an outlook to potential future work.

2 Methodology

The following section outlines all relevant background to the
conducted analysis. First, relevant topics including membership
inference attacks (MIA), differential privacy (DP), and
eXplainable AI (XAI) are introduced. Then, a brief overview of
related works investigating the impact of privacy and explainability
methods is given. Afterward, the datasets utilized in this study are
described and detailed information on the experimental setups is
provided.

2.1 Membership inference attacks

Membership Inference Attacks have been introduced by Shokri
et al. (2017) and refer to a class of attacks that aim to determine if a
particular data point was used for the training of a machine learning
model. These attacks exploit the privacy vulnerability that can arise
when machine learning models are trained on sensitive data. Let
fvictim(x) be the victim model, trained on a private dataset Dtrain

victim

consisting of data samples xi, with their corresponding ground truth
labels yi. The output of fvictim(x) is a vector of cvictim dimensions,
referred to as ŷ. The goal of MIAs is to derive an attack model
fattack(a), able to correctly estimate whether an arbitrary sample xnew
was part of Dtrain

victim, or not. The input of fattack(a) is the attack vector
a, which can consist of arbitrary information available about the
victim model, such as sample loss Lx, the prediction vector ŷx or
metrics derived therefrom. In the case that no full access to fvictim(x)
is granted, the success of these attacks depends on the attacker’s
ability to create a shadow model that mimics the behavior of the
victim model and effectively learns the membership status of data
points.

MIAs can differ drastically in the definition of the attack
situation, i.e., in the degree to which information about the
victim model is assumed to be available. Generally, MIAs can be
divided into classifier-based and metric-based approaches. The
original classifier-based MIA in Shokri et al. (2017) assumes no
direct and unlimited access to fvictim(x), therefore training several
shadow models using similarly distributed shadow training sets to
recreate the prediction behavior of the original victim model. An
attacker model fattack(a) is then trained on the samples’ highest
prediction confidences generated by the different shadow models,
estimating whether the model was fed with a training or a test
sample. This classifier-basedMIA approach has been later simplified
to work with a single shadow model and different data distribution
by Salem et al. (2018), as well as working only with predicted labels
instead of confidences (Choquette-Choo et al., 2021; Li and Zhang,
2021). Shokri et al. (2021) later also showed that explanations can be

leveraged in the attack vector to further facilitate MIAs. Metric-
based MIA approaches instead directly learn thresholds on metrics
such as the maximum prediction entropy (Salem et al., 2018) or the
loss (Yeom et al., 2018). Similar toMIAs, Attribute Inference Attacks
(AIAs) can be used to infer further input attributes from a DL system
(Duddu and Boutet, 2022).

2.2 Differential privacy

Differential Privacy (DP) is a mathematical framework that
provides a probabilistic guarantee on the privacy protection of
individuals in a dataset. In the context of machine learning, DP
can be used as a private training paradigm to guarantee the privacy
of individuals that were part of a model’s training dataset (Abadi
et al., 2016). The method involves clipping the gradients, as well as
the addition of a certain amount of randomly sampled noise before
the weight update.

Let D be a database containing sensitive information about
individuals, and let M be a randomized algorithm that takes D as
input and produces an output in some set R. For any two databasesD
and D′ that differ in at most one row, and for any subset S of the
output range R, the randomized algorithm M satisfies (ϵ, δ)-
differential privacy if:

Pr M D( ) ∈ S[ ]≤ eϵPr M D′( ) ∈ S[ ] + δ (1)
Intuitively, this definition means that the probability of the

algorithm outputting a particular result should not change much
when a single individual’s data is added or removed from the
database. The degree of privacy protection is controlled by ϵ,
which directly influences the amount of noise added to the data.
A smaller value of ϵ leads to higher privacy protection but may result
in lower accuracy of the analysis results, while a larger value of ϵ
provides higher accuracy but weaker privacy protection.

2.3 Explainable AI

By now, the topic of XAI covers a broad range of methods,
including example-based explanations obtained by content-based
image retrieval, counterfactual explanations through generative
modeling or the disentanglement of the decision logic of complex
deep neural networks. Human-centered explanation methods have a
particularly high significance for the practical application of XAI, as
they facilitate the interpretation of decision processes by the human
stakeholder. Therefore, this work specifically compares the influence
of the commonly used attribution-based XAI methods to the
emerging field of concept-based XAI. For a more comprehensive
overview of approaches in the domain of XAI, the reader is referred
to Tjoa and Guan (2020).

2.3.1 Attribution methods
Attribution methods are characterized by their ability to

quantify the relevance of a particular input feature, or a feature
group, to the decision process. These methods can be divided into
gradient-based and perturbation-based methods. Simonyan et al.
(2013) proposed the saliency mapping technique as one of the early
gradient-based attribution methods. Here, the relevance of the input
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is defined as the gradient of the output, with respect to the input.
Class Activation Maps (CAMs) proposed in Zhou et al. (2016) took
advantage of the activation localization of the Global Average
Pooling (GAP) layer by computing the weighted sum of the
activation maps. To bypass limitations imposed by the need for
GAP layers in CAM, GradCAM (Selvaraju et al., 2017) was
proposed, weighting activation maps by the gradient of the
output, with respect to the intermediate layers. Other variants of
CAM were proposed, averaging the pixel-wise weights
[GradCAM++ (Chattopadhay et al., 2018)] or using gradient
information about the global contribution of the input instead
[ScoreCAM (Wang et al., 2020)]. Integrated Gradient
(Sundararajan et al., 2017) determines input relevance by
transitioning the network’s input from a baseline image to the
input sample of interest, while aggregating the gradients along
the trajectory. While all of the above methods only allowed the
quantification of positive, relevance, DeepLIFT (Shrikumar et al.,
2017) allows both negative and positive influence quantification. By
comparing the actual image gradients to a reference output,
DeepLIFT allows the quantification of relevance even when the
actual gradients are zero.

Perturbation-based attribution techniques focus on the iterative
manipulation of the input sample to derive its importance. The
Occlusion (Zeiler and Fergus, 2014) method, for example, involves
the masking of the input image through a sliding window baseline
patch. Differences in prediction confidence when feeding different
occlusions are used to aggregate the information in the final
attribution map. The main advantage of such model-agnostic
methods is that they can be applied irrespective of the chosen
architecture of the model. Inspired by this, Fong et al. (2019)
proposed an optimization finding the occlusion of the most
relevant input region, and Petsiuk et al. (2018) determined the
input relevance by iterative random masking. An alternative
perturbation-based approach called LIME (Ribeiro et al., 2016)
uses occluded inputs and their corresponding model predictions
to linearly approximate the local neighborhood of the complex deep
learning model.

2.3.2 Concept-based explainability
The output of an XAI method is commonly used as a means to

facilitate the understanding of the decision-making process for a
stakeholder. To foster such understanding of the decision-making
process, the stakeholder is required to assign meaning to the
explanations through the interpretation of the facts at hand
(Palacio et al., 2021). Most common XAI methods provide
explanans in the form of complex mathematical relationships
(i.e., variants of the gradients, linear classifier weights, etc.) which
complicate the interpretation and leave much room for error.
Concept-based explanation methods tackle this problem by
providing explanans in the form of facts about the decision-
making which relate to abstract, human-defined concepts. Thus,
reducing the margin for error in the interpretation process.

First concept-based XAI methods have been introduced in Kim
et al. (2018) and Zhou et al. (2018). Zhou et al. (2018) propose to
decompose the weight vector that translates the second last layer’s
activation to the logit of a particular class. This is achieved by solving
an optimization problem, constraining the decomposed weights to
be both non-negative and sparse, for better interpretability. Testing

with Concept Activation Vectors (TCAV) has been proposed by
Kim et al. (2018). Concept Activation Vectors (CAVs) can be
computed on any intermediate model layer through the training
of linear binary classifiers separating the activations of concept
examples from non-concept examples. The CAVs are defined as
the normal to the hyperplane of the learned classifier. For the
training of CAVs, positive and negative concept examples have
to be collected. These CAVs can then be used to quantify the
importance of a concept to the prediction of a particular class
with the TCAV scores. A TCAV score is the fraction of samples
xk with the class label k which increase their class score yk when
being moved infinitesimally into the direction of the CAV for a
concept, therefore having positive directional derivatives Sc,k,l(x).
For a given class k and concept cwith activations at layer l the TCAV
score is given as:

TCAVQc,k,l
� |x ∈ Xk: Sc,k,l x( )> 0|

|Xk| , (2)

In addition to the quantitative concept analysis, Lucieri et al.
(2020b) proposed the visual evaluation of concepts as Concept
Localization Maps (CLMs). With g-CLM and p-CLM, they
propose both gradient-based and perturbation-based ways to
localize a particular concept c on the input image. An overview
of other concept-based explanation methods beyond feature
attribution is found in Yeh et al. (2021).

2.4 Related work

With the announcement of the General Data Protection
Regulation (GDPR) (Council of the European Union, 2016), the
first voices were raised proclaiming a conflict between privacy and
explainability in machine learning (Grant and Wischik, 2020).
Although privacy and explainability have widely been regarded as
separate fields in previous research, some works already investigated
their interdependence when combined in a single AI system. Milli
et al. (2019) were the first to show that gradient-based explanations
can be exploited to facilitate the extraction of models from
prediction APIs. The authors show that the exposure of gradient-
based explanations from models trained on MNIST and CIFAR-10
can decrease the number of queries required to reconstruct a model
by a factor of 1,000 as compared to using the model outputs alone.
Aïvodji et al. (2020) showed that also counterfactual explanations in
tabular data can be exploited for model extraction attacks. The
experiments indicate that diverse and high-fidelity explanations lead
to higher vulnerability. Shokri et al. (2021) performed an extensive
evaluation on the impact of different attribution methods on the
vulnerability of the AI system to membership inference attacks.
They found that in some cases the variance of explanation vectors
suffices to yield good MIA accuracies. Moreover, backpropagation-
based XAI methods were found to leak more information about data
points as compared to perturbation-based methods. Duddu and
Boutet (2022) extended previous work by investigating the impact of
gradient- and perturbation-based model explanations on the success
of Attribution Inference Attacks (AIAs) for tabular data. The results
strongly suggested that the availability of explanations leads to
higher vulnerability against AIAs as compared to using only
model predictions.
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Case-based explanations have the advantage of producing
intuitive and easy-to-understand explanations based on images
that are similar to the model input. However, these types of
explanations can be critical in applications where the training
data encompasses personal identities that cannot be exposed to
the model users. Montenegro et al. (2021a) propose a generative
model to privatize case-based explanations, as well as a way to derive
counterfactual explanations. However, the authors later applied the
method to glaucoma detection, revealing several drawbacks for the
application in medical practice (Montenegro et al., 2021b; 2022).

Another direction of work deals with the privatization or
anonymization of the input data before training of DL models.
Recently, Gaudio et al. (2023) proposed an end-to-end ante-hoc
model which allows privacy-preserving image compression. These
compressed images can be used for classification and post hoc
explainability analysis. However, the exact privacy vulnerability of
such approaches in practice is still questionable.

Most previous work focused on the influence of explanations on
the privacy of prediction models. However, recent work suggests
that methods for privacy-preserving machine learning also have an
influence on the quality of explanations. While Franco et al. (2021)
were among the first to combine privacy and explanation methods,
Saifullah et al. (2022) and Bozorgpanah et al. (2022) were the first to
provide extensive analyses on the impact of privacy-preserving
methods on XAI methods. Saifullah et al. (2022) investigated the
impact of different privacy-preserving methods on attribution-based
explanations in different domains including time-series, document
image, and medical image analysis. Their study suggests that
different privacy methods have different effects on the quality of
attribution-based explanations, and that perturbation-based XAI
methods are less affected by noise introduced through differential
privacy. The work by Bozorgpanah et al. (2022) investigated the
impact of privacy masking on shapley values in the domain of
tabular datasets. The authors find that privacy and explainability are
compatible in simple application scenarios, under limited
conditions.

The increasing complexity of deep learning models and
biomedical applications using AI raises high demands on the
quality and ease-of-interpretability of XAI methods. However,
particularly sensitive domains like medicine pose growing
requirements to data protection and privacy. Previous research
focused mostly on the effect of widely used attribution methods
on privacy, but neglected the impact of highly relevant human-
centered explanation methods. To the best of our knowledge, this is
the first work to investigate the effect of concept-based explanations
on the vulnerability of models towards privacy attacks such asMIAs.

2.5 Datasets

Concept-based explanation methods usually require a
sufficiently large dataset of representative samples with expert-
curated concept annotations. This poses a significant limitation
to the applicable range of public datasets. This work chose two
exemplar use cases of AI in biomedical image analysis, namely skin
lesion analysis, and diabetic retinopathy classification. Moreover, a
synthetic data use case, inspired by the problem of skin lesion
analysis, is used to demonstrate the effects of concept-based

explanations on the privacy of AI models. The datasets used for
classification and concept learning in the respective use cases are
presented in this section.

2.5.1 Skin lesion analysis
The International Skin Imaging Collaboration (ISIC) hosts

annual challenges on curated skin image datasets. Moreover, they
provide the largest publicly accessible library of digital skin images1.
In this work, the ISIC dataset is used as a fusion of all previously
released challenge datasets cleaned from duplicates according to the
recommendations in Cassidy et al. (2022). The dataset is used to
train models in an 8-class classification task, discriminating between
Melanoma (MEL), Nevus (NV), Basal Cell Carcinoma (BCC),
Actinic Keratosis (AK), Benign Keratotic Lesion (BKL),
Dermatofibroma (DF), Vascular Lesion (VASC) or Squamous
Cell Carcinoma (SCC). The data is randomly split into a training
(23,868), validation (2,653), and test (2,947) portion, while
stratifying for the classification ground truth.

As ISIC does not contain enough concept annotations, Derm7pt
is used for concept learning. The seven-point checklist criteria
dataset (Derm7pt)2 proposed in Kawahara et al. (2018) consists
of clinical and dermoscopic images of 1,011 skin lesions with
extensive diagnosis and concept annotation. Each sample is
labeled as either Basal Cell Carcinoma (BCC), Nevus (NV),
Melanoma (MEL), Seborrheic Keratosis (SK), or a Miscellaneous
class (MISC). Concept annotations include information about Blue-
Whitish Veil, Dots & Globules, Pigment Network, Regression
Structures, Streaks, and Vascular Structures. For pre-training of
DP models, Derm7pt is split into training (413), validation (203),
and test (395) portions, used in a 5-class classification task.

2.5.2 Diabetic retinopathy detection
The telemedicine provider EyePACS provides one of the largest

publicly available fundus image datasets. The dataset
(EyePACS)3 consists of fundus images labelled by experienced
clinicians for the presence of diabetic retinopathy (DR) on a
scale from 0 to 4, according to the Early Treatment of Diabetic
Retinopathy Study (ETDRS) scale. For each patient, images have
been captured from the left and right eye. The complete dataset is
split randomly into training (15,758), validation (7,763), and test
(11,587) portions. Splitting is performed in a stratified manner,
ensuring that any samples stemming from the same patient ID are
only used together in one of the data portions. In this work, we
followed the common procedure of performing binary DR
classification, considering only stages 0 (no DR) and 1 (mild DR)
as healthy images.

For concept learning, data from the STructured Analysis of the
Retina (STARE) project is used4. The STARE database is a collection
of 400 fundus images with extensive diagnostic labels, and over
40 expert annotations of diagnostic features visible on the images. In

1 The ISIC Archive is accessible at https://www.isic-archive.com

2 The Derm7pt dataset is accessible at https://derm.cs.sfu.ca/

3 The EyePACS dataset is accessible at https://www.kaggle.com/datasets/
mariaherrerot/eyepacspreprocess

4 The STARE dataset is accessible at https://cecas.clemson.edu/~ahoover/
stare/
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a pre-processing step, single manifestations are pooled into nine
distinct concept classes, such that each concept contains a minimum
of 45 positive examples. The resulting concepts are A-V Change,
Artery Diameter, BV Specular Reflex, CNV Manifestation, Cotton-
Wool Spot, Drusen, Hemmorhage, Retinal, or Subretinal Exudate,
and Vein Diameter.

In addition to EyePACS and STARE, a third DR data set is used
for additional pre-training of DP models. The APTOS2019
dataset5 is provided by the Asia Pacific Tele-Ophthalmology
Society and contains 3,662 samples collected from different
patients located in rural India. All images have been graded
according to the International Clinical Diabetic Retinopathy
Disease Severity Scale (ICDRSS). APTOS2019 is randomly split
into training (2,050), validation (513), and test (1,099) portions.
Analog to the EyePACS dataset, APTOS2019 is used for binary
classification of DR in this paper.

2.5.3 Synthetic concept classification
The SCDB6 dataset (Lucieri et al., 2020b) is a synthetic dataset

inspired by the complex problems of skin lesion analysis. Images are
classified into one of two classes based on the combinations of shapes
present in a base shape, depicting the skin lesion. The shapes can be
overlapping and redundant, but classification evidence is sparse and
localized. Along with the class label, each image is supplemented by
shape annotation maps, serving as ground truth explanations. By using
simple geometric shapes as human-understandable concepts, SCDB
significantly facilitates the evaluation of explanations in XAI. The
dataset is randomly split into training (4,800), validation (1,200),
and test (1,500) portions. Moreover, an additional portion for
concept learning of 6,000 samples is used.

2.6 Experimental setup

This work investigates the interplay between concept-based
explanation methods, privacy-preserving machine learning, and
privacy attacks. To build a solid basis for comparison, three
classification tasks (skin lesion analysis, diabetic retinopathy
detection, and synthetic geometry detection) are considered on
three state-of-the-art model architectures.

2.6.1 Models
Three different state-of-the-art model architectures were

investigated in the experimentation to account for potential
differences in their vulnerability, namely ConvNeXt, NFNet, and
ResNet-50. All experiments on ResNet-50 were conducted on an
implementation of the model with Group Norm replacing the
standard Batch Norm layers, to allow for a fair comparison with
the deferentially private trained models. The PyTorch Image Models
(timm)7 python package is used to obtain all models for training.

2.6.2 Model training
Baseline models were trained using a Stochastic Gradient

Descent (SGD) optimizer with a batch size of 128 samples and a
momentum of 0.9. A small hyperparameter search is performed over
suitable learning rates in the set LR = 0.1, 0.01, 0.001. Four data
augmentation strategies of different intensity are evaluated for each
classification problem, and the strategy performing best in the
baseline setting is later adapted for DP training. All models are
trained for 200 epochs with an early stopping threshold of 30 epochs
on the validation loss, using a plateau learning rate scheduler with
patience of 10 epochs. The final model is chosen based on the lowest
validation loss during training. Due to the high class-imbalance in
the skin lesion analysis and diabetic retinopathy detection tasks,
weighted random sampling is used in the baseline training
procedures.

In addition to the baseline model trainings, another set of
models is trained to simulate the scenario of overfitting. To this
end, trainings were performed without any weighted sampling,
shuffling, learning rate scheduler or data augmentation (apart
from normalization). Training is performed for 50 epochs
without early stopping, and the last model instance is used for
further experimentation.

For each classification task, the augmentation procedure
performing best in the baseline setting is adapted for the
corresponding DP trainings. The Opacus8 python package is used
for establishing the DP pipeline. DP trainings are manually tuned to
achieve a good trade-off between test accuracy and (ϵ, δ)-privacy.
Therefore, different batch sizes, learning rate schedulers and settings
for ϵ and max _grad_norm have been used.

2.6.3 Concept training and explanation
For each model, CAVs are trained following the procedure

outlined in Lucieri et al. (2020a). 100 different CAVs are
computed with different seeds for the random undersampling
procedure, to ensure balanced concept sets. A final CAV is
computed by computing the average direction over all CAVs.
Concept activations are extracted from the last layer of the main
network blocks for all architectures. In skin lesion analysis, Derm7pt
is used for CAV computation. STARE is used as the concept dataset
in diabetic retinopathy detection. SCDB comes with a specific
dataset portion which is used for CAV computation.

All CLMs are computed according to the procedure outlined in
Lucieri et al. (2020b). Both the gradient-based g-CLMs and the
perturbation-based p-CLMs are considered in this study. Saliency
attribution is used to produce the concept relevance in g-CLMs,
whereas occlusion with a window size of 15, and a stride of 8 is used
for p-CLMs. Occluded patches are filled with blurred patches
attenuated by a circular Gaussian filter. For concept predictions,
an aggregated concept prediction vector is assembled from all
individual binary concept classifiers.

2.6.4 Attribution computation
In this work, both gradient-based and perturbation-based

attribution methods are compared. For gradient-based attribution

5 The APTOS2019 dataset is accessible at https://www.kaggle.com/
datasets/mariaherrerot/aptos2019

6 The SCDB dataset is accessible at https://zenodo.org/record/6258557

7 https://timm.fast.ai/ 8 https://opacus.ai/
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the Saliency method is chosen, as it provides more sensitive
information about the decision-making process, and has already
shown to promote privacy leakage in some cases (Shokri et al., 2021).

The Captum 9 python package is used for the computation of all
Occlusion and Saliency attribution maps. For Occlusion, window
sizes and strides are chosen to match the parameters of the p-CLM
computation. Occluded patches are filled by the mean over the
individual image’s pixels.

2.6.5 Membership inference attacks
In this paper, experiments are performed both on metric-based

and classifier-based MIAs. The datasets used to perform and
evaluate MIA attacks consist of equal parts of seen and unseen
samples. Depending on the deployment scenario, the unseen data is
taken from an identical (Optimal Deployment Scenario) or slightly
different distribution (Suboptimal Deployment Scenario).

For prediction vectors, metric-based attacks are performed on
the maximum prediction score as well as its entropy and variance.
For attribution maps and CLMs, metric-based attacks are computed
by using the variance over individual attribution maps or the
individual set of CLMs. Metric-based attacks are evaluated on the
whole MIA dataset.

Classifier-based MIAs are conducted using Support Vector
Machines (SVMs) and Neural Networks (NNs). In both cases,

the individual feature groups (i.e., attribution maps, CLMs, etc.)
are scaled to 0 mean and unit variance before combining the final
attack vector. SVM-based MIAs are trained and evaluated with a
split ratio of 67/33. NN-based MIAs are conducted on a fully
connected network consisting of six linear layers and ReLU
inspired by Shokri et al. (2021). The corresponding attack vectors
are flattened before being fed to the network. NN-based MIAs on
attack vectors including attribution maps and CLMs have
additionally been computed with VGG16 and ConvNeXt
architectures. Therefore, the whole attack vector is flattened,
padded with zeros, and reshaped to a variable number of
channels c to fit in a rectangular shape suitable for the
corresponding network. All NN-based attack models are trained
for a maximum of 100 epochs with the SGD optimizer, and an early
stopping threshold of 10 epochs to ensure convergence of the
models. A train, validation, and test split with a ratio of 45/22/
33 is used.

In all experiments, maximum access to fvictim(x) is assumed,
as the main aim of this investigation is to analyze the increase in
privacy vulnerability due to the addition of concept-based and
attribution-based explanations. This means that the adversary
can obtain the attack vectors used in the MIAs directly from the
victim model’s API. Therefore, the results reflect an upper bound
on the expected privacy vulnerability. Moreover, two distinct
scenarios are considered, as depicted in Figure 1. The first
scenario, referred to as suboptimal deployment scenario, is
meant to reflect an easier attack scenario that easily allows
quantifying the differences in attack vulnerability of different

FIGURE 1
Overview of the two deployment scenarios considered for the membership inference attacks. In the suboptimal deployment scenario, the training
dataset does not fully capture the data distribution of the real-world data. In the optimal deployment scenario, the training dataset and the real-world
dataset are assumed to come from highly overlapping dataset distributions.

9 https://captum.ai/
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attack vectors. The assumption here is that the network has been
trained on a set of data with a narrow distribution, which is not
fully representative of all realistic real-world data. The second
scenario, referred to as the optimal deployment scenario, assumes
that the training data distribution fully reflects the real-world
data distribution. These two scenarios are simulated by varying
the data the attacker has access to. In common biomedical
classification problems like skin lesion analysis and diabetic
retinopathy detection, large public reference databases (such
as the ISIC or EyePACS) exist. Therefore, it is reasonable to
assume that the adversary has access to at least a part of the
training data stemming from these public repositories. In the
suboptimal deployment setting, it is assumed that the
distribution of the data used for training does not overlap
significantly with the real-world data distribution. To simulate
this, an unseen subset of data from a slightly different
distribution, namely the test set of the Derm7pt dataset, is
used as the data reflecting non-membership to the training
data. In the optimal deployment setting, it is assumed that the
distribution of the data used for training is mostly representative
of the variations present in relevant real-world imaging. To
simulate this, the unseen test split of the ISIC dataset is used
as the data reflecting non-membership to the training data. In all
MIA scenarios, training, validation and test data is balanced, to
avoid misleading performance metrics.

3 Results

The following chapter presents the results from the previously
described experiments. After outlining the performances of all
trained classification models, the effect of concept-based
explanations on model privacy is first theoretically investigated in
the suboptimal deployment scenario when applying metric-, SVM-,
and NN-based attacks. Afterward, the results from the optimal
deployment scenario are described to quantify the effect in
practice. Finally, the results for CAV training on DP-trained
networks are presented to show the effect of privacy on concept-
based explanations.

3.1 Model training results

More than 50 models were trained in the initial phase. The
weighted average F1-scores of the final selected models, evaluated on
the respective test datasets, are presented in Table 1. Models trained
on the SCDB dataset performed best in the baseline setting. Over-
fitting led to a slight decrease in performance, while models trained
using the DP procedure performed significantly worse, with up to
14% lower F1-scores. Overall, NFNet achieved the best results for
SCDB over all training settings. For the biomedical datasets, it can
also be observed that NFNet usually led to slightly better results as
compared to ResNet50 and ConvNeXt. Both ConvNeXt and NFNet
performed best in the baseline setting for ISIC, while NFNet
performed better in the overfit, and on par in the DP setting. For
EyePACS, NFNet achieved the best weighted average F1-scores over
all settings.

The training settings tailored for overfitting led to a noticeable
decrease in F1-scores for ISIC and SCDB datasets (−6.8% and −5.4%
on average, respectively). For EyePACS, on the other hand, there was
no significant change in performance when overfitting the models.
Two of the architectures scored even higher when trained without
weighted sampling, augmentation and shuffling (0.7% and 0.9% for
ResNet50 and ConvNeXt, respectively). However, inspecting the
confusion matrices of both baseline and overfitted ConvNeXt
models in Figure 2, it can be clearly seen that the overfitted
model simply developed a stronger tendency to predict the
majority class, leading to higher F1-scores on the test set.

Training with DP led to a significant decrease in test F1-scores in
themajority of the cases. The highest average decrease of −19.2% can
be observed with the ISIC dataset, as it has a strong dataset
imbalance among the 8 classes. Among both binary datasets,
SCDB suffered more from DP training on average (−13.5%
compared to −4.6%). This is most likely due to the previously
reported tendency of EyePACS models to perform well when
focusing mostly on the majority class.

In an attempt to decrease the performance gap between baseline
and DP settings, the application of under sampling and class-
weighted losses have been investigated for both imbalanced
medical datasets. The oversampling setting is not investigated

TABLE 1Weighted average F1-scores of all trained models on the respective test datasets. For models trained with Differential Privacy, the utilized privacy budget
 is given in brackets.

Dataset Architecture Baseline (%) Overfit (%) DP (%) (ϵ)

SCDB ResNet50 97.79 92.33 83.74 (05)

NFNet 98.26 93.93 85.29 (05)

ConvNeXt 97.39 91.06 83.79 (05)

ISIC ResNet50 84.50 77.75 70.00 (10)

NFNet 88.14 84.70 68.34 (05)

ConvNeXt 88.78 78.68 65.45 (05)

EyePACS ResNet50 86.72 87.39 82.29 (05)

NFNet 88.89 88.48 84.77 (10)

ConvNeXt 86.89 87.82 81.69 (10)
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here, as it would contradict with the basic assumption of DP that
every forward pass with a certain sample instance reduces the
privacy budget of that instance. As can be seen from Table 2,
undersampling always led to a significant decrease in test F1-
scores (−12.33% and −4.96% for ISIC and EyePACS,
respectively). The use of a class-weighted loss, on the other hand,
led to a slight increase in test F1-score in the case of EyePACS, while
reducing the score for ISIC by −2.24%. An inspection of the test
confusion matrix, however, reveals that only in the case of
undersampling, the DP trained model can predict all eight
individual classes for ISIC. For both non-weighted and class-
weighted loss, the DP models focus heavily on the majority classes.

3.2 The effect of concept-based
explanations on model privacy in theory

This section reports the results of different MIAs considering
their theoretical impact in a suboptimal deployment scenario to
outline the vulnerability of different explanation variations. MIAs
are applied to ISIC and EyePACS models exposing no explanations,
attribution-based explanations, or concept-based explanations to
compare and quantify the impact of different explanation levels on
the vulnerability of networks. First, the results of metric-based

attacks are reported, followed by SVM-based and NN-based
approaches.

3.2.1 Metric-based attacks
Figure 3 shows the AUCs of different metric-based attacks on all

trained models. For the ISIC dataset, the loss is clearly the most
impactful variable to be used in an MIA, resulting in AUCs of up to
92%, followed by saliency attribution maps and class predictions
with an average AUC in the baseline of 77% and 75%, respectively.
Both CLM versions and gradient-based attribution maps resulted in
comparable performances. Occlusion, however, yielded lower attack
AUCs on average. The worst average AUC is reported by concept
predictions, with an average of 59% in the baseline settings.
Surprisingly, the results for the EyePACS dataset suggest that
concept predictions are most informative for MIAs, while
attribution maps result in the lowest AUCs. The loss, however,
performed only slightly above chance with an average AUC of 55%.
Moreover, both gradient-based and perturbation-based attribution
maps yielded lower AUCs for EyePACS, while g-CLMs led to 5.5%
higher AUCs on average. Although general trends are observable,
AUCs can vary significantly between different model architectures.
Over the baseline results for both ISIC and EyePACS it can be
observed that both ConvNeXt and ResNet50 are, on average, more
vulnerable as compared to NFNet, with average AUCs of 66%, 66%,
and 63%, respectively.

The trends reported for the baseline training setting are similarly
reflected in the other two training settings. For both datasets, a peak
in concept prediction vulnerability in the overfit setting is noticeable.
Moreover, occlusion attribution seems to drastically lose
information value in the overfit and DP settings. Overall, it can
be noted that the highest attack AUCs are achieved on baseline
models, followed by overfit and DP, as backed by the average AUCs
of 65%, 63%, and 61%, respectively. However, AUCs of different
metrics suffer to a different extent from overfitted or DP training.
While metrics like the loss, or attributions suffer higher AUC losses

FIGURE 2
Confusion matrices generated on test set evaluation for ConvNeXt models trained on the EyePACS dataset with (A) baseline training setting
optimized for performance and (B) training setting optimized for overfitting. It can be seen that the higher test accuracy achieved by the overfittedmodel
is a result of its higher tendency to predict the majority class.

TABLE 2 Weighted average F1-scores of ResNet50 models trained on ISIC and
EyePACS with differential privacy ( = 10) under different imbalanced training
settings.

Dataset ISIC (%) EyePACS (%)

Baseline 66.81 82.56

Weighted Loss 64.57 82.76

Undersampling 54.48 77.60
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in DP, metrics based on concept-based explanations remain the
same or sometimes even increase (e.g., p-CLMs on EyePACS).

3.2.2 SVM-based attacks
Figure 4 shows the test accuracies of SVM-based attacks on

baseline models from different architectures, using different attack
metrics for the ISIC and EyePACS datasets. For the ISIC dataset, it
can be observed that ConvNeXt was most vulnerable, on average,
whereas features from NFNet and ResNet50 resulted in lower attack
accuracies. It is also clear from the results that concept predictions
significantly increase the attack accuracies as compared to the
normal target class predictions. Interestingly, all high-
dimensional attack vectors led to lower attack accuracies in the
SVM-based attacks. Moreover, attacks including Saliency
attribution maps were not conclusive at all.

The results for EyePACS draw a similar picture. The attack
models achieve an average accuracy of 71% using only class
predictions as the attack vector. Adding concept predictions or
CLMs to the attack vector increases the average vulnerability by 9%
or 24%, respectively. Interestingly, there is only a minor difference
between results for gradient-based and perturbation-based CLMs.
Moreover, adding concept predictions to the attack vector composed
of class predictions and CLMs leads to marginal improvement.
Attack vectors composed of class predictions and attribution
maps tend to yield lower attack accuracies. Whereas the
perturbation-based attribution yielded largely consistent results,
the performance of attacks based on gradient-based occlusion
varied depending on the underlying architecture of the victim
classifier. Overall, the results indicate a higher average
vulnerability of ConvNeXt as compared to NFNet and ResNet50.

Similar to ISIC, all attack vectors that include attribution maps
yielded lower attack accuracies as compared to the attacks based on
concept-based explanations only.

3.2.3 NN-based attacks
The attack accuracies from NN-based attacks are presented in

Figure 5 for both datasets and varying attack architectures. First, it
can be observed that VGG16 and FC usually resulted in the best
attack accuracies, while ConvNeXt performed worst. Moreover,
results from FC and VGG16 attack models indicate that
ConvNeXt victim models are slightly more vulnerable as
compared to NFNet and ResNet50.

Overall, the experiments indicate that the combination of the
target class prediction vector, concept predictions and perturbation-
based CLMs (TP + CP + p-CLMs), results in the highest vulnerability
for most attack cases. For ISIC, any attack vector combination with
gradient-based CLMs surprisingly yielded lower attack accuracies.
In the case of VGG16, Saliency attribution maps performed
comparable to the attacks based on concept-predictions. Attack
vectors combining all types of explanations typically result in lower
vulnerability as compared to attack vectors based only on concept-
based explanations, except for FC for EyePACS.

Figure 6 shows the effect of different training settings on the attack
accuracy when using the FC attack architecture. It is strikingly visible
that for both datasets, DP leads to an increase in vulnerability for all
models. This effect is most strongly apparent in attack vectors including
concept-based explanations. However, in the case of EyePACS,
attribution-based attack accuracies increase for DP as well. The
overfit training setting, on the other hand, shows several cases where
the attack accuracy decreases as compared to the baseline.

FIGURE 3
AUCs of metric-based membership inference attacks applied on all ISIC and EyePACS models in the suboptimal deployment setting. The average
AUC over different model architectures is indicated by the red lineplot.
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3.3 The effects of concept-based
explanations on model privacy in practice

This section presents the results of MIA attacks in the more
challenging, optimal deployment scenario, where the training
dataset distribution has a significant overlap with the real-
world data.

Figure 7 shows the attack AUCs of metric-based attacks on the
SCDB, ISIC, and EyePACS datasets. It can be observed that all attack
AUCs for all datasets lie below 60%. For EyePACS and SCDB, AUCs
even lie below 53% with no consistent behavior between different
attack metrics. Therefore, the attacks can be considered as
unsuccessful. However, for the ISIC dataset it can be seen that
the loss consistently yields the highest attack AUCs, followed by the
class predictions.

The same picture is drawn by the SVM-based and NN-based
attacks. Figure 8 shows an example of classifier-based attacks using

the FC attack network on SCDB, ISIC, and EyePACS. It can be seen
that barely any membership inference is possible in this scenario.
Moreover, no significant trend or advantage is observable for a
specific attack vector combination.

3.4 The effects of DP on CAVs

Table 3 shows the mean and standard deviations of test
accuracies for CAVs evaluated on the test portion of the
concept datasets. Results are averaged over all model
architectures for each of the training settings. In addition to
the dataset-wise observation, the average over all datasets is
presented in the last column. The results for the synthetic
SCDB dataset clearly show that there is a strong correlation
between the model performance and the corresponding CAV
accuracy. With decreasing model performance from baseline to

FIGURE 4
Attack accuracies of SVM-based membership inference attacks in the suboptimal deployment setting for all model architectures trained on (A) ISIC
and (B) EyePACS datasets for ease of legibility, the components of the attack vectors have been shortened as TP for target class prediction,CP for concept
prediction, ATT_Occ for Occlusion attribution maps, and ATT_SAL for Saliency attribution maps.
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FIGURE 5
Attack accuracies of NN-based membership inference attacks in the suboptimal deployment setting for all model architectures trained on (A) ISIC
and (B) EyePACS datasets with three different attack architectures. For ease of legibility, the components of the attack vectors have been shortened as TP
for target class prediction, CP for concept prediction, ATT_Occ for Occlusion attribution maps, and ATT_SAL for Saliency attribution maps.

FIGURE 6
Attack accuracies of NN-based membership inference attacks using a fully connected network on all models in the suboptimal deployment setting
for all model architectures trained and training strategies on (A) ISIC and (B) EyePACS datasets. For ease of legibility, the components of the attack vectors
have been shortened as TP for target class prediction, CP for concept prediction, ATT_Occ for Occlusion attribution maps, and ATT_SAL for Saliency
attribution maps.
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DP settings, the CAV accuracy decreases as well, while the
standard deviation of the results increases significantly (from
± 1.83 in baseline to ± 2.68 in DP). This overall trend is confirmed

when inspecting the results for the EyePACS dataset, as well as the
aggregated statistics over all datasets. The ISIC dataset, however,
draws a slightly different picture in the average accuracy, with a

FIGURE 7
Attack accuracies of metric-based membership inference attacks in the suboptimal deployment scenario for all model architectures trained on (A)
SCDB, (B) ISIC, and (C) EyePACS datasets.

FIGURE 8
Attack accuracies of NN-based membership inference attacks using the FC attack network on SCDB, ISIC, and EyePACS models in the suboptimal
deployment scenario. For ease of legibility, the components of the attack vectors have been shortened as TP for target class prediction, CP for concept
prediction, ATT_Occ for Occlusion attribution maps, and ATT_SAL for Saliency attribution maps.

Frontiers in Bioinformatics frontiersin.org13

Lucieri et al. 10.3389/fbinf.2023.1194993

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1194993


minor increase in concept accuracy for the DP setting, while the
lowest average concept accuracy is reported in the overfitted
training setting. The standard deviation, on the other hand, is
highest in the DP setting, whereas the overfitted setting shows the
lowest value. However, these results are surprising considering
the fact that all architectures trained on ISIC suffered the highest
relative drop in performance from baseline to DP settings.

The average cosine similarities between the 100 individually
computed CAVs are given in Table 4, averaged over all architectures
in different training settings. In addition to the dataset-wise
observation, the average over all datasets is again presented. A
cosine similarity of 1 indicates the total alignment of vectors,
whereas 0 indicates orthogonality. The results for the synthetic
SCDB dataset indicate that the CAVs are more aligned in the
baseline settings, while CAVs in overfit and DP settings tend to
deviate more from one another. For ISIC and EyePACS, results show
only slight to no significant differences in cosine similarity of CAVs.
However, in both cases overfit resulted in the lowest cosine
similarity, while DP resulted in the highest values. Overall, it can
be seen that the baseline setting leads to the highest alignment of
CAVs, followed by DP and overfit.

4 Discussion

Concept-based explanations are a particularly useful tool for
building human-aligned machine interfaces. In contrast to
traditional explanation methods, they specifically utilize the same
high-level concepts known to their relevant stakeholders in their
explanation. This drastically improves the intelligibility of the
system, and therefore facilitates the integration of AI in complex
real-world use cases. However, making the decision behavior more
transparent should not compromise a model’s robustness against
attacks by adversaries. Particularly in healthcare and biomedicine,
membership inference attacks harbor the risk of disclosing sensitive
information about data subjects. The results presented in Section 3

indicate some interesting interactions between concept-based
explanations and the vulnerability of victim models under
membership inference attack. In the following, some main
findings are presented and discussed in more detail.

4.1 Class-imbalance is one of the biggest
problems in private biomedical image
analysis

The results of the model trainings indicate that NFNet has the
most robust performance over datasets and training settings.
However, ConvNeXt and ResNet50 performed comparably in
many settings. The F1-scores reported for models trained on
SCDB align with the initial expectations of lower performance
when overfitting, and significantly lower performance when
training with differential privacy. It is striking, however, that
even for the well-balanced SCDB dataset, DP led to two-digit
performance drops.

Models trained on the ISIC dataset suffered substantial
performance drops from overfitting and DP training. This is
reasonable when considering that it is an 8-class classification
problem with high dataset imbalance. The high imbalance with
some minority classes having no more than 194 instances in the
training set also leads to a drastic reduction in training set size when
under sampling. However, under sampling also failed to improve or
at least maintain the model performance in the case of the much
more balanced EyePACS dataset with 6,138 total samples left in the
undersampled training dataset. Moreover, class-weighted losses
have had a very insignificant impact on imbalanced training,
while even decreasing the model performance in problems with
very high class imbalance. Interestingly, models trained on the
EyePACS dataset showed less performance drops when overfitting
and training using the DP procedure. This is partly because
EyePACS is formulated as a binary problem. As seen in the
confusion matrices, it can also be assumed that the detection of
diabetic retinopathy is a sufficiently complex problem, where even
baseline models suffer from a significant amount of overfitting to the
original data distribution.

From a practical perspective, the results strongly highlight the
importance of class-balancing in biomedical imaging. It is in the
nature of the healthcare system, that biomedical imaging
workflows are strongly outcome and context biased. This
means that some imaging procedures are usually undertaking
only in very severe and suspicious cases. Therefore, the quantity
of documented disease can vary widely depending on the clinical
relevance, leading to high class imbalances. Moreover,

TABLE 3Mean and standard deviation of the CAV test accuracies over all model architectures tested on the concept data test split. Results are given averaged over
all datasets, as well as the averages over model architectures trained on single datasets.

Dataset SCDB ISIC EyePACS Overall

Mean Std Mean Std Mean Std Mean Std

Baseline 84.03% ±1.83 68.93% ±3.99 64.41% ±6.99 72.46% ±4.27

Overfit 77.89% ±2.26 67.80% ±3.46 62.72% ±7.01 69.47% ±4.25

DP 73.69% ±2.68 68.13% ±4.31 61.58% ±7.06 67.80% ±4.68

TABLE 4 Cosine similarities of individual CAVs trained on concept data. Results
are given averaged over all datasets, as well as the averages over model
architectures trained on single datasets. Cosine similarity of 1 indicates full
alignment, while 0 indicates orthogonality.

Dataset SCDB ISIC EyePACS Overall

Baseline 0.44 0.46 0.40 0.44

Overfit 0.37 0.44 0.38 0.40

DP 0.35 0.48 0.42 0.42
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examinations in certain facilities often correlate highly with
extremely malignant, or exceptional cases of a disease. All of
these factors lead to implicit biases and spurious correlations in
datasets, which data-driven algorithms can easily pick up. This is
often very hard to reveal without highly curated gold standard
evaluation datasets. As shown in this study, class imbalances in
biomedical datasets are even more important in cases where
privacy is of interest. This is also in line with previous
findings on the severe effect of data imbalance on differential
privacy (Farrand et al., 2020). On one hand, researchers should
put more efforts into the development of training methods that
allow good learning behavior in cases of imbalanced datasets in
normal and differentially private training settings. Ultimately, it
should be the goal to curate more high-quality datasets in
biomedical domains, which are broad enough and
representative of many case variations.

4.2 Concept-based explanations could
increase the vulnerability of private models

The comparison of attack vulnerabilities in the suboptimal
deployment scenario gives valuable insight into the impact of
concept-based explanations to the model privacy. Results from
the metric-based attacks suggest that concept-based explanations
can sometimes lead to higher model vulnerability as compared to
classical attribution maps. In the case of EyePACS, the attacks on
concept predictions were even more successful as compared to using
the loss as the attack vector. SVM-based attack results confirm these
findings, highlighting that the impact of concept predictions
depends on the training dataset. This might also correlate with
CAV accuracy, as concept-predictions led to less vulnerability in
EyePACS, which presented lower average CAV performance. Both
SVM- and NN-based attacks support the finding that concept-based
explanations clearly outperform attribution methods as attack
vectors for MIAs. Moreover, the results indicate that when
concept-based explanations are present, the addition of
attribution maps to the attack vector is usually deteriorating
attack accuracies. This might stem from the fact that the drastic
increase in attack vector dimensionality complicates the extraction
of relevant features, even for NN-based attack models.

The theoretical investigation indeed revealed that concept-based
explanations can potentially increase the vulnerability of systems,
under some conditions. One pragmatic intuition that could justify
why concept-based explanations lead to a higher vulnerability, is the
sheer fact that CLMs of different CAVs expose a higher dimensional
internal representation of the network, as compared to the single
attribution map that is typically presented only for the class
predicted by the network. However, it has also been shown that
in some cases the concept prediction vector alone can yield higher
attack accuracies as compared to the CLMs or attributionmaps. This
suggests that it is not solely the amount of information exposed, but
particularly the information content, that appears to be informative
about the network’s behavior.

While gradient-based attribution usually led to higher attack
AUCs, no significant difference was noticeable between
gradient- and perturbation-based CLMs in metric-based and
SVM-based attacks. However, the NN-based attacks clearly show

that p-CLMs seem to be more informative for MIAs. This finding is
supported by the fact that p-CLMs have been previously found to
show a much stronger ability of concept localization as compared to
g-CLMs (Lucieri et al., 2020b).

4.3 There is a need for differentially private
concept-based explanations

The metric-based attack results indicated that DP successfully
reduces the attack accuracy on traditional attack metrics such as the
loss and class predictions. However, it highlights that the
vulnerability added by exposing concept-based explanation
metrics is mostly unaffected by DP. This finding is further
reinforced by the results of the NN-based attacks, which clearly
show that DP can even lead to higher model vulnerability when
using concept-based explanations.

The most important reason for the ineffectiveness of DP when
using concept-based explanations is the post hoc nature of the CAV
method. Currently, there is no differentially private CAV procedure,
which means that the binary concept classification layers are trained
without any limitations on the differentially private network. This
introduces new network parameters which can incorporate sensitive
information about the data statistics of individual concept samples.
Moreover, it is important to note that the CAVs have been trained
only on the available concept subsets (Derm7pt for ISIC trained
models, and STARE for EyePACS trained models). The fact that
concept-based explanations were trained on extremely narrow
datasets might have caused extreme variations in the explanation
of the other data subsets, which lie outside the previously seen
concept distribution. This even seems to be the case for CAVs
computed on EyePACS trained models, which were computed on
STARE while the MIAs were conducted on ISIC and APTOS2019
subsets.

The conclusion of these results is two-fold. First, it is highlighted
that there is a strong need for a differentially private variant of the
concept-based CAV explanation method, which takes privacy
constraints into account, even after the model is trained.
Moreover, the results suggest that distribution shifts between
concept training datasets and the remaining data distribution can
potentially cause more harm, beyond unreliable concept predictions.

4.4 Concept-based explanations have no
significant impact on model privacy in
practice

The results in Section 3.3 clearly highlight that the practical
vulnerability of the AI model to membership inference attacks is
mostly independent of the choice of explanations exposed to
stakeholders through the public API of a data-driven algorithm.
Previous results from Shokri et al. (2021) already indicated that
MIAs do not gain performance by utilizing attribution maps as the
attack vector, but that this information can mainly be exploited by
adversaries in tabular datasets with binary features. The findings in
the present paper reinforce these previous results and demonstrate
that image-based AI systems in biomedical domains are not
significantly threatened by exposing attributions or concept-based
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explanations under the right deployment scenario. Furthermore, the
membership inference attacks in this work were experimentally
constructed as full white-box attacks for comparing the theoretical
influence of different explanation techniques to the vulnerability of
models. From a practical perspective, the presented results can
therefore be interpreted as an upper bound on the potential
vulnerability of explainable AI systems. Common deployment
setups limit, for instance, the frequency of model requests
allowed. This drastically complicates the acquisition of sufficient
features for the training of attack models. Moreover, AI systems
often provide processed values for prediction and explanation values
instead of raw data. Although this reduces the sensitive information
exposed by the victim model, previous works (Choquette-Choo
et al., 2021) demonstrated that a post-processing of the
prediction vector is not enough to fully eliminate privacy
vulnerability.

To still assure a safe deployment of AI systems exposing
concept-based explanations, a few points should be considered.
First off, the conducted experiments assumed the full exposure of
raw concept-based explanations. However, in a practical setting it
might be more feasible to filter for only those concept explanations
that are relevant to the current predictions. This could mean that not
all CLMs are communicated as a matter of principle, but that CLMs
are only presented for the concepts that were likely detected by the
network. The same applies to the concept predictions scores. On one
hand, this inconsistency of explanation output makes it harder for
adversaries to collect relevant information for their attacks, and on
the other hand reduces the explanation complexity for the relevant
stakeholders consuming the explanations. Moreover, a post-
processing of the raw concept predictions and CLMs is highly
suggested to reduce the specific information leakage to overfitted
model behavior. The main advantage of concept-based explanations
as compared to feature attribution is that the explanation lies in the
higher-level meaning, as compared to exact values or relations of
quantities. Depending on the use case, it might make sense to blur,
smoothen or add small amounts of noise to the CLM signal, as long
as the actual interpretation by humans is not hampered. However,
this is a trade-off that has to be carefully considered for each use-case
separately, as it introduces strong assumptions about the network’s
decision-making process.

In addition to safety measures on the side of explanations, it is
even more important for model developers to ensure the integrity of
the model’s training data, as well as the concept data used to train the
CAVs. The experiments clearly show that a training dataset that is
representative of a broad range of real-world data significantly
decreases the probability of successful membership inference
attacks. Although training datasets can never fully capture all
variations of the real world, methods like data augmentation,
style transfer, and the addition of various subsets of data
acquired from a variety of sources and subpopulations are
important tools towards robust training sets. Furthermore,
various experiments highlighted the importance of clean, large,
and representative concept datasets for CAV training. Concept
datasets provide a communicative interface to the model’s
representation of the target task and act as the human definition
of the concepts at hand. Therefore, it is of crucial importance that
these dataset samples are sufficiently representative of the concept’s
variations, and that the dataset clearly and unambiguously describes

the idea of the concept. The results indicate that current public
datasets for concept training inherit serious biases and imbalances,
which makes their utility debatable.

4.5 Differential privacy fails to defend against
membership inference attacks

Most surprisingly, the experiment results indicated that training
with DP did not only fail to defend against MIAs, but even reinforce
the attack accuracies in some cases. As already discussed, the post
hoc nature of concept-based explanations might introduce an
exploitation to an already trained DP model. However, the
results from Section 3.2 also illustrate that attack vectors
composed of only target class predictions and attribution maps
were more effective on models trained with differential privacy. Up
to two-digit increases in attack performance were reported in some
cases. The aim of DP is to provide a probabilistic guarantee on the
privacy protection of individuals in a dataset. One possible reason
for the reported behavior is, that the dataset distributions in the
suboptimal deployment scenario were so different that the MIAs on
DP trained models did not reveal the presence of actual individuals,
but their subgroups. DP training, in theory, forces the network to
generalize upon the broad data distribution of the training set,
without focussing too much on single examples. This also means
that some underrepresented training samples from marginal
distributions, are considered less as in the unrestricted training,
to avoid over fitting on these examples. It might be possible that the
DP training allows models to focus more on a more general core
distribution, while neglecting marginal distributions. This might
potentially lead to more sensitive responses of its internal
representation when exposed to unseen data distributions, and
requires further investigation.

4.6 CAVs alignment and performance suffer
from private training

The results presented in Section 3.4 indicate that there is a
notable impact of DP on the generated CAVs. For most of the
datasets, DP led to a decrease in average CAV accuracy and an
increase in standard deviation. For the synthetic SCDB dataset, this
is further confirmed by the cosine similarities of repeated CAV
computation with different random undersampling of the concept
training dataset.

Both biomedical image datasets, however, showed a small
increase in similarity of CAVs when trained in the DP setting.
Interestingly, the average CAV accuracies and the CAV alignment
do not correlate with the models’ test performances in those
datasets. ISIC, for instance, suffered from a significant decline in
performance for all architectures when trained in the DP setting, but
the average CAV accuracy was not impacted to a significant extent.
For SCDB, on the other hand, a strict correlation between concept
quality and model performance can be observed. A possible reason
for this unintuitive behavior is the imperfection of the definition of
concepts in real-world biomedical domains, in conjunction with
potential biases due to non-representative concept training sets. The
fact that CAV accuracies remain unchanged when the target task
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performance decreases, either indicates that the concepts were
prioritized in favor of other, more irrelevant features, or that the
concepts as defined by the concept dataset mainly encode spurious
correlations instead of the actual concept at hand.

4.7 The vulnerability to privacy attacks is
architecture dependent

The experimental results overall indicate that victim models
based on the ConvNeXt architecture are slightly more vulnerable
compared to ResNet50 and NFNet. This trend is reinforced by
observing the mean attack accuracies on the attack vector
composed of target class predictions, concept predictions and
g-CLMs (TP + CP + g-CLMs) in NN-based attacks for both
datasets, where ConvNeXt scores an average of 86.56%, followed
by NFNet with 84.58% and ResNet50 with 79.11%. Although
ResNet50 seems less vulnerable in this perspective, the difference
to NFNet vanishes when considering different attack vector
combinations. The trend of ConvNeXt being most vulnerable,
however, is consistent over all metric-based, SVM-based and
NN-based settings. This indicates, that the vulnerability of a
model to MIA attacks is indeed not only dependent on the
training dataset, but also on the architecture at hand.

4.8 Limitations

Despite the careful design of experimentation, some limitations
of this work remain. Due to the high complexity of optimization
problems with high-dimensional feature vectors, the convergence of
NN-based MIAs cannot be guaranteed. For this large-scale
benchmark, a fixed optimization scheme with early stopping was
chosen to get reasonably consistent and comparable results.
However, some attacks might be further improved when
specifically focusing on their optimization. For the SVM-based
attacks, dimensionality reduction has been conducted for high-
dimensional attack vectors, including attributions and CLMs.
This reduction might have also had a slight influence on the
results achieved by these attacks. Although a theoretical
comparison of models trained with different optimization
schemes (e.g., baseline vs. DP) is possible, the practical relevance
remains uncertain. Especially in the case of DP trained medical
image models, it is unavoidable that models achieve lower
performances, due to comparatively high class imbalances.
Moreover, DL models can have substantial differences in their
decision-making, even when model performances appear to be
comparable. This work investigates the vulnerability of
explainable AI systems in suboptimal and optimal optimization
settings. However, the data distributions and data shifts can vary
greatly in different real-world deployment scenarios. Therefore, it is
advised to evaluate each particular deployment case on its own,
using this work as a guideline. The theoretical analysis of white-box
MIAs served as an empirical upper-bound to the vulnerability of
explainable AI models. However, most DL models deployed in
biomedical contexts will allow only query-limited black-box
access through a prediction and explanation API. The real
vulnerability is therefore expected to be lower, as the training of

shadow models would be required to perform the final MIA.
Whereas Saliency is a non-parametric attribution method, the
quality of Occlusion maps can vary considerably with the choice
of parameters. The results for attribution-based MIAs can therefore
vary depending on the selected parameters. In this work, parameters
for Occlusion have been chosen upon experience, and optimizing
the subjective quality of attribution maps. An even stronger
limitation is imposed by CAV explanations, as the quality of
concept-based explanations not only depends on the parameter
choice, but also on the available concept training data. Larger and
higher quality concept datasets could potentially lead to higher
quality explanations that might result in increased privacy
vulnerability.

5 Conclusion

In a row of systematic experiments, the theoretical effect of
concept-based explanations on the vulnerability of models under
membership inference attack is investigated. Using a synthetic
concept dataset in addition to two realistic biomedical examples
of skin lesion analysis and diabetic retinopathy detection, the
vulnerability of three different model architectures exposing
varying levels of explanations is assessed. The results suggest that
concept predictions and CLMs expose more sensitive information as
compared to traditional input feature attributions, potentially
leading to higher model vulnerability against membership
inference attacks in suboptimal deployment scenarios. However,
further analysis highlights the insignificance of this threat for
realistic application scenarios of biomedical imaging and
emphasizes the importance of representative and balanced
training datasets, as well as extensive data augmentation.
Moreover, a need for a differentially private training procedure
for concept-based explanations is identified. In addition, the results
revealed that training with differential privacy does not necessarily
lead to an improved resilience against membership inference attacks,
but that it sometimes even reinforces privacy leaks in imbalanced
datasets as commonly used in the biomedical domain. The
computation of concept-based explanations, on the other hand, is
negatively influenced by the constraints introduced by differential
privacy.

This work opens up a series of further interesting questions. In
this work, we specifically focussed on investigating the impact of
concept-based explanations on white-box membership inference
attacks. To fully investigate the privacy risk of explanations,
however, it is necessary to also evaluate the vulnerability against
other types of attacks, including model extraction and input
reconstruction attacks. Moreover, even though we showed that
concept-based explanations, in practice, do not introduce
significant vulnerabilities for MIAs, other scenarios must be
further investigated. Assuming that concept-based explanations
potentially improve model extraction attacks, more complex
attack scenarios still need to be investigated. For example, it
would be interesting to explore how model extraction attacks
could be exploited by adversaries to improve their MIAs by
subsequent metric-based attacks on the loss. Besides local
explanations in the form of concept predictions and CLMs, the
CAV method can provide further statistics such as the TCAV score.
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Future work should investigate the privacy risk posed by the
application of other human-centric explanation methods,
including the utilization of the TCAV score, as well as their
combination, to properly reflect practical application scenarios.
Yet, the impact of privacy-preserving methods on the quality of
explanations has only been numerically measured by approximating
subjective values such as smoothness and continuity. However, the
process of explaining a model decision is highly dependent on the
interpretation of facts by the explainee. Thus, future works should
focus on user studies to properly quantify the subjective decrease in
explanation quality in real application scenarios. Lastly, this work
identified that the TCAV method itself is, so far, incompatible with
the framework of differential privacy. Moreover, the usually low
number of concept samples makes it particularly challenging to align
concept training with notions of privacy. Future work should
investigate this problem, deriving ways to allow privacy-aligned
concept training in low data regimes.

Safety and accountability are two major aspects in the
deployment of modern AI systems in high stakes domains such
as healthcare and biomedicine. Transparency and privacy follow two
opposing goals in decision-making. Therefore, it is of utmost
importance to thoroughly investigate their interplay to ensure the
optimal trade-off for the given application at hand.
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