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Class A G protein-coupled receptors (GPCRs) represent the largest class of
GPCRs. They are essential targets of drug discovery and thus various
computational approaches have been applied to predict their ligands.
However, there are a large number of orphan receptors in class A GPCRs and
it is difficult to use a general protein-specific supervised prediction scheme.
Therefore, the compound-protein interaction (CPI) prediction approach has
been considered one of the most suitable for class A GPCRs. However, the
accuracy of CPI prediction is still insufficient. The current CPI prediction model
generally employs thewhole protein sequence as the input because it is difficult to
identify the important regions in general proteins. In contrast, it is well-known that
only a few transmembrane helices of class A GPCRs play a critical role in ligand
binding. Therefore, using such domain knowledge, the CPI prediction
performance could be improved by developing an encoding method that is
specifically designed for this family. In this study, we developed a protein
sequence encoder called the Helix encoder, which takes only a protein
sequence of transmembrane regions of class A GPCRs as input. The
performance evaluation showed that the proposed model achieved a higher
prediction accuracy compared to a prediction model using the entire protein
sequence. Additionally, our analysis indicated that several extracellular loops are
also important for the prediction as mentioned in several biological researches.
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1 Introduction

G protein-coupled receptors (GPCRs) are seven-transmembrane proteins that are
activated by various ligands, such as hormones, neurotransmitters, and sensory stimuli
(Di Pizio et al., 2019). Due to their characteristics, GPCRs are involved in many diseases, and
approximately 35% of approved drugs target GPCRs (Sriram and Insel, 2018). This is
because GPCRs are expressed on the cell membrane, which facilitates molecular interactions
in the extracellular environment, and because their binding sites for compounds are well-
defined (Di Pizio et al., 2019). GPCRs preserve a signal transduction mechanism that
involves a large conformational change to fit with G proteins. This mechanism is encoded by
conserved motifs found throughout all seven transmembrane domains (TMs) and forms a
TM-interacting network that converges on the cytoplasmic side (Cong et al., 2017).
Specifically, when the 7 TMs are numbered as TM1 to TM7 starting from the
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N-terminus, motifs such as “D(E)RY” in TM3, “CWLP” in TM6,
and “NPxxY“ in TM7 are present (Venkatakrishnan et al., 2013).
GPCR is classified into six classes based on sequence similarity: class
A, rhodopsin-like; class B, secretin-like; class C, metabotropic
glutamate receptor-like; class D, fungal pheromone receptor-like;
class E, cAMP receptor-like; and class F, frizzled/smoothened-like
(Davies et al., 2008; Harding et al., 2017). While having 7 TMs is a
common feature among all classes of GPCRs, each class has specific
structural features, such as the highly complex and elongated
N-terminus in class B and C GPCRs (compared to class A
GPCRs), including a Venus flytrap domain in class C GPCRs.
This results in differences in the binding regions of compounds
among GPCR classes. In class A GPCRs, the binding region of
compounds is only the seven-transmembrane domains. However, in
class B GPCRs and class C GPCRs, the very long N-terminal
domains also become binding regions for compounds (Di Pizio
et al., 2019). Class A GPCRs are the largest subfamily of human
GPCRs, including rhodopsin, adrenergic receptors, and olfactory
receptors. These proteins are known to have a ligand-binding site in
the alpha helix region of the transmembrane domain
(Venkatakrishnan et al., 2013). Many orphan receptors are
present in class A GPCRs. Therefore, deorphanization of class A
GPCRs is considered to be very important for drug discovery.
Studies on predicting the binding of compounds to class A
GPCRs have long been conducted using structure-based and
ligand-based virtual screening techniques. Target proteins include
adenosine receptors (Carlsson et al., 2010; Wei et al., 2020; Jacobson
et al., 2022), adrenaline receptors (Sabio et al., 2008; Kolb et al., 2009;
Chevillard et al., 2019), chemokine receptors (Mysinger et al., 2012;
Mishra et al., 2016; Adlere et al., 2019), and olfactory receptors
(Ahmed et al., 2018; Yuan et al., 2019), and these research have
contributed to the discovery of novel ligands. However, structure-
based virtual screening requires highly accurate 3D models of
proteins, which is difficult to be applied to proteins with
unknown structures such as olfactory receptors. Ligand-based
virtual screening, on the other hand, is effective for proteins with
sufficient ligand information and is not suitable for proteins with
limited ligand information. Furthermore, as mentioned earlier, class
A GPCRs have a high prevalence of orphan receptors, making
ligand-based methods unsuitable.

As a solution to this problem, there is a method of predicting
CPI (compound-protein interaction) using machine learning from
the protein sequence information and compound structure
information (Bleakley and Yamanishi, 2009; van Laarhoven et al.,
2011; Cheng et al., 2012; Wang and Zeng, 2013). This approach has
been applied to various protein families, and deep learning-based
predictions have been shown to be effective. Several deep learning
models, such as DeepDTA (Öztürk et al., 2018), which encodes
protein sequences and compounds and extracts features using
convolutional neural networks, CPI-GNN (Tsubaki et al., 2018)
and GraphDTA (Nguyen et al., 2019), which use graph neural
networks instead of convolutional neural networks, have been
proposed. In recent years, a CPI prediction model called
TransformerCPI (Chen et al., 2020), which utilizes Transformer
(Vaswani et al., 2017) and was specifically designed for the CPI
prediction task, was proposed.

When applying existing CPI prediction models to class A
GPCRs, the prediction accuracy is insufficient and there is room

for improvement. Recent protein sequence-based CPI prediction
models use the entire protein sequence as input information for the
protein side, in order to make them applicable to various protein
families. However, protein residues in the sequence include not only
those directly related to binding but also those that are not involved
in binding, such as the intrinsically disordered regions at the N- and
C-termini, etc. If the entire protein sequence is encoded as input,
regions that are not directly related to binding are also encoded.
Non-binding regions can become noise and potentially degrade the
model’s predictive performance.

According to previous studies, it has been reported that
performance can be improved by targeting a specific protein
family and limiting the protein sequence used in the prediction
model to only the important parts for ligand binding, rather than the
entire sequence (Chepurwar et al., 2019; Cong et al., 2022; Lee and
Nam, 2022). Cong et al. identified important protein residues
involved in ligand binding based on docking simulations of a
limited number of odorant receptor-compound pairs, targeting
the olfactory receptor which is a type of class A GPCR(Cong
et al., 2022). However, it cannot be concluded that these residues
are important for all proteins in the dataset. In addition, Ingoo et al.
obtained ligand binding regions from 3D complexes (Lee and Nam,
2022). This method is only applicable to proteins with known 3D
structures and is not suitable for families that include proteins with
unknown 3D structures, such as class A GPCRs. Therefore, it is
difficult to identify the optimal protein residues involved in ligand
binding that are common to all class A GPCRs. However, as
previously mentioned, it is known that the ligand binding region
of class A GPCRs is located in the transmembrane helices. Thus, it is
possible to select important input protein residues for ligand binding
based on this domain knowledge.

To address the problem, we proposed a class A GPCR-specific
encoding model called a Helix encoder. It focuses amino acid
sequence of seven transmembrane helix regions of class A
GPCRs and uses them as the input. By replacing the encoder
part of TransformerCPI with the Helix encoder, we developed a
class A GPCR-specific CPI prediction model. We also constructed a
dataset of compound-protein interaction information of class A
GPCRs. We evaluated the performance of our proposed class A
GPCR-specific CPI prediction model using the dataset and
compared the performance with a CPI prediction model which
uses a whole protein sequence as the input.

2 Materials and methods

2.1 Dataset construction

We constructed a dataset only including compound-protein
interaction information of class A GPCRs. GLASS DB (Chan
et al., 2015) was used to construct the class A GPCR dataset. This
database contains experimentally validated information on the
interaction between GPCRs and ligands, with
743,031 interaction information for 707 proteins and
316,814 compounds. To extract the information of class A
GPCRs from the database, GPCRdb (Pándy-Szekeres et al.,
2022) was referred. We used UniProt (Bateman et al., 2021)
IDs to determine whether the protein was a class A GPCR. In this
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study, we deal with the activity prediction problem as a binary
classification of whether a target protein is activated by the
ligand or not. We only used affinity data evaluated by IC50 or
EC50. If the negative logarithms of the affinity value were 6 or
more, we labeled it as positive. Additionally, as pointed out in
the TransformerCPI study on ligand bias, compounds with only
one interaction were removed, as were compounds that existed
only in one class. The final class A GPCR dataset is described in
the Table1.

2.2 Input features

As we mentioned, basically only the transmembrane helix
sequences involved in binding with compounds in class A GPCR.
Thus, we only used the transmembrane regions as the input of the
proposed model. Protein sequence information was obtained from
UniProt. At that time, the start and end positions of each helix were
obtained from the secondary structure information registered in
UniProt, and the protein sequence was divided into seven helix
sequences. The word2vec (Mikolov et al., 2013) algorithm used in
TransformerCPI was used to encode each helix sequence. Finally,
the protein sequence input becomes a p × 100 dimensional feature
vector, where p is the length of each helix sequence.

We used the same embedding method for compounds used in
TransformerCPI. The compounds in the class A GPCR dataset were
represented by canonical SMILES, and each atom was converted to a
34-dimensional feature vector using RDKit. Furthermore, the
representation of each atom, which integrates the features of
neighboring atoms using graph neural networks, was learned,
and the input format was aa × 64 dimensional feature vector,
where a is the number of atoms.

2.3 Helix encoder

An overview of the Helix encoder is given in Figure 1. The
architecture of the Helix encoder consists of two blocks: one block
composed of a 1D convolution layer and a gated linear unit (GLU)
layer (Dauphin et al., 2017), and another block composed of a multi-
headed attention layer and a feedforward layer that forms a self-
attention block. The helix feature vectors, which are embedded into p ×
100 dimensions by word2vec, are first inputted into the block
consisting of the 1D convolution layer and GLU. At this point, the
maximum length pmax among the length pi (i = 1, 2, . . ., 7) of each helix
is taken, and zero-padding is performed for helices shorter than pmax.
This results in all helix feature vectors becoming pmax × 100
dimensions, which then serve as input. The block consisting of the
1D convolution layer and GLU layer adopts the same architecture as
the protein sequence encoder of TransformerCPI. The helix feature
vectors encoded by each 1D convolution layer and GLU layer are
concatenated and subjected to positional encoding. The protein
sequence vector, which is positional encoded, becomes (pmax × 7) ×
64 dimensions, and serves as input to the self-attention block. The
output of the multi-headed attention layer is added to the input value
and then normalized by layer normalization, which serves as input to
the feedforward layer. The final output is a (pmax × 7) × 64 dimensional
feature vector, which serves as input to the decoder of TransformerCPI.
Details of the hyperparameters are listed in Supplementary Table S1.

2.4 Evaluation

This study treats class A GPCR activity prediction as a binary
classification problem. The receiver operating characteristic (ROC)
curves were used for analyzing the performance and the area under
the ROC curve (AUC) was used as the performance evaluation
metric. Two models were constructed based on a TransformerCPI
model in this experiment: one replaced the sequence encoder with a

TABLE 1 Details of the class A GPCR dataset.

Proteins Compounds Interactions Positive Negative

382 11,246 31,888 15,801 16,708

FIGURE 1
Overview of Helix encoder. The amino acid sequence of a class A
GPCR protein is divided into seven subsequences (TM1, TM2, . . .TM7)
according to transmembrane region information and then they are
independently processed in the encoding unit.
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Helix encoder that limited input sequences to transmembrane
helices, while the other used the sequence encoder using whole
sequences as the input (same as the original TransformerCPI’s
encoder). The class A GPCR dataset was randomly split into
training and test data in an 8:2 ratio for training and evaluation,
respectively. The data was split randomly, so multiple split patterns
could be created by changing the seed value. Therefore, in this study,
five patterns of training and test data were prepared, i.e., (train0,
test0), . . ., (train4, test4). The statistical significance of the
improvement was confirmed based on them. The training data
were randomly split into training and validation data in an 8:
2 ratio, and the final model was selected based on the validation
data. All models were evaluated and compared based on the AUC of
the test data for the final model with the highest AUC based on the
validation data during 100 epochs.

3 Results

3.1 Training detail

The learning curves of the TransformerCPI encoder model and
Helix encoder model are shown in Supplementary Figure S1, S2.

Both models show a decrease in the training loss over 100 epochs,
but the validation AUC has started to converge within the first
100 epochs. Across all validation cases, the maximumAUC based on
the validation data occurs between 80 and 100 epochs, and the
model at that point is selected as the final model. The average AUC
based on the five validation datasets is 0.918 for the Helix encoder
model and 0.911 for the TransformerCPI encoder model.

3.2 Model performance

The model using the Helix encoder achieved a higher AUC than
the TransformerCPI encoder model for both validation and test
data. Table 2 shows the performance of both models on the five test
cases. A one-sided paired t-test with a significance level of 5% was
performed on the AUCs for the five test cases, showing that the
performance improvement of the Helix encoder is significant (p =
0.0015 < 0.05) and confirming that the Helix encoder is effective in
predicting the activity of class A GPCRs.

The ROC curves for both models are shown in Figure 2. The
ROC curve of the Helix encoder exhibits a larger curve than that of
the TransformerCPI encoder model. Specifically, at the low false
positive rate stage (false positive rate = 0.2), the Helix encoder

TABLE 2 Prediction accuracy in test cases (AUC).

Model test0 test1 test2 test3 test4 Average

TransformerCPI encoder 0.912 0.912 0.916 0.910 0.916 0.913

Helix encoder 0.922 0.920 0.919 0.920 0.922 0.920

FIGURE 2
ROC curve of prediction results of Helix encoder and TransformerCPI encoder. The green curve is the Helix encodermodel and the blue curve is the
TransformerCPI encoder model.
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achieves a higher true positive rate than the TransformerCPI
encoder. In contrast, the Helix encoder shows comparable or
worse accuracy with a false positive rate of less than 0.05. It is
probably because prediction can be made based only on the ligand
information for several cases, and the improvement of protein-
sequence encoding may not have a significant impact on such cases.

3.3 Performance for different receptor
subfamilies

Class A GPCRs consist of several subfamilies, such as aminergic
receptors, peptide receptors, etc. We calculated the prediction
accuracy (AUC) for each subfamily using the subfamily
definition of the GPCRdb database (Pándy-Szekeres et al., 2022).
The summaries of the results are shown in the Table 3. Several
subfamilies, such as melatonin receptors, have a limited number of
data and the prediction accuracy was much lower than a subfamily
with sufficient data. We hoped that the CPI predictions would
maintain accuracy even for smaller subfamilies, but it turns out
that sufficient information about closely related proteins is still
important.

3.4 Transferability of a prediction model and
the performance for novel ligands

This study uses random splitting to divide the test and training
data. Therefore, many proteins included in the test data are also
included in the training set, making it inappropriate for estimating
prediction accuracy for novel proteins. Therefore, proteins in the
test set that are not included in the training set were extracted from
the cross-validation results. As a result, 37 proteins were extracted.
The prediction accuracy (AUC) for the subset was 0.786 and it is
much worse than that for the remaining cases (the target protein of
the test set is included in the training data set). Unfortunately, this
indicates that the transferability of the proposed method is still
insufficient.

We also checked the prediction performance of the proposed
method for novel ligands. We checked the oldest publication year of

each ligand using the ChEMBL literature record. As a result, 872 out
of 11,246 ligands were published after 2015. For the novel ligands,
we calculated the prediction accuracy and the AUC was 0.825. We
considered that the lower accuracy was due to the low similarity of
such novel ligands to the old ones. Therefore, we calculated the
average Tanimoto similarity of the ECFP4 fingerprint between the
novel and old ones and within the novel ones, but we could not find
clear differences (0.334 and 0.353, respectively). The reason for the
poor performance against novel ligands may be due to more
complex compound structures.

3.5 Comparison with docking simulation

Docking simulation is one of the main methods in structure-
based virtual screening. However, a direct performance comparison
between the proposed method and docking simulation is difficult
because many proteins do not have an experimentally determined
3D structure. Therefore, we selected a protein (UniProt ID: P42866)
with the most interaction data among the proteins with known 3D
structures in our dataset and compared the performance of the
proposed method and docking simulation for the data. We
performed the docking simulation using Autodock Vina ver 1.2
(Trott and Olson, 2010). The center coordinates of the search box
were manually set using ChimeraX, and boxsize �
20�A × 20�A × 20�A was used. As a result, the prediction accuracy
(AUC) of the docking simulation was 0.766. In contrast, the
proposed method showed AUC = 0.882 and was much better.
However, this target protein has enough interactions
(925 interactions), so the setting is more favorable for CPI
prediction. As mentioned above, the prediction accuracy of the
proposed method for the novel target protein was less than 0.8.
Therefore, the prediction accuracies of the two methods would be
almost comparable for such a situation.

4 Discussion

4.1 Influence of extracellular loop

4.1.1 Extracellular loop 2
As mentioned earlier, class A GPCRs form a ligand-binding

pocket within their seven transmembrane domains for interaction
with compounds. However, it has been reported that there are
proteins that have residues that directly interact with certain
compounds when binding to the extracellular loop 2 (ECL2)
(Wheatley et al., 2012). Adding ECL2 as an input feature may
therefore improve the accuracy of activity prediction. ECL2 is an
extracellular loop located between transmembrane domains 4 and 5
(TM4 to TM5) of GPCRs, counted from the N-terminal region of the
transmembrane domain. ECL2 has a very long and highly diversified
sequence compared to other extracellular loops (Wheatley et al., 2012;
Wolf and newald, 2015). On the other hand, the disulfide bond
between ECL2 and TM3 is conserved in 92% of human GPCRs
(Karnik et al., 2003), and is considered important for ligand binding
and receptor activation (Woolley and Conner, 2017). In many cases,
the ECL2 of GPCRs is non-structured and positioned to cover part or
all of the entrance to the ligand-binding pocket (Woolley and Conner,

TABLE 3 Prediction accuracy for different subfamilies.

Subfamily #Interactions AUC

Aminergic receptors 8294 0.846

Peptide receptors 10,719 0.925

Protein receptors 470 0.930

Lipid receptors 8494 0.971

Melatonin receptors 29 0.738

Nucleotide receptors 1237 0.874

Steroid receptors 68 0.805

Alicarboxylic acid receptors 81 0.847

Orphan receptors 144 0.704

Frontiers in Bioinformatics frontiersin.org05

Yamane and Ishida 10.3389/fbinf.2023.1193025

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1193025


2017). For example, the representative protein of class A GPCRs,
rhodopsin, has an ECL2 that forms a β-hairpin structure and is
positioned deep inside the orthosteric pocket (Palczewski et al., 2000).
On the other hand, the ECL2 of the β2-adrenergic receptor forms an α

helix, and diversity in its structure is also observed. ECL2 is said to
play an important role in ligand binding of class A GPCRs depending
on its length, position, and structure (Wheatley et al., 2012). For
example, when rhodopsin binds to its ligand, 11-cis-retinal, it has been

TABLE 4 Prediction accuracy (AUC) of Helix encoder (TM + ECL2).

Model test0 test1 test2 test3 test4 Average

Helix encoder (TM + ECL2) 0.922 0.923 0.928 0.920 0.924 0.924

TABLE 5 Prediction accuracy (AUC) of Helix encoder (TM + ECL1) and Helix encoder (TM + ECL3).

Model test0 test1 test2 test3 test4 Average

Helix encoder (TM + ECL1) 0.918 0.927 0.925 0.921 0.924 0.923

Helix encoder (TM + ECL3) 0.917 0.921 0.919 0.924 0.925 0.921

FIGURE 3
Attentionweights per residue calculated byHelix encoder (TM+ECL2). (A)Attentionweight of each region for CXCR4 and IT1t. Hyphens are padding
parts. (B) Attention weight plotted against CXCR4 (PDB id: 3DOU, chain A).

Frontiers in Bioinformatics frontiersin.org06

Yamane and Ishida 10.3389/fbinf.2023.1193025

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1193025


reported that Ser186, Gly188, Ile189, and Tyr191 of ECL2 directly
interact with the ligand (Palczewski et al., 2000). In addition, it has
been reported that Arg183, Ile185, Cys186, and Asp187 of CXCR4
(C-X-C chemokine receptor type 4) are important for binding with
IT1t in ECL2 (Wu et al., 2010).

The Helix encoder restricts input protein sequences to 7TM, but
it is believed that performance in predicting activity can be improved
by including regions outside the membrane-spanning domain, such
as ECL2, in the input. Therefore, a Helix encoder model with input
of both 7TM and ECL2 (TM + ECL2) was constructed, and its
performance was compared to that of the conventional Helix
encoder and TransformerCPI encoder. The position of ECL2 was
obtained from UniProt in the same way as when it was located
outside the membrane-spanning region. The architecture of the
Helix encoder (TM + ECL2) was constructed by adding a block of
1D convolutional layers and GLU layers to the Helix encoder, with
the new block inserted between TM4 and TM5 and adjusted to
ensure that the order of all residues is maintained during position
encoding. The hyperparameters and optimization functions were
unchanged from those used in the Helix encoder.

Table 4 shows the AUCs for five test cases and their average
AUCs. The average AUC in the test set showed that the Helix
encoder (TM + ECL2) had the highest performance (Table 2, 4).
Furthermore, a one-sided t-test with a significance level of 5% was
performed for each test case of the Helix encoder and the Helix
encoder (TM + ECL2), and the improvement in performance was
found to be significant (p = 5.2e − 05 < 0.05). This confirms that the
information from ECL2 is important for GPCR activity prediction in
Class A GPCRs.

4.1.2 Other extracellular loops
In addition to ECL2, GPCRs have other extracellular loops,

namely, ECL1 and ECL3, which are located between TM2 and
TM3 and TM6 and TM7, respectively. Other extracellular loops may
also affect the selectivity of compounds that enter the ligand-binding
pocket from the extracellular space and may also influence ligand

binding. Therefore, in this section, we constructed Helix encoder
(TM + ECL1) and Helix encoder (TM + ECL3) to confirm the
performance of the prediction model.

The test AUCs for Helix encoder (TM + ECL1) and Helix encoder
(TM + ECL3) are shown in Table 5. The average test AUCs were
0.923 and 0.921 for Helix encoder (TM + ECL1) and Helix encoder
(TM+ECL3), respectively. Bothmodels showed higher AUCs than the
Helix encoder, but lower AUCs than the Helix encoder (TM + ECL2).
Therefore, it was confirmed that the information from extracellular
loops is important for the prediction of class A GPCRs, and the
information from ECL2 contributes more to the prediction.

4.2 Attention weight analysis

Helix encoder (TM + ECL2) showed a higher test AUC of
0.928 in specific test split (test2). Thus, there may be many
protein-compound pairs in test2 where ECL2 is considered
important. To verify this hypothesis, the importance of each
region (TM1, TM2, TM3, TM4, ECL2, TM5, TM6, TM7) was
examined by checking how much attention weight is assigned to
each region during prediction. The importance of each region
was calculated based on the attention weight assigned to each
residue in that region. The attention weight for each residue was
calculated using the multi-headed attention of the decoder. An
example of the residue-level attention weight in CXCR4 and IT1t
is shown in Figure 3.

The region attention weight for each test case was calculated as
the average of the region attention weights of protein-compound
pairs in that test case. Figure 4 shows the region attention weights for
the five test cases. The calculation of region attention weights for
each test case revealed that test2 had the highest ECL2 region
attention weight among the five test cases, suggesting that there
may be many protein-compound pairs in test2 where ECL2 is
considered important. Therefore, the reason why the Helix
encoder (TM + ECL2) had a higher test AUC in test2 than other

FIGURE 4
Region attention weight for each test case. The region attention weight of the ECL2 in test2 is higher than in the other test cases.
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models is likely because the addition of ECL2 contributed to the
prediction performance of class A GPCRs.

Whether ECL2 directly interacts with ligands or not varies not only
depending on the protein, but also on the protein-compound pair.
Therefore, it is a reasonable result that the use of ECL2 in the input
sequence can greatly improve the performance of class A GPCR activity
prediction in some cases, but only slightly in others. Since there are still
many protein-compound pairs that have not been analyzed for the
involvement of ECL2 in ligand binding, the introduction of ECL2 into
the input sequence is important for predicting class AGPCR activity for
specific protein-compound pairs. Additional experiments have shown
that using not only TM but also extracellular loops leads to higher
validation and test AUCs in class A GPCR activity prediction. This
suggests that residues other than TM may also be important for
interactions depending on the protein-compound pair, but it can be
said that the information of ECL2 in particular has an impact on
predictive performance based on the results of the average test AUC.

5 Conclusion

In this study, we developed a Helix encoder that can effectively
encode class A GPCR protein sequences. The results of the
performance evaluation showed that the proposed method
achieved higher AUC compared to a prediction model using all
protein sequences.

In this research, we used estimated transmembrane regions of
a class A GPCR to improve the prediction. This process only
implicitly used the structural information of a protein. However,
several existing studies have investigated the ligand-GPCR
interaction based on the predicted tertiary structures (Di
Rienzo et al., 2022). Especially for GPCRs, specific tertiary
structure prediction methods such as GPCR-I-TASSER(Zhang
et al., 2015) can be used for accurate prediction, and recently
AlphaFold2 has improved the availability of using modeled
structures. Thus, the direct introduction of such tertiary
structure information of a protein can contribute to the
improvement of CPI prediction.

Furthermore, using not only transmembrane helix regions but
also extracellular loops as the input, the prediction model showed
better performance, especially with the addition of ECL2. Thus, it
indicates that transmembrane regions and ECL2 are effective subsets
of protein sequences for class A GPCR activity prediction.

After the development of TransformerCPI, several deep
learning-based CPI prediction models have been proposed (Bui-
Thi et al., 2022; Kurata and Tsukiyama, 2022; Qian et al., 2022).
Some of them have shown better performance than
TransformerCPI. In class A GPCR-compound activity prediction,
the Helix encoder approach used can be substituted for the protein
sequence encoders used in these studies, thereby enabling further
improvement in performance.
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