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Introduction: Association rule mining (ARM) is a powerful tool for exploring the
informative relationships among multiple items (genes) in any dataset. The main
problem of ARM is that it generates many rules containing different rule-
informative values, which becomes a challenge for the user to choose the
effective rules. In addition, few works have been performed on the integration
of multiple biological datasets and variable cutoff values in ARM.

Methods: To solve all these problems, in this article, we developed a novel
framework MOOVARM (multi-objective optimized variable cutoff-based
association rule mining) for multi-omics profiles.

Results: In this regard, we identified the positive ideal solution (PIS), which maximized
the profit andminimized the loss, andnegative ideal solution (NIS), whichminimized the
profit and maximized the loss for all gene sets (item sets), belonging to each extracted
rule. Thereafter,wecomputed thedistance (d+) fromPISanddistance (d−) fromNIS for
each gene set or product. These two distances played an important role in determining
theoptimized associations among various pairs of genes in themulti-omics dataset.We
then globally estimated the relative closeness to PIS for ranking the gene sets.When the
relative closeness score of the rule is greater than or equal to the pre-defined threshold
value, the rule can be considered a final resultant rule. Moreover,MOOVARM evaluated
the relative score of the rule based on the status of all genes instead of individual genes.

Conclusions:MOOVARM produced the final rank of the extracted (multi-objective
optimized) rules of correlated genes which had better disease classification than
the state-of-the-art algorithms on gene signature identification.
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1 Introduction

Amicroarray (Bandyopadhyay et al., 2014; Bandyopadhyay and
Mallik, 2016) has been widely used to measure a large number of
genes for determining differences between two groups (e.g., cases
versus control samples), including gene expression profile,
methylation, and genotype-based association studies. Methylation
of cytosine (Navarro et al., 2012) changes the structure of DNA by
introducing a methyl group (−CH3) at the carbon5 position of
cytosine without altering the underlying DNA sequences.
Methylation changes the gene expression, which pathologically
leads to cancer. In general, methylation decreases the gene
expression level. At present, the association rule mining (ARM)
method plays a vital role in generating the significant relationships
between two genes (items) in the research field of bioinformatics and
biomedical sciences (Mallik, 2013). The rule representing the format
is as follows: {G1+, G2−, G4+0 G3−, G5+ }, where G1, G2, and G4
are the cause variables (antecedent) and G3 and G5 are effective
variables (consequent). Of note, here, “+” symbolizes upregulation
and “−” denotes downregulation. The aforementioned rule states
that when the genes G1 is upregulated, G2 is downregulated, and G4
is upregulated concurrently, it is likely thatG3 will be downregulated
and G5 will be upregulated simultaneously. The support of a rule
{A 0 B} (where A and B are items) is defined as the fraction of the
number of transactions that contains A and B to the total number of
transactions in the database, whereas the confidence of the rule is
defined as the ratio of the support of the whole gene set (i.e.,A and B)
to the support of the antecedent/left-hand side (i.e., A). If the
support of the gene set is higher than the user-defined minimum
support, then the gene set is called frequent. A useful and
fundamental association rule mining method, Apriori, was
introduced by Agrawal et al. (1993) for identifying the
association among the genes in the gene expression data or other
similar kinds of data. Apriori and Eclat are the two benchmark
algorithms used for mining the frequent item sets. The Apriori
algorithm is introduced by Agrawal et al. (1993), while Eclat was
developed by Zaki (2000) (Alves et al., 2010). The basic steps of the
Apriori algorithm are as follows: i) obtaining the support
(frequency) value for each individual item (feature), ii) filtering
out non-frequent items by using a user-defined support threshold,
iii) selecting frequent k-item sets (k = 1,2,×), iv) then converting all
frequent item sets into association rules, and v) finally, estimating
two more rule interestingness measures, viz., confidence and lift.
However, the Eclat algorithm (Zaki, 2000) is somewhat different
from Apriori (Agrawal et al., 1993). Apriori is basically a join-based
algorithm, while Eclat is a tree-based algorithm. In other words,
Apriori follows a breadth-first search (horizontal search), while Eclat
follows a depth-first search (vertical search). Eclat is faster than
Apriori. The Eclat algorithm requires only the support metric. Both
the algorithms use static support and static confidence thresholds.

This basic ARM method has been updated and modified
depending on the problem types to overcome various limitations
by the researchers, such as Han et al. (2004), Creighton and Hanash
(2003), Georgii et al. (2005), McIntosh and Chawla (2007), and
Martinez et al. (2008). Those updated techniques help us manage
the critical problems which arise in our daily life like medical
diagnosis, marketing, and traveling. The genes of the gene sets
have different types of priority. However, the basic rule mining

algorithms treat all genes of the gene sets as belonging to the same
class equivalence (quality). To overcome this challenge, the following
researchers introduced weighted ARM methods for the classification
of genes: Ramkumar (1998), Cai (1998), Wang (2000), Tao (2003),
Yun and Leggett (2005), Tseng (2010), and Mallik et al. (2015). The
weighted ARM methods were further modified and considered
multiple weighted factors for solving transaction data-related
problems (Liu et al., 1999; Su et al., 2008; Liu et al., 2011). Some
clustering- and biclustering-based techniques were invented for
studying gene expression data by Cheng and Church (2000), Pei
(2003), Jiang et al. (2004), Madeira and Oliveira (2004), Thalamuthu
et al. (2006), and Prelic et al. (2006). StatBicRM (Maulik et al., 2015),
another classification analysis, was also developed for this reason, in
which Bhasin and Raghava (2004), Paziewska et al. (2014), Martella
(2009), Liu and Xu (2009), and Georgii et al. (2005) used a half-space
concept for extracting quantitative association rules from numeric
microarray datasets without using discretization. The limitation to
this approach is that it was unable to find the complete set of
significant rules from the microarray data. The GenMiner
technique was proposed by Martinez et al. (2008) for finding
association rules from a set of gene expression data and the online
available terms that were linked to Gene Ontology (i.e., GO-terms).
Bhadra et al. (2017), Mallik et al. (2013), and Bhadra et al. (2018)
proposed a new concept where the cutoff (threshold) value was
considered dynamical and altered for each gene set according to
the quality/importance of the whole gene set rather than the
quantification property. Some latest works are also based on the
ARM/optimizationmethod. Theilhaber et al. (2020) provided a tool in
two-arm clinical studies. The methodology was based on the
construction and optimization of a predictive multivariate gene
signature that can predict the differential survival of patients
undergoing anti-cancer therapies. Theilhaber et al. (2020) applied
enhanced binary particle swarm optimization (EBPSO) in clinical
transcriptomic cohorts to identify accurate, crisp, and significantly
prognostic unique candidate signatures. The gene regulator within
this signature yields biological insights into the relevant functions that
were strongly correlated with their cancer type (Murphy et al., 2022).
Nivedhitha et al. (2020) conducted survey research by categorizing
different feature selection algorithms under supervised, unsupervised,
and semi-supervised learning. This survey presented some latest tools
of dimensionality reduction for tumor detection and also analyzed
their performances and highlighted limitations and direction of future
research to handle the high-dimension and less sample size data. On
2020, Ganguly and Mukherjee (2020) provided a modeling,
simulation, and performance analysis study for an isolated hybrid
power system (IHPS) which contained the solar thermal power plant,
diesel engine generator (DEG), and wind turbine generator (WTG).
To achieve better results for the studied IHPS model, authors applied
the quasi-oppositional-based whale optimization algorithm and
obtained better controller gain than other benchmark algorithms.
In addition, there are some existing works of association rule mining
which are based on fuzzy or rough theory (Sharmila and Vijayarani,
2019; Singh and Ganesh Wayal, 2012). However, the outcome rules
are not good enough. Inclusion of the multi-objective optimization
technique is an efficient step to improving the performance of
association rule mining. After surveying the literature, we obtained
some recently developed multi-objective optimization techniques that
were presented by Mudi et al. (2019), Mudi et al. (2021a), Mudi et al.
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(2021b), Mudi et al., (2022), Ganguly et al. (2018), Ganguly et al.
(2017), and Ganguly and Mukherjee (2020). In this article, we
developed multi-objective optimized variable cutoff-based
association rule mining (MOOVARM) for multi-omics profiles
based on the minimum distance from the positive ideal solution
(PIS) and that from the negative ideal solution (NIS). In this regard,
we first identified (PIS) and (NIS) with respect to all gene sets.
Therefore, we calculated the distance (d +) from PIS and distance
(d −) from NIS for each product/item set. According to our proposed
method, we calculated the relative closeness score value based on those
two distances d + and d − for ranking the gene sets. If the relative
closeness score of any rule was greater than or equal to the pre-defined
cutoff value, the rule could be considered the final resultant rule. The
proposed method calculated the relative closeness score globally
instead of individual genes. Last, we made the ranking of the rules
based on the relative score which had better disease classification
performance than the state-of-the-art algorithms in disease diagnosis
and therapeutic response.

2 Shortest distance-based cutoffs

The distance-based variable supports (denoted by DbVS) cutoff
technique proposed by Mallik and Zhao (2017b) was introduced to
obtain some attractive rules from multi-omics datasets by
combining co-expression, co-methylation, and protein–protein
interactions. The normalized combined correlation score was
calculated by the integration of co-expression and co-methylation
values (say CECMexm) between the expression and methylation
profiles containing a specific number of genes which are both
differentially expressed and methylated. Basically, CECMexm

measures the similarity of expression and methylation patterns
between the two genes. The expression/methylation data of all
the diseased and control values are denoted by a gene vector G.
Let p and q be two genes, and CECMexm between p and q is denoted
by CECMexm (p, q). This is computed as follows:

CECMexm p, q( ) � norm PCB Gex p( ), Gex q( )( ) * r Gm p( ), Gm q( )( )( ),
(1)

where Gex(p) and Gm(p) are two vectors consisting of expression
and methylation values, respectively, across all samples for the pth
gene. Pearson’s correlation coefficient (Mallik, 2013) between the
two groups is denoted by r (·, ·), where PCB(·, ·) processes the
multiplication of Pearson’s correlation score and the BioSIM score
(Bandyopadhyay and Bhattacharyya, 2011) between any two genes.
Here, the normalization technique is denoted by norm (·) which
followed the min–max normalization concept. The lower and upper
limits CECMexm (·, ·) were 0 and 1, respectively. Thereafter, the
corresponding dissimilarity scores (say Dsimt) were computed with
the help of CECMexm scores, i.e., Dsimt (p, q) = (1 − CECMexm (p, q)).
Thereafter, we determined protein–protein interactions from the
Human Protein Resource Database (HPRD) and selected the
interactions of the interactive protein-oriented genes among the
set of genes which are differentially expressed and methylated. H is
the protein–protein interaction matrix for the selected differentially
expressed and methylated genes. In every gene pair (p, q), we
multiplied the interaction value in H and the corresponding
weighted distance value in Dsimt and subsequently calculated the

resultant value, DijStP (p, q). The expression of DijStP (p, q) is given
as DijStP (p, q) = (H (p, q)*Dsimt (p, q)). To compute DijStP (p,q) for
all gene pairs (p, q), we selected the weighted distance for every gene
pair that contained the interactions in their corresponding protein
levels among each other. This resulted in a similarity and symmetric
matrix. Using this matrix, we constructed a weighted transcriptomic
gene regulatory network. Dijkstra’s shortest path algorithm was then
used on the gene regulatory network, and the relative weighted
shortest distance matrix was generated (denoted by We SD).
According to the fundamental biological theory, the biological
functions or biological pathways of two genes are the same if the
distance between two genes is low. In this work, we utilized the
shortest distance between every two genes belonging to the network.
Thereafter, we calculated different distances among all gene pairs
belonging to the We SD matrix such as the maximum weighted
shortest distance (We SDmx), minimum weighted shortest distance
(We SDmn), and average weighted shortest distance (We SDavg) that
were computed without considering the diagonal elements of the
underlying matrix. The distance-based variable supports threshold
within the gene set (GS) DbVS(GS) is defined as follows:

DbVS GS( ) �
����������������������
1

ngp
∑

p,q∈GS;p≠q
WVmsc p, q( )2√

, (2)

where

WVmsc p, q( ) � UVminS 1 − WeSD p, q( ) −med WeSD( )( )*c1
c2*MAD WeSD( )( ), ifp! � q,

UVminS, ifp �� q,

⎧⎪⎪⎨⎪⎪⎩
where ngp indicates the total number of possible gene pairs within
GS and c1 and c2 are two constant terms. The value for c1 is set at
0.10, while c2 is a constant scaling factor whose value is set at
1.4826 for the assumption of a Gaussian distribution pattern to
utilize any parametric test.

Similarly, another two different types of thresholds, viz.,
distance-oriented variable confidence (denoted by DbVC) and
distance-oriented variable lift (denoted by DbVL), are defined as
follows:

DbVC GS( ) �
����������������������
1

ngp
∑

p,q∈GS;p≠q
WVmcc p, q( )2√

, (3)

where

WVmcc p, q( ) � UVminC 1 − WeSD p, q( ) −med WeSD( )( )*c1
c2*MAD WeSD( )( ), ifp! � q,

UVminC, ifp �� q,

⎧⎪⎪⎨⎪⎪⎩
where UVminC depicts the user-mentioned minimum

confidence threshold, and

DbVL GS( ) �
����������������������
1

ngp
∑

p,q∈GS;p≠q
WVmlc p, q( )2√

, (4)

where

WVmlc p, q( ) � UDminL 1 − WeSD p, q( ) −med WeSD( )( )*c1
c2*MAD WeSD( )( ), ifp! � q,

UDminL, ifp �� q,

⎧⎪⎪⎨⎪⎪⎩
where UDminL represents the user-mentioned minimum lift

threshold value, while c1 and c2 denote the constant values for
scaling the fractional part.

Frontiers in Bioinformatics frontiersin.org03

Mallik et al. 10.3389/fbinf.2023.1182176

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1182176


3 Multi-objective optimized association
rule mining for the multi-omics dataset

In this section, we developed a novel algorithm calledMOOVARM
for multi-omics profiles. Here, we integrated the gene expression,
methylation, and protein–protein interaction data based on the idea of
multi-objective optimization and weighted shortest distance to
produce interesting rules for multi-omics profiles. The three basic
steps of this algorithm are explained in the following sections. All
abbreviations of Model parameters are discussed in Table 1.

3.1 Finding significant genes

Initially, matched genes and matched samples between gene
expression and methylation data were found. Using the zero-mean
normalization (Bandyopadhyay et al., 2014) technique, the gene
expression/methylation data were normalized genewise. The empirical
Bayes test using the limma package (Mallik and Zhao, 2017b;Mallik and
Zhao, 2017a; Smyth, 2004) on both normalized expression and
methylation data was executed for finding differentially expressed
and methylated genes. limma was used because of its effectiveness on
normalized gene expression/methylation data for any data distribution
and any number of samples. Numerous pairs of genes in the normalized

expression/methylation dataset comprised more than one probe. We
applied limma for every gene probe individually and found the
differentially expressed/methylated probes in terms of the significant
Benjamini–Hochberg (BH) corrected p-value. The probes for which the
Benjamini–Hochberg (BH) corrected p-value is less than the standard
cutoff 0.05, the expression/methylation data are treated as differentially
expressed/methylated gene probes. Then, we selected the probe of each
gene for which the corresponding Benjamini–Hochberg (BH) corrected
p-value generated using the limma tool was the lowest among all probes
of each gene. The remaining probes of those genes were deducted from
the corresponding dataset. Last, only those genes containing single
probes were obtained which were both differentially expressed and
methylated andwhose respective proteins had interactions in theHPRD.

3.2 Discretization and post-discretization
formats

Assuming that N referred to the set of genes which had both the
differential expression and differential methylation profiles and which
were involved in the protein–protein interaction, while n denotes the
number of genes that are both differentially expressed and differentially
methylated (N). Let M denote the set of matched samples between the
expression and methylation data, while m denotes the number of

FIGURE 1
Examples of post-discretization in the proposed method.
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matched samples between the expression andmethylation data (M). The
normalized expression and methylation data matrices of the genes
belonging to N are symbolized as DiEnorm and DiMnorm, respectively.
The row of data matrices represents the gene, whereas the column
indicates the transaction (sample). The binary representation ofDiEnorm
and DiMnorm is essential for the association rule mining. When DiEnorm
was normalized applying the zero-mean normalization technique, the
rowwise (i.e., genewise) mean values became zero. If the value of
expression data was greater than 0, the value was treated as
upregulation (denoted as UpR), and thus, it was converted into 1 at
the time of discretization, whereas any value which was less than
0 denoting downregulation (denoted by DwR) was turned into
0 during discretization. On the other hand, in the methylation data,
the value that was greater than 0 indicating hyper-methylation (denoted
as HperM) was converted into 0, whereas any value that was less than
0 indicating hypo-methylation (denoted asHpoM) was converted into 1.
The aforementioned discretization procedure for the expression and
methylation datasets is described in the following equations, respectively:

DDiEnorm i, j( ) � 1, if DiEnorm i, j( )> 0,
0, if DiEnorm i, j( )< 0,

{ (5)

DDiMnorm i, j( ) � 1, if DiMnorm i, j( )< 0,
0, if DiMnorm i, j( )> 0,{ (6)

where DDiEnorm and DDiMnorm indicate the discretized expression
and methylation data matrices, respectively. The range of i and j
values are 1–n and 1–m, respectively. Then, all the resultant
discretized matrices are transposed as follows:

DDiTEnorm � t DDiEnorm( ), (7)
and

DDiTMnorm � t DDiMnorm( ). (8)
During post-discretization, the transposed discretized expression

data (denoted by DDiTEnorm in Eq. 7) and methylation data (denoted
by DDiTMnorm in Eq. 8) were merged into a single binary matrix
(denoted byPDiDem), with the size of [m× (2*n)]. The integration of the
expression and methylation data produced four types of genes, viz., 1)
upregulated and hypo-methylated genes, 2) upregulated and hyper-
methylated genes, 3) downregulated and hyper-methylated genes, and
4) downregulated and hypo-methylated genes. As gene expression and
methylation are inversely proportional to each other, the first and third
categories of gene sets (i.e., categories denoted by (i) and (iii)) were
selected. As mentioned previously, the column length (gene area) of
post-discretization is twice that of the column length (gene area) of the
transposed discretized expression/methylation matrix, i.e., the size of
PDiDem is [m × (2*n)].

The first half of the column vector of PDiDem is for type (i)
upregulation and hypo-methylation, while the second half of the
column vector of PDiDem is for type (iii) downregulation and
hyper-methylation. Therefore, if the particular cell/house value (say
cell at the jth sample and the ith gene) of the transposed discretized
expression data matrix DDiTEnorm is 1 (i.e., the so-called upregulated)
and the same cell/house value of the transposed discretized
methylation data matrix DDiTMnorm is 1 (i.e., the so-called hypo-
methylation), it satisfies type (i) upregulation and hypo-methylation.
We place a symbol “1” at the same cell/location of the first half of the
post-discretized matrix (i.e., cell at the jth sample and the ith gene of
PDiDem that are seen as the first joint condition of Eq. 9) that indicated
type (i) both upregulated and hypo-methylated genes, and
simultaneously we also place a symbol “0” at the same cell/location
of the second half of the post-discretized matrix (i.e., cell at the jth
sample and the ith gene of PDiDem that are seen as the first joint
condition of Eq. 10) which is just the negation of “1.” On the other
hand, when both the transposed discretized scores for the same cell/
house were 0 (downregulation and hyper-methylation), the resultant
post-discretized value for the second half of the post-discretizedmatrix
would be 1 (see the second joint condition of Eq. 10), whereas the same
value for the first half of the post-discretized matrix would
automatically be the negation of 1 (viz., 0) (see the second joint
condition of Eq. 9). In addition, for all the other combinations of the
transposed discretized expression value and the transposed discretized
methylation value [e.g., (0 and 1), (1 and 0)], the post-discretized
values for both the first and second half would be 0.

PDiDem j, i( ) � 1, if DDiTEnorm j, i( ) �� 1&DDiTMnorm j, i( ) �� 1, UpR&HypoM( ),
0, if DDiTEnorm j, i( ) �� 0&DDiTMnorm j, i( ) �� 0, DwR&HyperM( ),
0, otherwise,

⎧⎪⎨⎪⎩ (9)

and

PDiDem j, i + n( ) � 0, if DDiTEnorm j, i( ) �� 1&DDiTMnorm j, i( ) �� 1,
1, if DDiTEnorm j, i( ) �� 0&DDiTMnorm j, i( ) �� 0,
0, otherwise.

⎧⎪⎨⎪⎩ (10)

FIGURE 2
Flowchart of the proposed rule mining method.
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However, we illustrated some examples of aforementioned
computations in Figure 1. After the post-discretization step, we
carried out transpose on the resultant post-discretized matrix for the
next step.

3.3 Proposed association rule mining
approach

The MOOVARM approach changed the traditional concept of
using the static support threshold and a static confidence threshold
which were generally applied to maintain these same thresholds
across all item sets (i.e., gene sets). In our method, after post-
discretization, the association rule mining algorithm utilized the
weighted shortest distance depending on multiple minimum
support thresholds, multiple minimum confidence thresholds,
and multiple minimum lift thresholds instead of the static
support threshold and the static confidence threshold. Those
multiple minimum thresholds were formed through the
integration of gene expression, methylation, and protein–protein
interaction profiles. The MOOVARM method worked on three
different types of profiles: gene expression, methylation, and
protein–protein interaction profiles concurrently instead of the
individual dataset, like gene expression or DNA methylation or
any other data, and produced multi-objective multi-prolific
association rules. The six main steps of this MOOVARM method
were as follows: 1) determination of frequency of every gene (item)
contained in the post-discretized data; 2) computation of WVmsc,
WVmcc, andWVmlc scores; 3) formation of a gene set tree (GSTR); 4)
generation of gene sets (item sets); 5) determination of DbVS, DbVC,
and DbVL; and 6) production of the top significant relation-
dependent association rules.

In the first step, the binary matrix denoted by PDiDem was
transformed into the transactional matrix TRDiM, which contained
transactions associated with several genes IDs per transaction. The
number of transactions that existed in TRDiM was denoted by TRn.
Both the user-mentionedminimum support cutoff (UDminS) and user-
mentioned minimum confidence cutoff (UDminC) were to be
described. UDminL (user-defined minimum lift cutoff) was kept at
the value 1. Then, the frequency of every gene from the TRDiM dataset
was determined. The frequency of the genes was greater than or equal
to UDminS and were considered frequent genes. The frequent genes
were arranged according to their frequency (from high to low order).
In the second step, the generated cutoff WVmsc (;) was computed for
every pair of genes by combining H (;), CECMexm (;), and UDminS.
Similarly,WVmcc (;) was evaluated by applyingH (;), CECMexm (;), and

TABLE 1 Model parameters.

Symbol Definition

CECMexm Co-expression and co-methylation values

G Gene vector

norm Normalization technique

PCB Pearson’s correlation coefficient

Gex Vectors consisting of the expression and methylation values

Dsimt Dissimilarity scores

HPRD Human Protein Resource Database

DijStP (p, q) The weighted distance for every gene-pair (p, q) that contained the
interactions in their corresponding protein levels among each other

We SD Weighted shortest distance matrix

We SDmx Maximum weighted shortest distance

We SDmn Minimum weighted shortest distance

We SDavg Average weighted shortest distance

WVmsc Minimum support threshold

WVmcc Minimum confidence threshold

WVmlc Minimum lift threshold

UDminS User-defined minimum support threshold

UDminC User-mentioned minimum confidence cutoff

UDminL User-defined minimum lift cutoff

med Median value

MAD Median absolute deviation

GS Gene set

GSTR Gene set tree

ngp Total number of possible gene pairs

DbVS Distance-based variable supports threshold

DbVC Distance-oriented variable confidence

DbVL Distance-oriented variable lift

DiEMnorm Set of normalized genes

DiEnorm Normalized expression

DiMnorm Normalized methylation data matrices

UpR Upregulated

DwR Downregulated

HpoM Hypo-methylated

DDiEnorm Discretized expression

DDiMnorm Methylation data matrices

DDiTEnorm Transposed discretized expression data

DDiTMnorm Methylation data

PDiDem Binary matrix

TRDiM Transactional matrix

(Continued in next column)

TABLE 1 (Continued) Model parameters.

Symbol Definition

TRn Number of transactions

Mnm Decision matrix

pij Choice value

PIS+ Positive ideal solution

NIS− Negative ideal solution
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UDminC, and WVmlc (;) was computed by integrating H (;), CECMexm

(;), and UDminL. In the next two phases, the GSTR was first obtained,
and the important gene sets were then generated consecutively by
following the same steps used in the typical FP-Growth association rule
mining method. Next, in the fifth phase, the distance-based cutoff
(i.e., DbVS, DbVC, andDbVL) scores were evaluated for every resultant
gene set by the initially computedWVmsc,WVmcc, andWVmlcmatrices,
successively. In the final phase, the support of every resultant gene set
was first identified. The frequent gene sets (i.e., the gene sets whose
support scores were greater than or equal to the respective individual
DbVS threshold instead of the user-specified support threshold
UDminS) were then identified. Next, the rules were obtained with
respect to the frequent gene sets, and the confidences and lifts of the
respective rules were computed. From the aforementioned set of rules,
we chose only those rules for which both the confidence and lift scores
were greater than or equal to their individual DbVC and DbVL cutoffs
instead of UDminC and UDminL, respectively.

A flowchart of the proposedMOOVARM rule mining method is
illustrated in Figure 2.

4 Multi-criteria (multi-objective
optimization) decision-making
technique

Multi-criteria decision-making (MCDM) (Das et al., 2013) is a
procedure used to select the best alternative of the set of finite
alternatives with respect to multiple criteria. The MCDM technique
has various applications in different fields such as economy,
management, engineering, and medical diagnosis and helps the
decisionmaker in selecting the best alternative in conflicting situations.

Input: Gene expression (EX), DNA methylation data (Mt)
and protein–protein interaction (PPI) data
Output: List of rank wise multi objective optimized

association rules

1: Procedure MOOVARM(EX, Mt, PPI)

2: Find the matched genes and matched samples

between EX and Mt, and choose only them for EX/Mt

3: Normalize EX/Mt by zero-mean normalization

4: Identify differentially expressed genes from

EX and differentially methylated genes from Mt;

and intersect them and finally choose those

intersected genes that have interactions in

HPRD (denoted as DiEMnorm gene set)

5: Discretize the EX/Mt subdata having DiEMnorm
gene set into DDiEnorm (:) and DDiMnorm (:),

respectively, and post-discretize them

together into a single matrix, PDiDem. (See

Eqs 5–10)

6: Transpose PDiDem into the transactional matrix

TRDiM

7: Generate frequent gene set GS from TRDiM

8: for each gene gi ∈ TRDiM do

9: if frequency (gi) ≥ UDminS then

10: GS ← gi
11: end if

12: end for

13: Determine WVmsc, WVmcc, and WVmlc cutoff scores

for each pair of gene

14: Form gene set tree (GSTR) and then generate

important gene set by FP-Growth rule mining

method

15: Distance-based cutoff (i.e., DbVS, DbVC, DbVL)

scores were evaluated for every resultant gene

set using WVmsc (:), WVmcc (:), and WVmlc (:)

scores, successively. Produce top

significant relation-dependent association

rules. (See Eqs 2–4)

16: Develop the decision matrix M according to

Confidence, Support, Lift, and Average WeSD

value of rules

17: Determine the Positive Ideal Solution (PIS+)

and Negative Ideal Solution (NIS−) (See Eqs

11 and 12)

18: Calculate the distance (DIS+
i) using PIS+ and the

distance (DIS−
i) from NIS− of each alternatives

(See Eqs 13 and 14)

19: Compute the relative closeness (Si) to the

positive ideal solution of each alternative

(See Eq. 15)

20: Ranking the preference order according to

relative closeness and select the alternative

that is close to 1. Thereafter, rank the

alternative depending on Si score in

descending order

21: end procedure

Algorithm 1. MOOVARM.

FIGURE 3
Comparative study between our proposed method MOOVARM
and other well-known related rule mining methods, Apriori and Eclat,
in terms of classification accuracy of the generated top 10 rules
obtained by (A) MOOVARM, (B) Apriori, and (C) Eclat.
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During the decision-making process, the decision-maker
considers the number of criteria which is helpful in reaching
the goal. Among those criteria, some conflict with each other,
some are maximized, and some are minimized. Those types of
problems are solved by different MCDM techniques such as
MAXMIN (Shen and Mo, 2009), MAXMAX (Shen and Mo,
2009), AHP (Saaty, 1990), ELECTRE (Roy and Vanderpooten,
1996), and TOPSIS (Hwang and Yoon, 1981). Those methods are
considered a decision-making procedure depending on the
problem behaviors such as ranking, scoring, selecting,
ordering, and surrounding environments such as available
data type and size, processing/execution time, internal
consistency, and logical relations. The TOPSIS method is the
most suitable MCDM method under two cases: first, in case of
problems related to the large number of criteria and alternatives;
second, in case of availability of objective and quantity data. First,
the TOPSIS method identifies the positive ideal alternative which
has the extreme performance on each criterion. It also identifies
the negative ideal alternative that produced the worst
performance on each criterion. The positive ideal solution is
the solution that maximizes the benefit criterion and minimizes
the cost criterion, whereas the negative ideal solution maximizes
the cost criterion and minimizes the benefit criterion. Next, the
method finds the alternative, depending on the closest distance
from the positive ideal solution and farthest distance from the
negative ideal solution. The classical TOPSIS method was based
on the information of the criteria that was collected from the
expert opinions and quantitative data, whereas the generated
solution was concentrated on evaluation, prioritization, and
selection (Figure 3).

The TOPSIS method calculates relative closeness and ranking
through the following steps.

Step 1: Constructing the decision matrix.Let M � (pij)nxm
correspond to a decision matrix, where pij indicates the choice
value of the ith alternative and jth criteria.

Step 2: Determining the positive ideal solution (PIS+) and
negative ideal solution (NIS−). The positive ideal solution (PIS+)
is denoted as follows:

PIS+ � p+
1 , p

+
2 , . . . . . . .p

+
m{ } �

maxi pij( )|j ∈ K( ), mini pij( )|j ∈ L( ){ }. (11)

The negative ideal solution (NIS−) is denoted as follows:

NIS− � p−
1 , p

−
2 , . . . . . . .p

−
m{ } �

mini pij( )|j ∈ K( ), maxi pij( )|j ∈ L( ){ }, (12)

where K is associated with the benefit criteria and L is associated
with the cost criteria.

Step 3: Calculating the distance from the positive ideal solution
and negative ideal solution. The distance of the ith alternative from the
positive ideal solution DIS+i is then calculated accordingly as follows:

DIS+i � ∑m
j�1

p+
j − pij( )⎛⎝ ⎞⎠, i � 1, 2, . . . . . . n, (13)

while the distance of the ith alternative from the negative ideal
solution DIS−i is then computed as follows:

DIS−i � ∑m
j�1

pij − p−
j( )⎛⎝ ⎞⎠, i � 1, 2, . . . . . . n. (14)

Step 4: Calculating the relative closeness to the positive ideal
solution Si as follows:

Si � DIS+i
DIS+i +DIS−i

, where 0< Si < 1, i � 1, 2, . . . . . . n. (15)

Step 5: Ranking the preference order, and selecting the
alternative close to 1. Ranking of the alternatives depending on
the Si score was made in descending order.

Notably, see Algorithm 1 for the major steps of the proposed
algorithm MOOVARM (Figure 4).

FIGURE 4
Comparative study between our proposed method MOOVARM and other well-known related rule mining methods, Apriori and Eclat, in terms of
mean classification accuracy of the generated rules obtained by (A) MOOVARM, (B) Apriori, and (C) Eclat, where “+” (red symbol) denotes the average
classification accuracies and the bold line signifies their median.
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5 Experimental datasets and results

In the experiment, integrative data consisting of DNA
methylation and gene expression high-grade soft tissue sarcoma
(HSTS) profiles (NCBI ID: GSE52392) (Renner et al., 2013;
Chudasama et al., 2017) were utilized. At the initial stage, the
methylation profile had 27,578 methylation probes, whereas the
gene expression profile consisted of a total of 48,645 genes. Of note,
we selected those samples which contained both the values that
consisted of two categories of samples: (i) undifferentiated
pleomorphic liposarcoma (UdPLs) (diseased samples) and (ii)
normal tumor cell line (nrTCL) (i.e., control samples). The
profile had 13 UdPLs samples and 13 nrTCL samples. Thereafter,
we chose the matched genes (i.e., 12,438) that consisted of both
methylation and expression values.

During the experiment, we first selected the genes that contained
both DNAmethylation and expression values. Since genes had more
than one single probe for methylation and expression profiles, we
preliminarily filtered out those probes containing the missing values.
The limma R tool (Smyth, 2004) was then applied on each probe to
know whether the probe was differentially expressed/methylated or
not (Figure 5).

The probe with the best significance (minimal corrected p-value)
among all the probes for every gene was selected for the next
analysis, whereas all the remaining probes for every gene were
simply omitted from the methylation profile and the expression
profile. Next, we conducted the intersection between the set of
differentially methylated genes, the set of differentially expressed
genes, and the set of genes whose respective proteins interacted with
one another in the HPRD (Peri et al., 2003). Herein, we identified
many such common genes. For each dataset, we constructed a
protein–protein interaction (PPI) network where each protein
denoted a gene in the respective intersected set of genes. Next,
we calculated the degree of each node (gene) in the PPI network and
rearranged the genes with respect to the high to low order of their
degree values. Thereafter, we conducted the discretization and post-
discretization steps, respectively. Then, we used our proposed rule
mining method, MOOVARM, and obtained multi-objective
optimized variable support-based association rule mining.
Table 2 shows the resultant rules. Notably, using the four
measures (confidence, support, lift, and WeSD) of each rule, we
optimized the rules through computing the relative score in
optimization where confidence, support, and lift were used to
maximize their values and WeSD was used to minimize their
values. Then, we ranked the rules according to the relative score
from high to low. For the HSTS dataset, the topmost rule {STAT3+,
TP53- → MAPK3+} states that if the gene STAT3 is both
upregulated and hypo-methylated and the gene TP53 is both
downregulated and hyper-methylated, then it is likely that the
gene MAPK3 is upregulated and hypo-methylated. The
confidence, support, lift, avg. WeSD, and relative score values of
this rule are 0.01, 0.00269, 0.02275, 0.00543, and 0.36, respectively.
Its previous rank before optimization was 4, but after optimization,
it secured the first rank since it has the highest relative score among
all the rules. The next top four ranked optimized rules are {STAT3+
→ MAPK3+}, {JUN+, STAT3+, TP53- → MAPK3+}, {ESR1+ →
MAPK3+}, and {JUN+, STAT3+ → MAPK3+}, whose relative
scores are 0.3596, 0.3588, 0.3565, and 0.355, respectively (in

Table 2). All details of the different rule interestingness measures,
WeSD, relative scores, and the ranks prior to and after optimization
for these top genes generated by MOOVARM are described in
Table 2.

In order to validate the significance of each of the top 10 rules (in
Table 2) generated fromDTFP-Growth, we used and executed the PAM
classifier for comparing the classification performance of the different
rules obtained from MOOVARM, Apriori, and Eclat rule mining
methods toward the samples. For this purpose, we considered only
the participating features (genes) from both sides of each individual rule
of the top 10 rules and then ran 10-fold cross-validation on the data
with the help of the PAM classifier with the default parameters to
evaluate the importance of the combination of all genes participating in

FIGURE 5
ROC curves of average accuracies and AUC in terms of sensitivity
vs. specificity to classify the respective disease using the gene sets
belonging to the topmost two rules by MOOVARM (of Table 3) from
the respective dataset. (A) ROC curve of avg. accuracies to
classify the respective disease using the gene sets belonging to the
first rule, (B) AUC to classify the respective disease using the gene sets
belonging to the first rule, (C) ROC curve of avg. accuracies to classify
the respective disease using the gene sets belonging to the second
rule, and (D) AUC to classify the respective disease using the gene sets
belonging to the second rule. Of note, the blue curve denotes the
empirical line, while the light black line indicates the smoothed control
(X:Y = 1:1) line. Herein, “0.550 (0.900, 0.808)” denotes the optimal
threshold point (=0.550) that is closest to the top left part of the plot
(for rule 1), where the respective specificity and sensitivity are
0.900 and 0.808, respectively. Similarly, “0.536 (0.792, 0.877)” signifies
the optimal threshold point (=0.536) that is closest to the top left part
of the plot (for rule 2), where the respective specificity and sensitivity
are 0.792 and 0.877, respectively.
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the rule. We repeated the entire procedure 10 times in every occasion.
The obtained classification accuracies of the top 10 rules of the HSTS
dataset are presented in Table 3. Similarly, accuracy values of the top
10 rules as per the Apriori and Eclat algorithms are displayed in Table 4
and Table 5, respectively. The graphical plot for the top 10 rules
classification accuracy measures obtained by three methods, namely,
MOOVARM, Apriori, and Eclat is presented in Figure 3. According to
the top 10 classification accuracy metrics, it is clear that the overall
accuracy of the proposed methodMOOVARM is higher than the other
two methods. We also computed the average values of the classification
accuracies of the top 10 rules which were 85.08% (±0.03), 81.96%
(±0.02), and 81.65% (±0.02) for the methods,MOOVARM,Apriori and
Eclat, respectively (in Figure 4). In addition, the AUC values in terms of
sensitivity vs. specificity for classifying the respective disease using the
gene sets belonging to the topmost two rules by MOOVARM (from
Table 3) from the respective dataset were found as 0.926 and 0.920,
respectively (in Figure 5). Moreover, in summary, the average AUC
values of the top 10 rules of the same dataset using those methods

(MOOVARM, Apriori, and Eclat) were 0.909, 0.861, and 0.859,
respectively. Herein, we used an open-source R package “pROC”
(Robin et al., 2011) to illustrate the ROC and AUC curves as
depicted in Figure 5.

Furthermore, we performed the KEGG pathway and Gene
Ontology (GO) analyses using the participating genes belonging to
the top rules generated by MOOVARM, and then we identified the
GO-terms with significant p-values. Table 6 and Table 7 summarize
enrichment results for GO terms: molecular function (GO: MF) and
cellular component (GO: CC), respectively, containing the resultant
rules of MOOVARM, whereas Table 8 provides the enrichment result
for Gene Ontology: biological processing (GO: BP) terms containing
the resultant rules of MOOVARM. Table 9 describes the KEGG
pathways having the resultant rules of MOOVARM. For example,
hsa05161: hepatitis B KEGG pathway (p-value = 6.20E-06) contained
five genes and eight rules out of the 24 evolved rules obtained from
MOOVARM as shown in Table 2. These five genes are GRB2, JUN,
MAPK3, TP53, and STAT3, while these eight rules are {STAT3+ →

TABLE 2 Ranks of the evolved rules prior to optimization and after optimization in MOOVARM along with several rule interestingness measures, confidence,
support, and lift, as well as average WeSD and relative scores.

RankprevMOO Rule Confidence Support Lift Avg. WeSD Relative score RankafterMOO

1 STAT3+ → MAPK3+ 0.009 0.003461538 0.0195 0.00339 0.3596 2

2 TP53- → MAPK3+ 0.008888889 0.003076923 0.01925926 0.00408 0.3547 6

3 MAPK3+, TP53- → STAT3+ 0.00875 0.002692308 0.02275 0.00543 0.346 15

4 STAT3+, TP53- → MAPK3+ 0.01 0.002692308 0.02166667 0.003735 0.36 1

5 ESR1+ → MAPK3+ 0.008333333 0.001923077 0.01805556 0.00357 0.3565 4

6 JUN+, STAT3+ → MAPK3+ 0.008571429 0.002307692 0.01857143 0.00388 0.355 5

7 JUN+, FYN+ → MAPK3+ 0.01 0.002307692 0.02166667 0.008 0.3354 22

8 STAT3+, FYN+ → MAPK3+ 0.01 0.002692308 0.02166667 0.00751 0.3384 19

9 JUN+, TP53- → MAPK3+ 0.008571429 0.002307692 0.01857143 0.004225 0.3525 7

10 JUN+, STAT3+, TP53 → MAPK3+ 0.01 0.001923077 0.02166667 0.003946667 0.3588 3

11 FYN+, TP53 → MAPK3+ 0.01 0.002307692 0.02166667 0.007855 0.3361 21

12 JUN+, AR+ → MAPK3+ 0.01 0.001923077 0.02166667 0.00567 0.3474 14

13 JUN+, AR+ → TP53- 0.01 0.001923077 0.02888889 0.0072 0.3399 18

14 TP53-, AR+ → JUN+ 0.01 0.001923077 0.026 0.00541 0.3494 13

15 JUN+, AR+ → MAPK3+, TP53- 0.01 0.001923077 0.0325 0.006435 0.3444 17

16 MAPK3+, JUN+, AR+ → TP53- 0.01 0.001923077 0.02888889 0.00616 0.3454 16

17 TP53-, AR+ → MAPK3+, JUN+ 0.01 0.001923077 0.0325 0.0054675 0.3496 12

18 MAPK3+, TP53-, AR+ → JUN+ 0.01 0.001923077 0.026 0.005063333 0.3514 9

19 JUN+, TP53-, AR+ → MAPK3+ 0.01 0.001923077 0.02166667 0.00514 0.351 11

20 GRB2 → STAT3- 0.01 0.002692308 0.02888889 0.01145 0.324 23

21 FYN → TP53+ 0.01 0.003076923 0.026 0.01186 0.3228 24

22 ESR1-, FYN → TP53+ 0.01 0.002307692 0.026 0.00783 0.337 20

23 ESR1-, MAPK3 → STAT3- 0.01 0.001923077 0.02888889 0.005065 0.3516 8

24 STAT3-, MAPK3 → ESR1- 0.01 0.001923077 0.02888889 0.005155 0.3511 10

*“+” denotes upregulated and hypo-methylated genes; “−” represents downregulated and hyper-methylated genes.
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MAPK3+}, {TP53- → MAPK3+}, {MAPK3+, TP53- → STAT3+},
{STAT3+, TP53- → MAPK3+}, {JUN+, STAT3+ → MAPK3+},
{JUN+, TP53- → MAPK3+}, {JUN+,STAT3+,TP53- → MAPK3+},
and {GRB2- → STAT3-}. Similarly, hsa05200: pathways in cancer
(p-value = =1.11E-05) consisted of six genes (AR, GRB2, JUN,
MAPK3, TP53, and STAT3) and fifteen evolved rules. In the case
of the GO:BP terms, GO:0045893 positive regulation of transcription,
DNA-templated (p-value = =5.31E-07) was associated with six genes
(AR, JUN, MAPK3, TP53, ESR1, and STAT3) and eighteen evolved
rules, while for the GO:CC terms, GO:0005654 nucleoplasm

(p-value = =7.70E-05) was associated with seven genes (AR, GRB2,
JUN, MAPK3, TP53, ESR1, and STAT3) and nineteen evolved rules.
For GO:MF terms, GO:0008134 transcription factor binding
(p-value = =2.64E-06) was associated with five genes (AR, JUN,
TP53, ESR1, and STAT3) and two generated rules ({JUN+,AR+ →
TP53-} and {TP53-,AR+ → JUN+}).

Association rule mining is related to the directional signature and
its effects on disease discovery. The top association rule is STAT3+,
TP53- → MAPK3+, where STAT3 and TP53 play opposing roles in
cellular pathway regulation. According to the literature survey, the

TABLE 3 Top 10 rules of MOOVARM with their classification accuracy, specificity, sensitivity, and AUC values.

Rule ID Rule Avg. classification
accuracy (sd)

Avg.
specificity (sd)

Avg.
sensitivity (sd)

AUC Std. overall err.
rate

1 {STAT3+, TP53- → MAPK3+} 85.38% (±0.0405) 85.38% (±0.0653) 83.84% (±0.0405) 0.926 0.04054202

2 {STAT3+ → MAPK3+} 84.61% (±0.0181) 76.92% (±0.0243) 92.30% (±0.0243) 0.918 0.01813094

3 {JUN+, STAT3+, TP53- →
MAPK3+}

89.23% (±0.0324) 89.23% (±0.0324) 89.23% (±0.0397) 0.967 0.03243362

4 {ESR1+ → MAPK3+} 80.76% (±0.0243) 76.92% (±0.0371) 76.15% (±0.0243) 0.83 0.02432521

5 {JUN+, STAT3+ → MAPK3+} 92.3% (±0.0162) 90% (±0.0228) 87.69% (±0.0324) 0.956 0.02432521

6 {TP53- → MAPK3+} 73.84% (±0.0397) 85.38% (±0.0606) 83.84% (±0.0648) 0.771 0.03972291

7 {JUN+, TP53- → MAPK3+} 83.46% (±0.0506) 95.38% (±0.0519) 71.53% (±0.0653) 0.877 0.05063697

8 {ESR1-, MAPK3+ → STAT3+} 84.61% (±0.0268) 83.84% (±0.0371) 85.38% (±0.0371) 0942 0.02689253

9 {MAPK3+, TP53-, AR+
→ JUN+}

91.92% (±0.0326) 82.30% (±0.0537) 82.30% (±0.0537) 0.956 0.03268602

10 {STAT3+, MAPK3+ → ESR1-} 84.61% (±0.0268) 83.84% (±0.0371) 85.38% (±0.0371) 0.942 0.02689253

Average 0.8507 0.8477 0.8538 0.909 0.03085

**sd, standard deviation; “+”denotes upregulated and hypo-methylated genes; “−”represents downregulated and hyper-methylated genes.

TABLE 4 Top 10 rules of Apriori with their classification accuracy, specificity, sensitivity, and AUC values.

Rule ID Rule Avg. classification
accuracy (sd)

Avg.
specificity (sd)

Avg.
sensitivity (sd)

AUC Std. overall err.
rate

1 {STAT3- → GRB2-} 84.23% (±0.0121) 83.84% (±0) 87.69% (±0.0243) 0.878 0.01216261

2 {STAT3-, MAPK3- →
GRB2-}

83.46% (±0.0198) 76.92% (±0) 100% (±0.0397) 0.888 0.01986145

3 {MAPK3-, GRB2- →
STAT3-}

88.46% (±0.0198) 76.92% (±0) 100% (±0.0397) 0.888 0.01216261

4 {GRB2- → STAT3-} 81.15% (±0.0181) 85.38% (±0.0362) 76.92% (±0) 0.90 0.01813094

5 {ESR1- → MAPK3-} 76.53% (±0.0256) 76.92% (±0.0362) 76.15% (±0.0362) 0.815 0.02564103

6 {STAT3- → MAPK3-} 84.23% (±0.0218) 79.23% (±0.0436) 88.46% (±0) 0.915 0.02183255

7 {STAT3-, GRB2- →
MAPK3-}

84.61% (±0.0218) 82.3% (±0.0362) 86.92% (±0.0243) 0.902 0.021832557

8 {GRB2- → MAPK3-} 78.84% (±0.0268) 74.61% (±0.0324) 83.07% (±0.0324) 0.817 0.02689253

9 {ESR1- → GRB2-} 83.07% (±0.0371) 77.69% (±0.0324) 88.46% (±0.0606) 0.826 0.03715738

10 {JUN- → GRB2-} 75% (±0.0373) 65.38% (±0.0243) 87.69% (±0.0648) 0.777 0.0373779

Average 0.8196 0.7792 0.8754 0.861 0.0233

**sd, standard deviation; “+” denotes upregulated and hypo-methylated genes; “−” represents downregulated and hyper-methylated genes.
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activation function of STAT3 upregulates the survival pathway,
whereas p53 activates the apoptotic pathway. STAT3 contributes to
cancer cell proliferation and is associated with tumor malignancy.
Similarly, TP53 is a well-known tumor suppressor gene. TP53
provides protection against DNA damage by inducing cell cycle
arrest, DNA repair, or apoptosis. Mutation of p53 is often
observed in cancer, especially in late events in malignant
progression (Pham et al., 2020). The rule says where if antecedent
genes (STAT3+, TP53-) are expressed/methylated in a specified

manner together, then it is likely that consequent genes
(MAPK3+) will also be expressed/methylated in a specified
manner together. According to the literature survey, MARK3
regulates the proliferation and bone metastasis of human breast
cancer cells (Du et al., 2020).

To illustrate the efficiency of our top 10 association rules, we
conducted literature mining. Our first association rule {STAT3+,
TP53-→MAPK3+} says that if antecedent genes (STAT3+, TP53-)
are expressed/methylated in a specified manner together, then it is

TABLE 5 Top 10 rules of Eclat with their classification accuracy, specificity, sensitivity, and AUC values.

Rule ID Rule Avg. classification
accuracy (sd)

Avg.
specificity (sd)

Avg.
sensitivity (sd)

AUC Std. overall err.
rate

1 {STAT3-, MAPK3- →
GRB2- }

84.61% (±0.0218) 85.38% (±0.0362) 83.84% (±0.0243) 0.902 0.02183255

2 {STAT3- → GRB2-} 80.76% (±0.0243) 84.61% (±0.0362) 76.92% (±0.0324) 0.897 0.02432521

3 {MAPK3-, GRB2- →
STAT3-}

84.61% (±0.0162) 85.38% (±0.0243) 83.84% (±0.0243) 0.903 0.01621681

4 {GRB2- → STAT3-} 81.15% (±0.0181) 85.38% (±0) 76.92% (±0) 0.90 0.01813094

5 {ESR1- → MAPK3-} 76.92% (±0.0256) 79.23% (±0.0362) 77.69% (±0.0362) 0.816 0.02564103

6 {STAT3- → GRB2-} 80.77% (±0.0243) 84.62% (±0.0362) 76.92% (±0.0324) 0.897 0.02432521

7 {STAT3- → MAPK3-} 84.23% (±0.0218) 77.69% (±0.0362) 90.77% (±0) 0.915 0.02183255

8 {GRB2- → MAPK3-} 84.62% (±0.0268) 76.92% (±0.0436) 92.30% (±0.0324) 0.817 0.02689253

9 {ESR1-, GRB2-} 83.46% (±0.0371) 76.15% (±0.0324) 90.77% (±0.0324) 0.826 0.03715738

10 {FYN+ → TP53-} 75.38% (±0.0373) 68.46% (±0.0567) 82.30% (±0.0567) 0.714 0.0373779

Average 0.8165 0.8038 0.8323 0.859 0.0254

*“+” denotes upregulated and hypo-methylated genes; “−” represents downregulated and hyper-methylated genes.

TABLE 6 Gene set enrichment result for Gene Ontology: molecular function (GO: MF) terms containing the resultant rules of MOOVARM.

GO:MF p-value Gene Associated rule

GO:0008134 transcription factor binding 2.64E-06 AR, JUN, TP53, ESR1, and STAT3 {JUN+, AR+ → TP53-} and {TP53-, AR+ → JUN+}

GO:0042802 identical protein binding 3.31E-06 FYN, GRB2, JUN, TP53, ESR1, and STAT3 {GRB2- → STAT3-}, {FYN- → TP53+} and { ESR1-,
FYN- → TP53+}

GO:0019899 enzyme binding 4.97E-06 AR, FYN, JUN, TP53, and ESR1 {JUN+, AR+ → TP53-}, {TP53-, AR+ → JUN+},
{FYN- → TP53+}, and {ESR1-, FYN- → TP53+}

GO:0044212 transcription regulatory region DNA
binding

6.68E-05 AR, JUN, TP53, and STAT3 {JUN+, AR+ → TP53-} and {TP53-, AR+ → JUN+}

GO:0019903 protein phosphatase binding 2.84E-04 GRB2, TP53, and STAT3 {STAT3+ → MAPK3+}, {TP53- → MAPK3+},
{MAPK3+, TP53- → STAT3+}, . . .. . .etc.,*

GO:0003700 transcription factor activity , sequence-
specific DNA binding

3.18E-04 AR, JUN, TP53, ESR1, and STAT3 {JUN+, AR+ → TP53-} and {TP53-, AR+ → JUN+}

GO:0003682 chromatin binding 4.03E-04 AR, JUN, TP53, and ESR1 {JUN+, AR+ → TP53-} and {TP53-, AR+ → JUN+}

GO:0043565 sequence-specific DNA binding 9.17E-04 AR, JUN, TP53, and ESR1 {JUN+, AR+ → TP53-} and {TP53-, AR+ → JUN+}

GO:0003677 DNA binding 0.002636593 AR, JUN, TP53, ESR1, and STAT3 {JUN+, AR+ → TP53-} and {TP53-, AR+ → JUN+}

GO:0019901 protein kinase binding 0.00964876 GRB2, TP53, and STAT3 {GRB2- → STAT3-}

GO:0005515 protein binding 0.010325405 AR, FYN, GRB2, JUN,MAPK3, TP53, ESR1,
and STAT3

{STAT3+ → MAPK3+}, {TP53- → MAPK3+},
{MAPK3+, TP53- → STAT3+}, . . .. . .etc.,*

**See Supplementary Table S1 for more details.
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likely that consequent genes (MAPK3+) will also be expressed/
methylated in a specified manner together. According to Yang et al.
(2021), Yang et al. (2022), and Liu et al. (2022), we obtained these
three genes, namely, STAT3, TP53, and MAPK3 together as core
target genes or highest degree hub genes related to several diseases
like gastric cancer and type 2 diabetes mellitus. According to Zu et al.
(2021), the three genes of the second association rule, JUN, TP53,
and MAPK3 together, are related to gastric cancer. According to
Santh Rani (2023), the three genes associated with rule 8, ESR1,
MAPK3, and STAT3 together, are found as the top hub protein
target genes in the PPI network analysis. Therefore, we can conclude
that the genes associated with our association rules also jointly
played several roles in recent literature studies.

However, in the conceptual prospective, the MOOVARM
approach modifies the traditional concept of using the static
support threshold and a static confidence threshold which were
generally applied to maintain these same thresholds across all item
sets (i.e., gene sets) in the traditional algorithms like Apriori and
Eclat. In MOOVARM, after post-discretization, the association rule
mining algorithm utilizes the weighted shortest distance that
depended on multiple minimum support thresholds, multiple

minimum confidence thresholds, and multiple minimum lift
thresholds instead of the static support threshold and the static
confidence threshold. Those multiple/dynamic minimum
thresholds were estimated by the integration of gene expression,
methylation, and protein–protein interaction profiles and a
weighted shortest distance-based scheme. The MOOVARM
method works on all three different types of profiles: gene
expression, methylation, and protein–protein interaction profiles
instead of individual datasets like gene expression or DNA
methylation or any other data, and produced multi-objective
multi-prolific association rules. We also applied a multi-objective
optimization technique, TOPSIS, which is named the multi-criteria
decision-making technique. It is the procedure to select the best
alternative of the set of finite alternatives with respect to multiple
criteria. Herein, we ranked the association rules using multiple
criteria (such as weighted support, weighted confidence, and
weighted lift) and chose the top-ranked association rules through
the multi-objective optimization technique. Thus, in a single word,
the traditional rule mining algorithms like Apriori and Eclat use
static user-defined threshold values and there is no optimized
ranking of the estimated rules, while MOOVARM follows

TABLE 7 Gene set enrichment result for Gene Ontology: cellular component (GO: CC) terms containing the resultant rules of MOOVARM.

GO:CC p-value Gene Associated rule

GO:0005654 nucleoplasm 7.70E-05 AR, GRB2, JUN, MAPK3, TP53, ESR1, and STAT3 {STAT3+ → MAPK3+}, {TP53- → MAPK3+}, {MAPK3+,
TP53- → STAT3+} . . .. . .etc.,*

GO:0005634 nucleus 2.04E-04 AR, FYN, GRB2, JUN, MAPK3, TP53, ESR1, and STAT3 {STAT3+ → MAPK3+}, {TP53- → MAPK3+}, {MAPK3+,
TP53- → STAT3+}, . . .. . .etc.,*

GO:0005829 cytosol 2.13E-04 AR, FYN, GRB2, JUN, MAPK3, TP53, and STAT3 {STAT3+ → MAPK3+}, {TP53- → MAPK3+}, {MAPK3+,
TP53- → STAT3+}, . . .. . .etc.,*

**See Supplementary Table S3 for more details.

TABLE 8 Gene set enrichment result for Gene Ontology: biological processing (GO: BP) terms containing the resultant rules of MOOVARM.

GO:BP p-value Gene Associated rule

GO:0045893 positive regulation of transcription, DNA-
templated

5.31E-07 AR, JUN, MAPK3, TP53, ESR1, and
STAT3

{STAT3+ → MAPK3+}, {TP53- → MAPK3+},
{MAPK3+, TP53- → STAT3+}, . . .. . .etc.,*

GO:0016032 viral process 3.31E-06 FYN, GRB2, TP53, MAPK3, and
STAT3

{STAT3+ → MAPK3+}, {TP53- → MAPK3+},
{MAPK3+, TP53- → STAT3+}, . . .. . .etc.,*

GO:0045944 positive regulation of transcription from RNA
polymerase II promoter

1.28E-05 AR, JUN, MAPK3, TP53, ESR1, and
STAT3

{STAT3+ → MAPK3+}, {TP53- → MAPK3+},
{MAPK3+, TP53- → STAT3+}, . . .. . .etc.,*

GO:0008285 negative regulation of cell proliferation 4.25E-04 AR, JUN, TP53, and STAT3 {JUN+, AR+ → TP53-} and {TP53-, AR+ → JUN+}

GO:0007586 aging 0.001951 GRB2, JUN, and STAT3 {GRB2- → STAT3-} and {TP53-, AR+ → JUN+}

GO:0042981 regulation of the apoptotic process 0.003225 FYN, TP53, and ESR1 {FYN- → TP53+} and {ESR1-, FYN- → TP53+}

GO:0006351 transcription, DNA-templated 0.004792 AR, MAPK3, TP53, ESR1, and STAT3 {STAT3+ → MAPK3+}, {TP53- → MAPK3+},
{MAPK3+, TP53- → STAT3+}, . . .. . .etc.,*

GO:0060397 JAK-STAT cascade involved in the growth
hormone signaling pathway

0.006237 MAPK3 and STAT3 {STAT3+ → MAPK3+}

GO:0030154 cell differentiation 0.014472 FYN, GRB2, and TP53 {FYN- → TP53+}

GO:0016310 phosphorylation 0.040956 MAPK3 and STAT3 {STAT3+ → MAPK3+}

GO:0006461 protein complex assembly 0.047374 MAPK3 and TP53 {TP53- → MAPK3+}

**See Supplementary Table S4 for more details.
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dynamic thresholds and generates optimized association rules using
multi-objective optimization on various objectives/criteria/rule
interestingness values for each individual rule.

Furthermore, to explain this relationship between association
rule mining and directional gene signature and its effects on disease
discovery, we took the topmost optimized association rule {STAT3+,

TABLE 9 Gene set enrichment result for KEGG pathways containing the resultant rules of MOOVARM.

KEGG pathway p-value Gene Associated rule

hsa05161: hepatitis B 6.20E-06 GRB2, JUN, MAPK3, TP53,
and STAT3

{STAT3+ → MAPK3+}, {TP53- → MAPK3+}, {MAPK3+, TP53- →
STAT3+}, . . .. . .etc.,*

hsa05200: pathways in cancer 1.11E-05 AR, GRB2, JUN, MAPK3,
TP53, and STAT3

{STAT3+ → MAPK3+}, {TP53- → MAPK3+}, {MAPK3+, TP53- →
STAT3+}, . . .. . .etc.,*

hsa05205: proteoglycans in cancer 2.23E-05 GRB2, MAPK3, TP53, ESR1,
and STAT3

{STAT3+ → MAPK3+}, {TP53- → MAPK3+}, {MAPK3+, TP53- →
STAT3+}, . . .. . .etc.,*

hsa05203: viral carcinogenesis 2.46E-05 GRB2, JUN, MAPK3, TP53,
and STAT3

{STAT3+ → MAPK3+}, {TP53- → MAPK3+}, {MAPK3+, TP53- →
STAT3+}, . . .. . .etc.,*

hsa04917: prolactin signaling pathway 3.53E-05 GRB2, MAPK3, ESR1, and
STAT3

{STAT3+ → MAPK3+}, {ESR1+ → MAPK3+}, {GRB2- → STAT3-}, {ESR1-
,MAPK3- → STAT3-}, and {STAT3-,MAPK3- → ESR1-}

hsa05215: prostate cancer 6.73E-05 AR, GRB2,MAPK3, and TP53 {TP53- → MAPK3+}

hsa04915: estrogen signaling pathway 9.58E-05 GRB2, JUN, MAPK3, and
ESR1

{ESR1+ → MAPK3+}

hsa04660: T-cell receptor signaling pathway 1.08E-04 FYN, GRB2, JUN, and
MAPK3

{JUN+, FYN+ → MAPK3+}

hsa04722: neurotrophin signaling pathway 1.70E-04 GRB2, JUN, MAPK3, and
TP53

{TP53- → MAPK3+} and {JUN+, TP53- → MAPK3+}

hsa04380: osteoclast differentiation 2.20E-04 FYN, GRB2, JUN, and
MAPK3

{JUN+, FYN+ → MAPK3+}

hsa05160: hepatitis C 2.31E-04 GRB2, MAPK3, TP53, and
STAT3

{STAT3+ → MAPK3+}, {TP53- → MAPK3+}, {MAPK3+, TP53- → STAT3+},
{STAT3+, TP53- → MAPK3+}, and {GRB2- → STAT3-}

hsa05213: endometrial cancer 0.00113869 GRB2, MAPK3, and TP53 {TP53- → MAPK3+}

hsa05223: non-small cell lung cancer 0.00131991 GRB2, MAPK3, and TP53 {TP53- → MAPK3+}

hsa05221: acute myeloid leukemia 0.00131991 GRB2, MAPK3, and STAT3 {STAT3+ → MAPK3+} and {GRB2- → STAT3-}

hsa04010: MAPK signaling pathway 0.00155686 GRB2, JUN, MAPK3, and
TP53

{TP53- → MAPK3+} and {JUN+, TP53- → MAPK3+}

hsa05210: colorectal cancer 0.00161604 JUN, MAPK3, and TP53 {TP53- → MAPK3+} and {JUN+, TP53- → MAPK3+}

hsa05214: glioma 0.00177498 GRB2, MAPK3, and TP53 {TP53- → MAPK3+}

hsa05212: pancreatic cancer 0.00177498 MAPK3, TP53, and STAT3 {STAT3+ → MAPK3+}, {TP53- → MAPK3+}, {MAPK3+, TP53- → STAT3+},
and {STAT3+, TP53- → MAPK3+}

hsa05220: chronic myeloid leukemia 0.0021738 GRB2, MAPK3, and TP53 {TP53- → MAPK3+}

hsa04919: thyroid hormone signaling
pathway

0.00536748 MAPK3, TP53, and ESR1 {TP53- → MAPK3+} and {ESR1+ → MAPK3+}

hsa04071: sphingolipid signaling pathway 0.00593268 FYN, MAPK3, and TP53 {TP53- → MAPK3+}

hsa05162: measles 0.00724782 FYN, TP53, and STAT3 {FYN- → TP53+}

hsa04068: FOXO signaling pathway 0.00735406 GRB2, MAPK3, and STAT3 {STAT3+ → MAPK3+}

hsa04550: signaling pathways regulating
pluripotency of stem cells

0.0080066 GRB2, MAPK3, and STAT3 {STAT3+ → MAPK3+}

hsa04062: chemokine signaling pathway 0.01384442 GRB2, MAPK3, and STAT3 {STAT3+ → MAPK3+}

hsa05216: thyroid cancer 0.02902286 MAPK3 and TP53 {TP53- → MAPK3+}

hsa05206: microRNAs in cancer 0.03102958 GRB2, TP53, and STAT3 {GRB2- → STAT3-}

hsa05219: bladder cancer 0.04081937 MAPK3 and TP53 {TP53- → MAPK3+}

hsa04151: PI3K-Akt signaling pathway 0.04418067 GRB2, MAPK3, and TP53 {TP53- → MAPK3+}
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TP53- → MAPK3+} estimated by MOOVARM (Table 3) for
example, which is a directional gene signature. The rule states
that if the antecedent genes express and methylate in a specified
manner together (i.e., STAT3 is upregulated and hypo-methylated,
and TP53 is downregulated and hyper-methylated, concurrently),
then it is likely that consequent genes will be expressed and
methylated in a specified manner together (i.e., MAPK3 will be
upregulated and hypo-methylated). The combined effects of the rule
create a directional three-gene signature since the total number of
the participating genes in the associated rule is three here.

6 Conclusion

In this article, we proposed a unique associated rule mining
method denoted as MOOVARM to find the most acceptable and
appropriate rule for multi-omics profiles. To produce the interesting
rules for multi-omics profiles, we used and integrated gene expression,
methylation, and protein–protein interaction data based on the idea of
multi-objective optimization and weighted shortest distance. For this
purpose, we identified PIS and NIS with respect to all gene sets. PIS
maximized the profit and minimized the loss. Alternatively, NIS
maximized the loss and minimized the profit. Then, we calculated
the distances d + and d − from PIS andNIS, respectively, for each gene
set. Then, with the help of these two distances, wemeasured the relative
closeness to PIS for ranking the gene sets. In this proposed method, we
computed relative closeness scores globally instead of individual genes.
Finally, MOOVARM generated the final rank of the extracted (multi-
objective optimized) rules of correlated genes which may play a
significant role in better disease classification performance than the
state-of-the-art algorithms in disease discovery as well as therapeutic
value. However, the limitation to this work is that MOOVARM works
on the multi-omics RNAseq/microarray dataset consisting of DNA
methylation, gene expression dataset for the same set of patients/
samples, and protein–protein interaction dataset in this framework.
MOOVARM cannot work on the single-omics data. Furthermore, our
method might not work on single-cell sequencing data without the
usage of the matrix imputation prior to pre-filtering steps.

As a future work, we will include more datasets with the
advanced added mechanism. In addition, we are interested to
further use our proposed model for determining the directional
optimized gene signatures in hub gene findings in the multi-
molecular regulation study (i.e., the regulation among the long
non-coding RNAs, transcription factors, microRNAs, and target
genes). Moreover, we also want to use this method in single-cell
RNA sequencing and single-cell ATAC sequencing data to detect
directional gene signatures for cancer detection.

Furthermore, we have checked some state-of-the-art works of
association rule mining based on the fuzzy or rough set theory, but
the outcome rules are not good enough, which means that the
outcomes are not always beneficial using fuzzy/rough set-based
association rule mining (Sharmila and Vijayarani, 2019; Singh
and Ganesh Wayal, 2012). Comparatively, as our proposed
method MOOVARM used the multi-objective optimization
technique, the outcome rules are optimized and efficient enough.
Therefore, only the inclusion of the fuzzy/rough set is not always
beneficial. Thus, we assume that to improve the performance of the
fuzzy/rough theory-based method, the inclusion of multi-objective

optimization technique together with fuzzy/rough set-based rule
mining will be an efficient step. Therefore, as our future work, we
will extend our proposed framework by including both fuzzy/rough
theory and multi-objective optimization to produce better and more
effective association rule mining from multi-omics data.
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