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Introduction: Existing large-scale preclinical cancer drug response databases
provide us with a great opportunity to identify and predict potentially effective
drugs to combat cancers. Deep learning models built on these databases have
been developed and applied to tackle the cancer drug-response prediction task.
Their prediction has been demonstrated to significantly outperform traditional
machine learning methods. However, due to the “black box” characteristic,
biologically faithful explanations are hardly derived from these deep learning
models. Interpretable deep learning models that rely on visible neural networks
(VNNs) have been proposed to provide biological justification for the predicted
outcomes. However, their performance does not meet the expectation to be
applied in clinical practice.

Methods: In this paper, we develop an XMR model, an eXplainable Multimodal
neural network for drug Response prediction. XMR is a new compact multimodal
neural network consisting of two sub-networks: a visible neural network for
learning genomic features and a graph neural network (GNN) for learning
drugs’ structural features. Both sub-networks are integrated into a multimodal
fusion layer to model the drug response for the given gene mutations and the
drug’s molecular structures. Furthermore, a pruning approach is applied to
provide better interpretations of the XMR model. We use five pathway
hierarchies (cell cycle, DNA repair, diseases, signal transduction, and
metabolism), which are obtained from the Reactome Pathway Database, as the
architecture of VNN for our XMR model to predict drug responses of triple
negative breast cancer.

Results: We find that our model outperforms other state-of-the-art interpretable
deep learning models in terms of predictive performance. In addition, our model
can provide biological insights into explaining drug responses for triple-negative
breast cancer.

Discussion: Overall, combining both VNN and GNN in a multimodal fusion layer,
XMR captures key genomic and molecular features and offers reasonable
interpretability in biology, thereby better predicting drug responses in cancer
patients. Our model would also benefit personalized cancer therapy in the future.
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1 Introduction

Precision medicine is a key challenge in this century, with a
focus on personalized cancer treatments. Precision medicine aims
to design treatments specific to a patient’s molecular profile,
improving outcomes. This relies on effectively using clinical,
genomics, and other “omics” data to identify prognostic and
predictive biomarkers. Another important task for precision
oncology is to generate drug response profiles across drugs and
cancer subtypes. Large-scale drug screening initiatives (Barretina
et al., 2012; Yang et al., 2012; Basu et al., 2013; Seashore-Ludlow
et al., 2015) have made data publicly available, enabling the
identification of biomarkers and the development of predictive
models like elastic net and random forest (Iorio et al., 2016).
However, the task of predicting drug response is complex due to
the genetic heterogeneity among cancer patients, which presents a
major obstacle in determining therapeutic efficacy (Bedard et al.,
2013; Dagogo-Jack and Shaw, 2018; Fittall and Van Loo, 2019; Lim
and Ma, 2019; Ramón y Cajal et al., 2020). Despite advances in the
field, there is still a need for further improvement in the accuracy
and reliability of drug response models. Deep learning (DL) is well
suited for drug response prediction, as it can handle large amounts
of high-dimensional data and capture non-linear relationships in
biological data better than other machine learning algorithms. DL
has been successful in a variety of drug discovery tasks and may
outperform traditional machine learning approaches in drug
response prediction (Yuan et al., 2016; Luo et al., 2019; Sun
et al., 2019; Jiao et al., 2020) despite being underexplored until
recently.

A challenge in drug response prediction is to accurately
represent both the genotype and chemical structures of drugs.
However, most studies have focused on enhancing genotype
representation while neglecting the chemical side, resulting in
models with strong genotypic embedders and weak chemical
embedders (Kuenzi et al., 2020; Huang X. et al., 2021).
However, this imbalance can negatively impact performance as
the chemical structure of drugs contains valuable information that
requires a stronger embedder, while the genotypic information is
prone to overfitting and, thus, needs a lighter architecture for
better generalizability. To address this issue, in this paper, we
develop an XMR model, an eXplainable Multimodal neural
network for drug Response prediction. Our approach
emphasizes the importance of having a powerful chemical
embedder while keeping the genotypic embedder relatively
lightweight. To achieve this, XMR is structured as a multimodal
neural network with two sub-networks: a visible neural network
(VNN) for capturing genomic features and a graph neural network
(GNN) for learning the structural features of drugs. To enhance the
generalizability of genotypic embedding, the VNN is further
pruned to form a more compact structure.

In this study, we used XMR to construct cancer-specific models
for triple-negative breast cancer (TNBC) to gain a deeper insight
into its biological mechanisms. The XMR models were built based
on five key pathways (cell cycle, DNA repair, diseases, signaling
transduction, and metabolism). These models were trained on
TNBC-specific data obtained from the Cancer Therapeutics
Response Portal (CTRP) v2 (Seashore-Ludlow et al., 2015) and
the Genomics of Drug Sensitivity in Cancer (GDSC) database (Yang

et al., 2012). To demonstrate the effectiveness of XMR’s models, we
compared their predictive accuracy to several state-of-the-art
methods using validation samples. Our results showed that XMR
outperforms these methods with significantly higher test accuracy.
In addition, we evaluated the explainability of XMR. We found that
our model was able to capture the commonly mutated TNBC-
related genes, several critical pathways (e.g., G2/M checkpoint,
PI3K/mTOR, and MAPK pathways), and novel drugs that would
provide insights into TNBC treatment (e.g., dinaciclib,
panobinostat, BI 2536, and AZD7762).

2 Materials and methods

2.1 Taxonomy of multimodal models

In this paper, we formulate the drug response prediction task as
a multimodal learning task, utilizing two forms of information: the
genotype represented by binary mutations and the chemical
structure of drugs. The current research focusing on multimodal
models is primarily developing models that can effectively combine
and process information from multiple modalities such as audio,
text, images, and video. We believe that the insights and results from
developing multimodal models for vision and language tasks can be
effectively applied to the task of predicting drug response.

A taxonomy of multimodal models is proposed based on two
factors: 1) the task, which can be vision and language tasks, or the
drug response prediction task, and 2) the expressiveness level of the
two modalities in terms of dedicated parameters or computation.
This results in four archetypes as shown in Figure 1.

The top three archetypes are vision-and-language models. CLIP
(Radford et al., 2021) is a typical twin tower model, as shown in
Figure 1A, as it employs separate but similarly expensive embedders
for each modality. Despite CLIP’s remarkable zero-shot
performance in image-to-text retrieval, its performance was not
as strong as other vision-and-language downstream tasks. ViLT
(Kim et al., 2021) is a (Figures 1A, B) shallower and computationally
lighter model with shallow embedding layers for raw pixels and text
tokens. Most computations of ViLT focus on modeling modality
interactions. This simple architecture provides faster inference time,
but it has a slow training process due to its light visual embedder. Its
performance is also limited in many tasks. Most state-of-the-art
models (Lu et al., 2019; Chen et al., 2020; Li et al., 2021) belong to the
archetype shown in Figure 1C, with a visual embedder much heavier
than the textual embedder. This type of model generally achieves the
highest performance in various vision-and-language tasks. This
demonstrates that most vision-and-language tasks necessitate a
powerful visual feature extractor, i.e., a heavier visual embedder,
with the textual embedder being relatively lightweight. Intuitively, in
the field of drug response prediction, the features of drugs can be
compared to visual features as the chemical structure holds rich
information, similar to images. On the other hand, genotypic
features can be related to textual features as they are both binary
and discrete. Hence, our hypothesis is that a successful model for
drug response prediction should have a heavy chemical embedder
with a relatively light genotypic embedder.

The bottom three archetypes are for drug response prediction.
DrugCell (Kuenzi et al., 2020) falls under the archetype shown in
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Figure 1D and utilizes a deep visible neural network to extract
features from genotypes and a simple multilayer perceptron (MLP)
to extract features from the Morgan fingerprint of drugs. The VNN
maps the neurons of a deep neural network into potential molecular
components and pathways in a biological structure, which is
commonly used in various cancer studies (Ma et al., 2018; Wang
et al., 2018; Kuenzi et al., 2020; Elmarakeby et al., 2021). However, it
is often deep and substantial due to its utilization of biological
networks. ParsVNN (Huang X. et al., 2021), which falls under the
archetype shown in Figure 1E, improves upon DrugCell by using a
sparse learning approach to learn a simplified VNN that only
contains biological architectures most relevant to the prediction
task. This results in ParsVNN having a better performance than
DrugCell, which confirms our hypothesis of having a lighter
genotypic embedder in drug response prediction models. Our
proposed XMR, belonging to the archetype shown in Figure 1F,
is the first model of its kind. It follows our hypothesis that a
successful model should have a lightweight genotypic embedder
and a relatively heavy chemical embedder. To implement this, XMR
uses a deep graph neural network to extract more complex
information from the chemical structure while following a design
similar to ParsVNN for the genotypic embedder.

2.2 Model architecture

The model is structured as a multimodal neural network with
two sub-networks: a visible neural network to capture genomic
features and a graph neural network to learn the structural features
of drugs (as illustrated in Figure 2). We followed the method
described by Kuenzi et al. (2020) to build VNN embedding.
Briefly, the VNN model establishes a connection between gene-
level data and their associated phenotypic response in a cell. The
VNN architecture resembles the hierarchical structure of cellular
molecular subsystems, where artificial neurons represent molecular
events and edges represent the connectivity among a series of related
molecular events. The hierarchical structure of the VNNwas created
using pathways related to the cell cycle, DNA repair, diseases, signal
transduction, and metabolism, respectively, as documented in the
Reactome database (Fabregat et al., 2018). Each term in the pathway
is represented by a hidden layer, and the hidden layers are
interconnected precisely according to the molecular subsystems.

In more detail, the embedding for each term ]i is composed of
gene neurons, ]genei � {]gene1 , . . . , ]genep }, which take the genes directly
connected to this term as an input, and subsystem neurons,
]subi � {]sub1 , . . . , ]subq }, which take the outputs of its child terms as

FIGURE 1
Six categories of multimodal models, with the height of each rectangle indicating its comparative computational size. (A) Twin tower model in
vision-and-language domain. (B) Shallow model in vision-and-language domain. (C) Vision-and-language model with heavy textual embedder. (D)
Model with heavy genotype embedder. (E) Shallow model in drug response prediction domain. (F) Model with heavy chemical embedder.
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an input. That is, ]i � []genei : ]subi ]. Then, the final genotypic
embedding is represented by the embedding of the root term,
i.e., ygenotype = ]root.

To learn chemical embedding, we used the GNN, which regards
each atom of a compound as a node. The atoms can exchange
information through their chemical bonds. The fundamental
concept of the GNN is to iteratively gather information from the
neighbors of each node (i.e., atom) so that each individual atom is
aware of the molecular substructures surrounding it. To address the
challenges of limited learning parameters and ineffective embedding
learning due to the insufficient number of atom and bond types in
the molecule, we followed the method described in Costa and De
Grave (2010), which embeds compounds using r radius subgraphs,
which are induced by neighboring vertices and edges within a radius
of r from a vertex. In detail, a graph is represented as G = (V, E),
where V is the set of vertices and E is the set of edges. In a molecule,
vi ∈ V represents the ith atom, and eij ∈ E represents the chemical
bond between the ith and jth atoms. Given a graph G = (V, E), we
represent a set of all neighboring vertex indices within a radius of r
from the ith vertex as vri . Then, the r-radius subgraph for vertex vi is
defined as Gsub(vi, r) � (vri , eri ), where eri � {emn ∈ E | (m, n) ∈
vri × vr−1i }. Additionally, the r-radius subgraph for edge eij is
defined as Gsub(eij, r) � (vr−1i ∪ vr−1j , eri ∩ erj). Each subgraph for
the r-radius vertex and r-radius edge is then represented by a
unique hidden vector.

Then, we describe the transition function for updating both the
vertex and edge embeddings. Given a graph G and the initial
embeddings of its vertices and edges, we represent the

embedding of the ith vertex at time step t as v(t)i . This
embedding is updated using the following transition function:

v t+1( )
i � Sigmoid v t( )

i + Σj∈vri h
t( )

ij( ), (1)

where the sigmoid function is defined as Sigmoid(x) � 1
1+e−x, v

r
i is the

set of indices of neighboring vertices of i, and h(t)ij is the hidden
neighborhood vector. This hidden vector is calculated by
considering the neighboring vertex vj and edge eij:

h t( )
ij � ReLU W

v t( )
j

e t( )
ij

⎡⎣ ⎤⎦ + b( ), (2)

where the ReLU function is defined as ReLU(x) = max(0, x), W is a
weight matrix, b is a bias vector, and e(t)ij is the edge embedding
between the ith and jth vertices at time step t. By adding up the
neighboring hidden vectors and iterating over time steps, the vertex
embeddings can gradually accumulate more global information
about the graph.

The procedure for updating edge embeddings is similar.
Specifically, the edge embedding between the ith and jth vertices
at time step t, e(t)ij , is updated as follows:

e t+1( )
ij � Sigmoid e t( )

ij + ReLU W v t( )
i + v t( )

j( ) + b( )( ). (3)

Thus, the final chemical embedding is obtained by taking the
average of the vertex vectors obtained through the transition
function, given the set V � {v(t)1 , v(t)2 , . . . , v(t)n }, where n is the
number of vertices in the molecular graph:

FIGURE 2
Overview of the proposed XMR architecture. A combination of genotypic and chemical embeddings, produced by a VNN (left) and a GNN (right), is
concatenated and fed into aMLP layer for drug response prediction. The VNN architecture is represented by black arrows linking genes and yellow arrows
representing molecular subsystems.
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ydrug � 1
n
Σn
i�1v

t( )
i . (4)

We then combine ygenotype and ydrug into a single vector, [ygenotype:
ydrug], and input it into a multilayer perceptron to make the final
prediction of the drug response.

To create a more compact genotypic embedder, we follow the
approach described by Huang X. et al. (2021). This method aims to
simplify the VNN architecture while retaining its ability to make
accurate predictions. It is based on the idea that biological processes
are complex and involve many components and that sparse coding
can capture the most significant components that are more directly
relevant to drug administration and treatment, compared to
considering all potential processes. Starting from a VNN model,
we treat each edge weight as a feature of the VNN and perform
sparse learning to improve prediction accuracy and select important
features. This helps eliminate redundant features and improve the
explainability of the downstream analysis. To accomplish this, we
utilize ℓ0 norm regularization to prune edges between genes and
subsystems and group LASSO regularization to remove edges
between subsystems. The optimization problem is solved using
the proximal alternating linearized minimization (PALM)
algorithm (Bolte et al., 2014).

2.3 Explainability in XMR

When evaluating deep learning models, it is crucial to consider
not only their prediction performance but also their ability to
provide explanations. Explanations can come in two forms:
global and local (Du et al., 2020). Global explanations offer a
comprehensive understanding of how the model operates by
examining its structure and parameters. Local explanations, on
the other hand, focus on explaining why a specific prediction was
made by the model by analyzing the causal relationship between the
input and the prediction. Both types of explanations serve important
purposes. Global explanations increase the transparency of deep
learning models, while local explanations build trust in individual
predictions. The XMR model focuses on global explainability, as it
filters out the important pathways and genes that contribute the
most to the prediction task for each cancer type and biological
network. This provides insights into how XMR operates and offers
guidance for building models for specific cancer types. Additionally,
the model’s ability to predict drug response can be used to identify
new drugs that may have a significant impact on a particular cancer
type. We delve into the explainability provided by XMR in a later
section. It is important to note that the explainability of the XMR
model is not solely dependent on the VNN architecture but also on
the overall architecture, since the model is trained end-to-end. The
quality of the explainability is directly proportional to the model’s
performance. The better the model, the more meaningful the
guidance it can provide.

2.4 Dataset and splitting

We obtained the drug response data from GDSC (Yang et al.,
2012) and the CTRP (Seashore-Ludlow et al., 2015). TNBC cell lines
were selected according to the cell lines listed in Chavez et al. (2010)

and Dai et al. (2017). A total of 22 TNBC cell lines were selected:
BT20, BT549, CAL120, CAL148, CAL51, CAL851, DU4475,
HCC1143, HCC1187, HCC1395, HCC1599, HCC1806,
HCC1937, HCC2157, HCC38, HCC70, HDQP1, MDAMB157,
MDAMB231, MDAMB436, MDAMB468, and MFM223. Those
cell lines covered all the TNBC subtypes as described in
Lehmann et al. (2011), including two basal-like (BL1 and BL2),
an immunomodulatory (IM), a mesenchymal (M), a mesenchymal
stem-like (MSL), and a luminal androgen receptor (LAR). The
mutation status was collected from the DepMap portal (DepMap,
2022). A gene was selected if at least one of the chosen cell lines had a
mutation on it. A total of 6,982 genes were identified. The mutation
status of the gene was recorded as a binary variable and was either
“1” for mutated or “0” for non-mutated. This procedure yielded
4,851 (cell line and drug) pairs for the final data, including 22 cell
lines and 279 drugs. It was split into training and validation sets in
an 8:2 proportion, resulting in 3,880 training samples and
971 validation samples. A separate test set was formed using all
the (cell line and drug) pairs that were not present in the training and
validation sets.

2.5 Construction of TNBC-specific XMR
models

The VNN architecture in XMR was built based on five key
biological networks (cell cycle, DNA repair, diseases, signaling
transduction, and metabolism). Each term in the biological
networks used in VNNs is comprised of a hidden layer with
three neurons, while in the GNN, subgraphs with a radius of 2 are
formed and represented by a hidden layer with 256 neurons. The
drug response is measured using the area under the
dose–response curve (AUC), where a lower AUC value
indicates a more effective drug response, and normalization is
carried out such that AUC = 0 represents complete cell death and
AUC = 1 represents no effect. The prediction accuracy of XMR
was evaluated using Spearman’s correlation between predicted
and observed AUC values. The model was trained for 300 epochs
with a batch size of 200, and a mean squared error loss was used,
with an AdamW optimizer, with an initial learning rate of 0.005
and weight decay of 10–5. The XMR model was implemented
using the PyTorch library and trained on a GPU server with an
NVIDIA Tesla V100 32 GB GPU and an Intel Xeon Gold
6248 CPU.

3 Results

3.1 Heavyweight chemical embedding is
critical to model performance

Following the “Construction of TNBC-specific XMR models”
section, we constructed five TNBC-specific XMR models and
compared them with two state-of-the-art approaches: DrugCell
(Kuenzi et al., 2020) and ParsVNN (Huang X. et al., 2021). The
architecture of DrugCell is depicted in Figure 1D, and it utilizes the
VNN architecture as the genotypic embedder and a MLP as the
chemical embedder. ParsVNN was built based on DrugCell and
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made the VNN in DrugCell more compact via pruning the VNN
architecture, resulting in the architecture shown in Figure 1E.

First, we observed that the TNBC-specific XMR models
learned were highly compact, as illustrated in Figure 3. For
instance, the XMR model constructed with the signal
transduction biological network only had 13 terms and
121 genes remaining, which showed that approximately 96% of
the terms and 88% of the genes were removed from the original
VNN architecture. All the other TNBC-specific XMR models also
had a limited number of terms and genes. This substantial
reduction in the complexity of the genotypic embedder could
enhance the generalizability of the VNN embedder.

We also compared the performance of the TNBC-specific XMR
models with the rival methods in terms of accuracy on the validation
set (Figure 4). The results showed that XMR outperformed the other
two methods with a minimum advantage of 2.3%. Furthermore, we

used themethod proposed by Diedenhofen andMusch (2015) to test
the hypothesis that the correlation (shown in Figure 4) obtained by
our model is not larger than the correlation (shown in Figure 4)
obtained by a competing method. We found that in all the tests we
performed, the p-value is smaller than 0.01, indicating that the
correlation obtained by our model is significantly larger than the
correlation obtained by the competing methods. These results
further support the hypothesis discussed in Section 2.1. We can
see that both a simplified genotypic embedder and a heavyweight
chemical embedder contribute to the performance.

To gain a deeper understanding of how the complexity of the
genotypic embedder and the chemical embedder influences
performance, we conducted an ablation study to evaluate the
impact of the number of hidden neurons of each term in both
embedders on performance. The results are displayed in
Figure 5. Figure 5A illustrates the effect of the number of

FIGURE 3
Genotypic pathways after pruning. Each color represents a distinct hierarchy. The numbers near the root term describe the number of terms and
genes left. (A) the cell cycle pathway. (B)DNA repair pathway. (C) Pathways for Growth factor receptor- andmetabolism-mediated diseases. (D) Pathways
for signaling transduction. (E) Pathways for metabolism.
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hidden neurons in the GNN on performance, and we can see
that the performance increases with the number of hidden
neurons in the GNN. The performance continues to improve
even when the number of hidden neurons is increased to 512,
indicating that a heavyweight chemical embedder is necessary.
Figure 5B shows the impact of the number of hidden neurons in
the VNN on performance, and we can see that the performance
deteriorates when the number of hidden neurons grows from
three to six, indicating that the VNN is highly susceptible to
overfitting. Therefore, a pruning method would greatly benefit
the VNN, leading to a more lightweight genotypic embedder.
These phenomena also align with our hypothesis.

3.2 Interpretations of genes and pathways

To verify whether our XMR model can generate a reasonable
gene-level explanation, we checked whether the commonly mutated
genes in TNBC were preserved by our XMR model. We first
extracted a series of commonly or frequently altered genes in
TNBC (see Supplementary Material) from the literature on the
PubMed database using the following search string: (triple-
negative breast cancer OR TNBC) AND (commonly mutated
genes OR highly frequently mutated genes). We found that our
model identified 13 such genes out of 22 genes: TP53, PIK3CA,
BRCA1/2, RB1, NOTCH2/3, BRAF, ERBB3, APC, STK11, KRAS, and

FIGURE 4
Comparison of XMR’s performance with other competing methods for predicting drug response across five separate pathways. Spearman’s
correlation (rho) between predicted and observed drug responses was used as an evaluation criterion.

FIGURE 5
Impact of the number of hidden neurons on prediction accuracy. (A) the effect of the number of hidden neurons in the GNN on performance (B) the
effect of the number of hidden neurons in the VNN on performance.
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NF1 (Philipovskiy et al., 2020; Kudelova et al., 2022; Li et al., 2022).
We further conducted Fisher’s exact test to evaluate their
significance. The p-value of 1.84 × 10−4 indicated that these genes
were not randomly selected (Figure 6). Although the model did not
retain other reported frequently mutated genes [e.g., PTEN, AKT1,
and ATM], it still remains reasonable, given that the mutation
frequency of these genes greatly varies among multiple studies
(Kudelova et al., 2022). Considering allowable uncertainty and
variability in simulation, these findings supported the feasibility
and plausibility of the modeling framework coupled with the
pruning approach to identify likely critical genes.

We further checked the pathways identified by our XMR
model. The retained pathways belonging to five categories of
biological processes are graphically presented in Figure 3 and
explained as follows. The genes corresponding to each term
along individual pathways are provided in the Supplementary
Material. Generally, our model found G2/M checkpoint, DNA
repair-related, PI3K/mTOR signaling, RAS/RAF/MAPK/ERK
signaling pathways, etc., which are enriched in different
subtypes of TNBC [e.g., BL1, BL2, M, and LAR subtypes]
(Lehmann et al., 2011; 2021).

1. Figure 3A indicates the pathway retained in the process of the cell
cycle. The G2/M DNA damage checkpoint is likely sensitive to
drug exposure based on our model. The loss of cell cycle
checkpoints has been well-viewed as the hallmark of cancer
(Löbrich and Jeggo, 2007). The remaining genes, including
TP53, RB1, BRCA1/2, STAG2, and TP53BP1, are the common
genes engaged in the cell cycle (Coussy et al., 2019; Kudelova
et al., 2022). Another two genes (i.e., RAD21 and MDC1) are
likely associated with DNA damage, possibly implying a G2/M
checkpoint loss as well (Lehmann et al., 2011). Despite limited
research, gene functional analyses suggested the potential role of
meiosis, given that the differentially expressed genes of TNBC
were markedly enriched in the oocyte meiosis pathway (Cao
et al., 2021).

2. A total of four pathways belonging to DNA repair were retained
by our model (Figure 3B). DNA repair defects are thought to be
more common than homologous recombination defects for
breast cancer (Lee et al., 2019). Common genes relevant to
this process (e.g., TP53, RAD50, and POLE) (Coussy et al.,

2019; Lehmann et al., 2021; Kudelova et al., 2022) were also
detected in this study. Our model identified four breast cancer
susceptibility genes in the Fanconi anemia pathway: FANCC,
FANCD2, and FANCM (Fang et al., 2020). XRCC1, a potentially
critical gene associated with TNBC through both base excision
repair and double-strand break repair pathways, was also
detected by the model (Lee et al., 2019). Currently, limited
data on the impacts of DNA damage bypass defects on TNBC
development can be found.

3. Growth factor receptor- and metabolism-mediated diseases are
shown in Figure 3C. Sufficient evidence has indicated that
aberrant MAPK signaling is associated with TNBC occurrence
(Jiang et al., 2020; Lehmann et al., 2021). Activating mutations in
MAP2K and RAF1 (i.e.,MAP2K1, BRAF, KRAS, and NF1) would
dysregulate cellular proliferation, differentiation, and survival.
These genes are common genes involved in the MAPK signaling
pathway (Coussy et al., 2019). The metabolism-mediated process
mainly captured two genes (i.e., NOTCH2/3) in NOTCH
signaling. The dysfunction of NOTCH signaling could
contribute to the development of many cancers (e.g., TNBC)
(Bray, 2006; Lehmann et al., 2021).

4. The commonly accepted PI3K/mTOR pathway that affects
TNBC, especially BL2 and LAR subtypes (Lehmann et al.,
2021), is presented in Figure 3D. The common genes we
identified in this pathway include PIK3CA, PIK3R1, MTOR,
STK11, and TSC1 (Coussy et al., 2019). Although the more
straightforward pathway (i.e., PI3K/AKT signaling) was
pruned, PI3K signaling activated by erythropoietin could
sufficiently induce the proliferation of breast cancer cell lines
(Tóthová et al., 2021). Additionally, the model also detected
several mechanisms involved in the cascade by the
phosphorylation of MAPK (i.e., RAS/ERK signaling) and
VEGF signaling (Figure 3D). The aberrant activities of these
pathways are potential factors for TNBC (Butti et al., 2018;
Lehmann et al., 2021).

5. The metabolic dysregulation of TNBC may include remarkably
altered amino acids, lipids, carbohydrates, nucleotides, and
energy levels (Gong et al., 2021), which is also an emerging
focus for cancer treatment (Sun et al., 2020). Similar molecular
features of TNBC related to metabolism were observed by our
model (Figure 3E). Targeting identified genes [e.g., FASN and
SLC7A5] may provide a potential strategy to treat TNBC (Sun
et al., 2020; Nachef et al., 2021), but the metabolism of TNBC still
calls for further investigations due to limited studies.

3.3 Interpretations of drugs

In this section, we verified the top 10 drugs predicted to be
effective by our XMR model. The top 10 drugs that would target
TNBC were identified in consideration of both the predicted
drug response and relatively adequate information on
chemical–drug interactions provided by the PubChem
database (Kim et al., 2022). The potentially effective drugs
and corresponding information are summarized in Table 1.
Specifically, the top 10 drugs derived from the synthesis of five
major pathways (i.e., cell cycle, DNA repair, signaling
transduction, metabolism, and diseases) are listed under

FIGURE 6
Comparison of genes identified by our model and frequently
mutated genes in the literature.
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“Integrated results,” followed by the drugs only identified by the
individual pathways listed under “Pathway-specific results.” It is
worth noting that the top drugs were screened and selected
based on the (cell line and drug) pairs that were not presented in
the entire dataset, thereby reflecting the prediction capability of
our model. In addition, platinum salts, a classical group of
alkylating agents applied in neoadjuvant chemotherapy for
TNBC (Nedeljković and Damjanović, 2019), were not
included in the drug repository we utilized in this study,
since we aimed to gain a better understanding of the efficacy
of relatively novel drugs.

Generally, the five pathways identified similar drugs. Four
drugs have been studied in recent clinical trials to explore their
potentials to treat TNBC or breast cancer (BC) with
leptomeningeal metastases (i.e., dinaciclib, panobinostat, BI
2536, and cytarabine). Although the majority of clinical trials
utilize combination therapies, these drugs may play a role in a
synergistic way. The other four drugs are still under in vitro or
in vivo investigations of TNBC treatment (i.e., AZD7762,
ouabain, homoharringtonine, and GSK461364) (Giordano
et al., 2019; Yakhni et al., 2019; Du et al., 2021; Zhu et al.,
2021; Plett et al., 2022). Interestingly, leptomycin B (LMB) was
considered unsafe in previous clinical trials due to its adequate
adverse effect and thus not approved for use (Wang and Liu,
2019), while it is the most effective drug identified by our model.
As an alternative to LMB, selinexor exhibits manageable side
effects and processes a similar mechanism. It shows the
potential to treat TNBC based on several preclinical studies

(Cheng et al., 2014; Arango et al., 2017) and clinical trials (e.g.,
NCT05035745, NCT02402764, and NCT02419495). If selinexor
was included in our drug repository, it would probably be
identified instead of LMB. For pathway-specific drugs, BC-
related clinical trials using vincristine and bleomycin can be
found, but bleomycin is usually applied to evaluate the effects of
electrochemotherapy (Radica et al., 2020).

From the point of mechanism-based view, the majority of the
top agents target the cell cycle process, DNA replication, and
DNA repair (e.g., LMB, dinaciclib, AZD7762, panobinostat, BI
2536, homoharringtonine, TW-37, cytarabine, and GSK461364),
which are in line with part of the characteristics of BL1 and
BL2 subtypes (Lehmann et al., 2011; Lehmann et al., 2021).
Although there are limited studies on the effects of TW-37 on
TNBC (Table 1), it does not necessarily mean that TW-37 is
unpromising. Since myeloid cell leukemia-1 (Mcl-1) is a critical
factor for the survival and motility of TNBC cells (Goodwin et al.,
2015), TW-37 likely plays a key role in TNBC treatment. Two
drugs are characterized by ion channel transport (i.e., ouabain
and thapsigargin), which may be related to critical signaling
pathways for TNBC. For example, it was shown that
overexpression of the NOTCH signaling pathway (e.g.,
NOTCH 1) would induce proliferation and tumorigenesis of
TNBC (Nedeljković and Damjanović, 2019), especially for
BL1 and M subtypes. As a sarco-endoplasmic reticulum Ca2+-
ATPase (SERCA) modulator, thapsigargin may inhibit oncogenic
NOTCH 1 signaling (Pagliaro et al., 2021), thereby possibly
suppressing tumor growth.

TABLE 1 Integrated and pathway-specific top 10 drugs identified by XMR and their corresponding descriptions.

Drug Case no. Predicted AUC value Category Clinical study

Integrated results

Leptomycin B (LMB) 87081-35-4 0.248 XPO1 inhibitor NA

Dinaciclib 779353-01-4 0.284 CDK1/2/5/9 inhibitor NCT01624441

NCT01676753

AZD7762 860352-01-8 0.323 Checkpoint kinase inhibitor NA

Ouabain 630-60-4 0.376 Plasma membrane Na(+)/K(+)-ATPase inhibition NA

Panobinostat 404950-80-7 0.378 Histone deacetylase inhibitor NCT02890069

NCT01105312

BI 2536 755038-02-9 0.436 Polo-like kinase 1 inhibitor NCT00526149 (breast cancer (BC))

Homoharringtonine 26833-87-4 0.447 Mcl-1 protein synthesis inhibitor NA

TW-37 877877-35-5 0.456 Bcl-2 inhibitor NA

Cytarabine 147-94-4 0.460 DNA polymerase inhibitor NCT01645839 (BC)

NCT00992602 (BC)

GSK461364 929095-18-1 0.465 Polo-like kinase 1 inhibitor NA

Pathway-specific results

Vincristine 57-22-7 - Target microtubules and mitotic tubulin NCT02299999 (BC)

Thapsigargin 67526-95-8 - Sarco-endoplasmic reticulum Ca2+-ATPase modulator NA

Bleomycin 11056-06-7 - DNA damage NCT00744653 (BC) terminated
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4 Discussion

Predicting drug response in cancer patients can be difficult due
to the genetic diversity among them. The end-to-end training of
such a model requires balancing the representation of two types of
data fed into the model while also serving its prediction purpose,
i.e., accurately projecting the relationship between the two
modalities. There has been limited exploration in this area. For
example, DrugCell used the VNN instead of the usual neural
network to fully incorporate biological processes at molecular
and cellular levels (Kuenzi et al., 2020). Another effort leveraged
ParsVNN to select important terms and edges of those biological
architectures to improve the performance and explanation (Huang
X. et al., 2021). However, ParsVNN still used the simple MLP to
extract features from the Morgan fingerprint of drugs similar to
DrugCell (Kuenzi et al., 2020). The information on drugs’molecular
structures is not fully used in those models. Meanwhile, there have
been many studies in the field of vision-and-language processing
(VLP) tasks. Those insights and results were gained from developing
multimodal models for VLP, which can be effectively applied to drug
response prediction. In this paper, we have developed XMR, which
follows a similar structure to ParsVNN for the gene information
(Huang X. et al., 2021) but uses the GNN to extract the information
between neighbor atoms from the molecular structure of a certain
chemical (Tsubaki et al., 2019).

We chose drug response data in TNBC cell lines from GDSC
(Yang et al., 2012) and CTRP (Seashore-Ludlow et al., 2015).
Selecting this disease as the case in this study is primarily
because TNBC treatment (e.g., classical regimens) still remains
challenging compared to other types of breast cancer, given the
lack of specific hormone receptors, common driver mutations
(Rajput et al., 2016; Zhu et al., 2022), and high heterogeneity and
resistance (Nedeljković and Damjanović, 2019). This brings us to
seek novel personalized approaches to treating TNBC. In this study,
we compared our model with the existing methods under five
biological pathways obtained from the Reactome Pathway
Database (Fabregat et al., 2018). It indicates that XMR
outperforms both DrugCell and ParsVNN in terms of test
accuracy (Figure 4). Moreover, the results derived from the XMR
model can be explained and verified at levels of genes, pathways, and
drugs (Figure 3).

Overall, 13 commonly or frequently mutated genes related to
TNBC were retained by our model. We also identified commonly
accepted pathways (e.g., cell cycle, DNA repair, PI3K/mTOR, and
MAPK signaling) and promising pathways associated with metabolic
reprogramming. Additionally, several novel drugs tested under
clinical trials/cell experiments/animal studies were selected
(Table 1). For the purpose of selecting new drugs, we ensured that
the test dataset contained as many novel (cell line and drug) pairs as
possible. In other words, the (cell line and drug) pairs applied for drug
screening have ruled out all combinations shown in both training and
validation datasets from previous experiments. This way, the
commonly used agents for TNBC, such as DNA-damaging agents
(e.g., doxorubicin and cyclophosphamide) andmitotic inhibitors (e.g.,
docetaxel) (Powell et al., 2020), and recently discovered agents, such as
poly(ADP-ribose) polymerase (PARP) inhibitors (olaparib, veliparib,
and rucaparib), were ultimately not considered in this study. For
example, in the test dataset, only four combinations among a total of

1,864 (cell line and drug) pairs were relevant to docetaxel, not to
mention doxorubicin which had no pairs to be tested.

Nevertheless, there are some underlying limitations that
would be addressed by future efforts. First, our model contains
three components: a genotypic embedder, a chemical embedder,
and a modality interaction block. In this study, we focused on
balancing the complexity of the first two embedders while
maintaining the design of the modality interaction block
simple. However, the modality interaction block has been
recognized as an essential element in VLP tasks, as
demonstrated in studies such as ViLBERT (Lu et al., 2019),
UNITER (Chen et al., 2020), and ViLT (Kim et al., 2021). It
allows us to improve the interaction in the future by employing a
multi-headed self-attention layer to extract more comprehensive
features in the interaction between the two modalities. Second,
GDSC provides drug response data with multi-drugs (Huang S.
et al., 2021), while the current model only considers the effects of
a single drug. The model could be further refined by synthesizing
disparate types of drugs (e.g., classical regimens and
immunotherapies) and by delving into their synergistic effects
to better facilitate TNBC treatment.

Although our model showed the ability to provide biologically
reasonable interpretations, most drugs exhibit mechanisms that are
associated with cell cycle and DNA repair. Apart from the property of
our test dataset itself (e.g., perhaps uneven distributions of cell-line
data), the pathways utilized in this study may be another contributor.
Currently, our model is characterized by five pathways, including cell
cycle, DNA repair, diseases, signaling transduction, and metabolism,
listed in the Reactome Pathway Database (Fabregat et al., 2018).
However, other pathways, such as the immune system, developmental
biology, and hemostasis, have also been reported as having potential
linkages with TNBC development, especially the specific subtypes
(Lehmann et al., 2011; Lehmann et al., 2021). These pathways may
inform the VNN structure and lead to more comprehensive results of
drug discovery when incorporated into the model. Additionally,
distinct databases of biological processes (e.g., Gene Ontology
(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and
Reactome) may differ in their ultimate findings, due to different
annotations and genes they cover. Although the comparison of the
model performance based on these databases is beyond the scope of
our study, it would be an invaluable factor in refining the
interpretability of our model.
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