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Since its introduction into the field of oncology, deep learning (DL) has impacted
clinical discoveries and biomarker predictions. DL-driven discoveries and
predictions in oncology are based on a variety of biological data such as
genomics, proteomics, and imaging data. DL-based computational frameworks
can predict genetic variant effects on gene expression, as well as protein
structures based on amino acid sequences. Furthermore, DL algorithms can
capture valuable mechanistic biological information from several spatial
“omics” technologies, such as spatial transcriptomics and spatial proteomics.
Here, we review the impact that the combination of artificial intelligence (AI)
with spatial omics technologies has had on oncology, focusing on DL and its
applications in biomedical image analysis, encompassing cell segmentation, cell
phenotype identification, cancer prognostication, and therapy prediction. We
highlight the advantages of using highly multiplexed images (spatial proteomics
data) compared to single-stained, conventional histopathological (“simple”)
images, as the former can provide deep mechanistic insights that cannot be
obtained by the latter, evenwith the aid of explainable AI. Furthermore, we provide
the reader with the advantages/disadvantages of DL-based pipelines used in
preprocessing highly multiplexed images (cell segmentation, cell type annotation).
Therefore, this review also guides the reader to choose the DL-based pipeline
that best fits their data. In conclusion, DL continues to be established as an
essential tool in discovering novel biological mechanisms when combined with
technologies such as highly multiplexed tissue imaging data. In balance with
conventional medical data, its role in clinical routine will become more
important, supporting diagnosis and prognosis in oncology, enhancing clinical
decision-making, and improving the quality of care for patients.
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Introduction

Cancer is one of the main causes of morbidity and mortality worldwide (Siegel et al.,
2023). Time to diagnosis, tumor grading, and staging all have a significant impact on how
successfully cancer is treated (Gill et al., 2004; Cone et al., 2020). The development of
advanced optical imaging technologies has significantly enhanced nondestructive single-cell
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analysis, offering the benefits of high sensitivity and low cost (Sun
et al., 2020). Single-cell imaging aids in understanding of bodily
functions and health, including treatment determination, tumor
identification, and the analysis of metabolism (Veelken et al., 2017).
Pathologists and researchers have employed conventional tissue
microscopy techniques, such as immunohistochemistry and
immunofluorescence, for decades to examine different cell types,
cell abundances, and cell-cell interactions, determining cellular and
subcellular protein structures. Nevertheless, in most cases, these
techniques examine only a small range of relevant markers in tissue
sections, with the full spectrum of intricacies hardly depicted
adequately (Maric et al., 2021). Various highly multiplexed tissue
imaging (HMTI) techniques were developed to overcome these
limitations, and numerous deep learning (DL) methods were
subsequently developed to analyze the highly multiplexed images.
HMTI methods and DL applications in biology and medicine were
recently reviewed elsewhere (Min et al., 2017; Suzuki, 2017; Tan
WCC. et al., 2020; Echle et al., 2021; Einhaus et al., 2023). In this
review, we will cover the novel space of DL applications in
HMTI data.

Highly multiplexed tissue imaging (HMTI)

Studies in biology, consortia research, and clinical medicine
currently use multiplexed imaging methods to focus on spatial and
structural correlations (Goltsev et al., 2017; Snyder et al., 2019;
Schürch et al., 2020). The number of distinguishable cell types in
tissue has been elevated with the recent development of HMTI
technologies that enable imaging of samples with more than
40 markers simultaneously (Bodenmiller, 2016). As a result,
multiplexed methods surpass the limitations of conventional
immunophenotyping techniques by allowing for the spatial
analysis of both phenotypically and functionally defined cell
types. The simultaneous study of millions of cells with dozens of
markers enables better comprehension of both disease and the
tremendous complexity of organs (Chevrier et al., 2018).
Consequently, HMTI produces large volumes of data, with
treatment strategies becoming more specific as changes in the
tissue environment, cell phenotypes, and neighborhood
interactions are taken into account (Jarosch et al., 2021).

Numerous multiplexed tissue imaging techniques have been
created over the last decade (Black et al., 2021). As a large fraction of
HMTI techniques incorporate antibody staining, they can be
grouped into two main categories based on antibody detection.
The first category includes mass spectrometry-based imaging that
enables imaging with more than 40 markers, including Imaging
Mass Cytometry (IMC) (Giesen et al., 2014) and Multiplexed Ion
Beam Imaging (MIBI) (Angelo et al., 2014). Both techniques depend
on metal isotope-labeled antibodies, with the difference being the
mode of ionization.

The second category of HMTI techniques are cyclic imaging
methods in which staining is performed with either fluorophore-
or DNA-tagged antibodies. The first of these approaches is based
on cyclic in situ staining with fluorescent antibodies, image
acquisition, and fluorescence elimination (Schubert et al.,
2006). Examples of such approaches are termed multiplexed
fluorescence microscopy (MxIF) (Gerdes et al., 2013) and

multiepitope-ligand cartography (MELC) (Schubert et al.,
2006). Removing the fluorescence by bleaching is what
distinguishes MELC from MxIF, in which fluorescence is
inactivated chemically. The other approach of cyclic imaging
methods is the application of DNA-conjugated antibodies.
Detection of such antibodies is performed by cyclic
attachment and removal of complementary fluorophore-tagged
DNA probes (Kennedy-Darling et al., 2020), as in the latest
version of CO-Detection by indEXing (CODEX) (Goltsev
et al., 2017). In Immunostaining with Signal Amplification By
Exchange Reaction (ImmunoSABER), antigen detection events
are amplified by expansion of repetitive binding sites for the
complementary DNA probes (Saka et al., 2019).

As shown in (Figure 1) the final outcomes of the two HMTI
categories are similar as they are generating one single image for
each marker. The difference is that the mass spectrometry-based
imaging records the signal data in a text file that is processed to
construct the marker images. The cyclic methods acquire
separate images showing different markers for each channel
of the microscope. Each cycle must contain the nuclear stain
used for image registration to align all markers to the exact
coordinates. Further processing steps are applied afterwards that
include denoising, deconvolution, alignment and stitching.
Eventually, the images are ready for advanced segmentation
and analysis.

Spatial transcriptomics

Single-cell RNA sequencing (scRNAseq) has lately made
advances in the discovery of novel cell types and in our
comprehension of how particular cell types influence health or
react to alterations in surrounding microenvironments (Pham
et al., 2020). scRNAseq is an extremely sensitive and thorough
tool for classifying different types of cells (Svensson et al., 2017),
as well as analyzing gene expression patterns (Kotliar et al., 2019)
and developmental relationships (Haghverdi et al., 2016) along
with transcriptional states to resolve individual cells (Pham et al.,
2020). However, scaling it to millions of cells is prohibited by its
high costs, and scRNAseq inherently lacks spatial resolution.
However, gene expression in organs is spatially structured and
varies in patterns (Biancalani et al., 2021). Therefore, spatial
transcriptomics technologies have been developed that can
combine data of gene expression and spatial location
(Cutiongco et al., 2020) to identify differential expression
(Svensson et al., 2018) or spatially dynamic genes (Dries et al.,
2021). The ability to combine genome-wide transcriptional
profiling of cells with data regarding tissue shape and spatial
context opens up a world of possibilities for understanding cell
biology in its original morphological and spatial environment
(Pham et al., 2020).

Deep learning

When it comes to artificial intelligence, DL is a subset of
machine learning that refers to a deep artificial neural network,
which is a particular structure of arranged artificial neurons in
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consecutive layers. The main two layers in a neural network are the
first (called the input layer) and the last (called the output layer),
while the layers between them are referred to as invisible or hidden
layers. The first layer is the input (for example, slide or photo data).
It has a set of parameters to produce the most accurate output. Each
subsequent hidden layer gets input from the prior layer, applies its
own parameters, and generates outputs. Finally, the last layer
computes the overall model results.

Several types of neural networks differ in their architecture. Our
focus here is the convolutional neural network (CNN) because it is the
core of the neural networks used in imaging data analysis discussed in
this review. CNNundergoes twomain tasks: feature extraction and class
prediction. The former is a combination of convolution and pooling
processes, while the latter is a fully connected network (Figure 2). The
convolution process happens between a convolution kernel of size p × p
and an area of the input image of the same size as the convolution
kernel. The convolution process happens over the whole image by
shifting the convolution kernel on the image. The kernel’s shift over the
image is called ‘stride’. The stride value is defined by the number of
pixels by which the kernel shifts over the image (e.g., stride = 1, means
the kernel shifts by one pixel at a time). The convolution process
happens in what is called the convolutional layer. A pooling layer
follows the convolutional layer where image down-sampling happens to
reduce the computational cost. The pooling layer has a kernel of size
n×n which splits the image into smaller areas k of size n × n then takes
the maximum pixel intensity value in each area k (maximum pooling)
or the average of the pixel intensities in area k (average pooling). After

the convolution and the pooling processes, the resultant image is
flattened to represent the input of the second part of the CNN,
which is a fully connected layer network. The fully connected layer
network part ends with the output layer, which represents the number
of possible classes “labels of the input image”. CNNs showed great
performance in extracting the features of an image and hence very
successful image classification (Goodfellow et al., 2016).

CNN is the cornerstone of a variety of neural network types
such as U-Net and Mask Region-based (R)-CNN. Both networks
are successful not only in extracting features from an image, but
also in detecting objects in an image, hence, accurate image
segmentation. U-Net has two main parts, forming a unique
U-shape, the contractive path and the expansive path
(Figure 3). Feature extraction happens in the former, while
object detection occurs in the latter (Ronneberger et al., 2015).
Mask R-CNN processes the images in three main stages
(Figure 4): Feature map where feature extraction happens by a
convolution-based network; region proposal, where object
detection (region of interest, RoI) happens by a region
proposal network (Ren et al., 2016); and mask head, where a
mask is generated for each RoI by a convolution-based network
(He et al., 2018). Both U-Net and Mask R-CNN perform object
detection and assign each pixel in the image to a class label.
However, there is a significant difference between them. U-Net
treats objects of the same type as one entity (semantic
segmentation), while Mask R-CNN treats objects of the same
type as individual instances (instance segmentation).

FIGURE 1
Overview of the antibody based Highly Multiplexed Tissue Imaging Techniques (HMTI). (A) HMTI techniques has two main categories: mass
spectrometry methods which depend on conjugating the antibody with metal isotope and optical methods which depend on direct conjugation of a
fluorophore to the antibody or conjugating it with oligo strand which is attached to a fluorophore. (B) An example of a highly multiplexed image. The
outcomes of the optical methods are similar for the fluorophore and DNA-taggedmethods; each cycle generates four images for four markers, one
of them is nuclear stain which is used for the registration step. While the outcome of themetal isotope technique is a text file that contains the signal data,
that is afterwards processed to generate a single image for each marker. The images then go through processing steps to denoising and stitching to
construct a one virtual stacked image that contains all markers. The image shown is a colorectal cancer tissue imaged by Codex platform.
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The need for deep learning in imaging data
analysis

Histology slide images are quite informative: On a histology slide,
millions of distinct cells may be viewed, and both the shape and the
spatial arrangement of these cells reveal a wide spectrum of potentially

crucial information. However, interpretation of such information can
take a long time, requires highly skilled specialized personnel (doctors,
pathologists, technicians), and is despite training of a specialist over
several years still relatively error-prone. In synopsis with these
elaborations, it is essential to create diagnostic methods that are
efficient yet affordable, which could be fulfilled usingDL (Yu et al., 2021).

FIGURE 2
CNN architecture and how it could, conceptually, be utilized inmedicine. A CNN starts with convolution and pooling layers which could be repeated
several times to extract features from the image. The extracted features are then fed to a fully connected layer network where the class of the image is
predicted. For examples of how CNN-based networks were used in medicine, see sections ‘Applications in conventional medical (“simple”) images’ and
‘Applications in highly multiplexed images’.

FIGURE 3
U-Net general architecture. U-Net consists of two paths, the contractive path (encoder) and the expansive path (decoder). A series of convolution
processes (black arrows), and max pool processes (brown arrows) take place in the contractive path. The convolution process increases the depth of the
image (number of feature channels increases), followed by a max pool process where the size of the image is halved. A series of up-convolution
processes (red arrows), and concatenation processes (gray arrows) take place in the expansive path which ends with a convolution process (the
green arrow). The up-convolution process halves the number of features channels, and the concatenation happens between the feature map from the
expansive path and the correspondingly cropped feature map from the contracting path. The result of the U-Net is a semantically segmented image.
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The uniqueness of DL is its capacity to learn sophisticated
representations to enhance pattern recognition from
unprocessed data and has shown a capacity to revolutionize
diagnosis in medicine. There are a multitude of instances
showcasing how DL contributed to the growth and
advancement of pathological research (Komura and Ishikawa,
2018), such as analysis of malignancies of the lung (Hua et al.,
2015), lymph nodes (Ehteshami Bejnordi et al., 2017), skin
(Esteva et al., 2017), and colorectum (Yu et al., 2021). There
are also many instances demonstrating how DL algorithms can
exploit input data from biological images for the determination
of patient therapy, including radiographic imaging, magnetic
resonance imaging, and positron emission tomography (Shen
et al., 2017). In single-cell optical image research, DL was
effectively used for image identification, further classification
and segmentation (Min et al., 2017), cell imaging system
design and control, cross-modal and super-resolution image
reconstruction, cell tracking, and quantification (Sun et al.,
2020). Technological breakthroughs in DL research applied on
millions of images have proven equal precision to assessments by
board-certified clinical professionals (De Fauw et al., 2018;
Hekler et al., 2019; Qian et al., 2021). Therefore, computer-
assisted diagnostics have started to be advantageous for
academics and physicians (Shen et al., 2017).

The need for deep learning in spatial “omics”
technologies data analysis

Cutting-edge machine learning algorithms, applied to new types of
datasets generated by genomics techniques, integrate image pixel data
with molecular analysis to define tissue architecture in images surpassing
the limitations of conventional pathological labeling (Hekler et al., 2019).
Large scale implementations of DL development have been achieved in
the studies of gene expression and protein structure prediction (Lyons
et al., 2014). We will briefly cover the most widely used DL-based
pipelines in spatial transcriptomics analysis in ‘Deep Learning in Spatial
Transcriptomics’. Figure 5 summarizes how DL is involved in analyzing
HMTI and spatial transcriptomics data.

In the following sections, we focus on cutting-edge DL methods
developed for HMTI data analysis, including methods for image
segmentation, cell type annotation, tissue analysis, and DL methods
for spatial transcriptomics.

Applications in image preprocessing

Image preprocessing includes two main steps: image
segmentation and cell type annotation. Here we discuss how DL
enhances these two steps.

Deep learning in cell segmentation

Image segmentation is one of the key tasks in computer vision with
many applications in several fields, specifically digital pathology. It could
be seen as a classification problem of the pixels in an image (Minaee
et al., 2020). There are two main types of image segmentation: Semantic
segmentation, where the pixels are classified with labels (e.g., Pyramid
Scene Parsing Network ‘PSPNet’ (Zhao et al., 2017) and UNet-based
networks (Ronneberger et al., 2015)) and instance segmentation where,
the individual objects (e.g., nuclei) are labeled (e.g., Mask R-CNN (He
et al., 2018)) (Minaee et al., 2020). For digital pathology and HMTI,
accurate segmentation of cells is a crucial step because it determines the
accuracy of the downstream analysis. DL-based tools are useful for
image segmentation due to their excellent performance (Luo et al.,
2021). Here, we discuss several DL-based segmentation pipelines
(summarized with pros and cons in Table 1), how each pipeline
tackles a specific problem in image segmentation, and whether it is
trained on single-stained, conventional medical (“simple”) images or
highlymultiplexed images. In addition, we show that even if the pipeline
was trained on “simple” images, it could be used for highly multiplexed
images, paving the way for the downstream analysis to obtain
mechanistic insights from the collected data.

Several models were assessed with respect to their generalization
performance, i.e., here, ‘the segmentation performance on test data
not available for model training’. One of them being Mesmer
(Greenwald et al., 2022), a DL-based pipeline that was trained on

FIGURE 4
Illustration of Mask R-CNN and how it generates a segmented image (instance segmentation). It starts with convolutional layers to create a feature
map, followed by region proposal network (RPN) for proposing regions of interest (RoI). Then the RoIAlign process takes place, where features are
extracted from each RoI. Finally, masks are generated for each RoI using convolutional layers, and class prediction takes place using fully connected
layers.
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a unique dataset called TissueNet. The TissueNet dataset was
obtained from diverse imaging platforms (CODEX, Cyclic
Immunofluorescence, IMC, MIBI, Vectra, and MxIF), including
various disease states and tissue types. Furthermore, it is a
comprehensive segmentation dataset which consists of paired
nuclear and whole-cell annotations, which, when combined, sum
up to more than one million paired annotations (Greenwald et al.,
2022). Moreover, TissueNet has 16 times more whole-cell
annotations and twice as many nuclear annotations than other
datasets (Greenwald et al., 2022). Mesmer was able to predict
diagnostically relevant features including the subcellular
localization of proteins in cells. Hence the quantity of nuclear
translocation of transcription factors, as well as the degree of
membrane staining of HER2, could be measured which in turn
could be used for breast cancer assessment (Greenwald et al., 2022).
Mesmer was used in several studies to segment highly multiplexed
images, leading, after downstream analysis, to several discoveries.
Instances are the demonstration of how uninvolved lymph nodes
(i.e., no regional lymph node metastasis) can provide response
hallmarks in regard to anti-tumor immune therapy in human
head and neck carcinoma (Rahim et al., 2023) and showing that
there are distinct architectural tumor microenvironment (TME)
states in the transition from ductal carcinoma in situ (DCIS) to
invasive breast cancer with certain features being ascribed as
protective against recurrence (Risom et al., 2022).

Following the same concept of training models on diverse data
types, Cellpose, another segmentation pipeline, was trained on two
categories of data: images of cells and images of nuclei (Stringer
et al., 2021). In addition to that, the training dataset included images

from other microscopes and repeated objects, such as jellyfish, rocks,
and fruits. The inclusion of diverse images was designed to make
Cellpose generalize more robustly. Furthermore, Cellpose has spare
capacity for additional training data, i.e., contributing more training
data will not lead to saturating the learning capacity of Cellpose. The
authors also introduced Cellpose3D, which can perform 3D
segmentation after being trained on 2D data. Cellpose3D could
be directly trained on 3D ground truth data and additionally be
extended to perform other tasks as cell tracking (Stringer et al.,
2021). Moreover, a SpatialVizScore that quantifies the immune cell
infiltration in lung tumor samples, was developed based on Cellpose
segmentation (Allam et al., 2022).

Another segmentation pipeline that features generalization is
Cellseg, which is a Mask R-CNN based software capable of cell
segmentation and pixel quantification. CellSeg is among the most
accurate pipelines which were tested on the 2018 Kaggle Data
Challenge. CellSeg does not need training as it is a pre-trained
model. Initially, CellSeg was trained on brightfield and fluorescence
microscopy images provided from the 2018 Kaggle Data Science
Bowl. Without being trained on any highly multiplexed images,
CellSeg was able to segment 140 colorectal cancer images from a
CODEX study (Lee et al., 2022). Furthermore, CellSeg identifies
tumor cells with higher sensitivity because it does not over-segment
the large tumor cell nuclei as a commonly used watershed algorithm
does (Lee et al., 2022). CellSeg was part of several discoveries, such as
showing that the spatial cellular ecosystem which controls muscle
regeneration changes with aging (Wang et al., 2022), identifying the
functional and cellular properties of tertiary lymphoid structures
which provide therapeutic clues for cancer and autoimmunity

FIGURE 5
Machine learning-based pipelines used in analyzing spatially resolved single-cell data. All the methods are DL-based except ilastik, Phenograph,
ACDC, and CELESTA. Highly multiplexed tissue imaging and spatial transcriptomics represent the two main categories of spatially resolved single-cell
data. DL is involved in the highly multiplexed images’ preprocessing (cell segmentation and cell type annotation), see sections ‘Deep Learning in cell
segmentation’ and ‘Deep Learning in cell type annotation’. In addition, DL is utilized for spatial transcriptomics data analysis, see section ‘Deep
Learning in spatial transcriptomics’. Both Highly multiplexed tissue imaging and spatial transcriptomics analysis leads to obtaining biological and clinical
information, see section ‘Applications in Image Analysis’.
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TABLE 1 The core learning approach/model of cell segmentation and cell type annotation pipelines and the corresponding advantages and disadvantages.

Method Machine learning
approach

Advantages Disadvantages References

Segmentation pipelines

Mesmer feature pyramid network Generalization Inaccurate image segmentation in cases of low
signal-to-noise ratio, heterogeneous staining, and
focus issues

Greenwald et al.
(2022)

No manual parameter tuning

Fast

Retraining is not required

Cellpose U-Net with residual
blocks.

Generalization Low convexity cells are not well segmented Stringer et al.
(2021)

No parameter adjustments

Retraining is not required

3D cell segmentation using the 2D model and without
new 3D-labeled data

Cell tracking extension

Cellseg Mask R-CNN Generalization Parameter tuning is required, in a limited level
though

Lee et al. (2022)

Retraining is not required

Pixel quantification

Designed as a library, enabling customizations

DeepCell Deep CNN Robust identification of a cell’s cytoplasm with single cell
resolution obtained from phase microscopy

Requires prior training on new cell types Van Valen et al.
(2016)

Ilastik Machine learning based
non-linear classifier.

Interactive tool ilastik does not include an option to train deep
convolutional neural networks (CNNs)

Berg et al. (2019)

Does not need large training data. ilastik can handle data
in up to five dimensions (3D, time and channels)

ilastik ImageJ plugin availability

StarDist U-Net Pretrained In case of wrong segmentation, sometimes
StarDist omits cells

Schmidt et al.
(2018)

Could be combined with TrackMate (Ershov et al., 2021)
for cell tracking

Accurate for images with crowded cells

Good for segmenting images of irregular morphologies

UnMICST UNet, Mask R-CNN,
PSPNet

Segmenting images with artifacts (blurring, out of focus) Model does not learn subtle shape and texture
differences between cell types

Yapp et al. (2022)

Cell type annotation Pipelines

FlowSOM Self-organizing map Useable for visualization Not interpretable Van Gassen et al.
(2015)

PhenoGraph Graph-based clustering,
community detection

Scalability Manual parameter selection Levine et al.
(2015)

ACDC Knowledge transfer-
based clustering

Incorporates expert knowledge Relies on user-defined cell types Lee et al. (2017)

CELESTA Knowledge-driven
score-based label
assignment

Incorporates expert knowledge, uses spatial information Relies on user-defined cell types, parameter fine
tuning for rare cell types

Zhang et al.
(2022)

Pixie Self-organizing map,
hierarchical clustering

Independent of segmentation More elements must be clustered Liu et al. (2022)

Astir Deep recognition neural
network

Incorporates expert knowledge, Interpretable, identifies
unspecified cell types

Does not consider spatial information Geuenich et al.
(2021)

STELLAR GCN Includes spatial information Requires References data set Brbić et al. (2022)

CellSighter CNN Probabilistic output Supervised learning requires all cell types to be
present in training data

Amitay et al.
(2022)
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(Nayar et al., 2022), and identifying entity-specific spatial and
quantitative aberrations of the T-cell microenvironment in nodal
B-cell lymphoma (Roider et al., 2022).

Another segmentation pipeline featuring generalization is DeepCell
which enables nucleus and cytoplasm segmentation of individual phase-
contrast images of mammalian cells without requiring fluorescent
signals of cytoplasmic markers (Van Valen et al., 2016). The
significance of DeepCell is that it enables robust identification of a
cell’s cytoplasm with single-cell resolution obtained from phase-
contrast which used to be a difficult task. Although DeepCell has a
generalizability feature, it requires prior training on new cell types (Van
Valen et al., 2016). Applying DeepCell for segmentation of HMTI data
enabled findings such as associating functional proteins of cell-cell
interaction with recurrence and overall survival predictions of triple-
negative breast cancer (Patwa et al., 2021), and investigating the intra-
patient tumor organization heterogeneity in triple-negative breast
cancer (Keren et al., 2018).

To enhance the segmentation performance, Ilastik was
developed as an interactive tool that allows the user to click on
wrongly classified or uncertain positions, introduce labels,
annotations or sparse training examples, hence retrain the
classifier on a bigger training set that includes both the old and
the new user labels. Ilastik provides a fast-learning process as a
refinement system within a timeframe smaller than the time needed
for dense ground-truth annotation (Berg et al., 2019). Furthermore,
Ilastik includes multiple workflows such as pixel classification and
tracking overflow (Berg et al., 2019). Ilastik was utilized in analyzing
HMTI data leading to several biological discoveries. For instance,
unraveling cancer-associated fibroblasts (CAF) heterogeneity and
investigating TME remodeling in an immunocompetent mouse
orthotopic lung cancer model (van Maldegem et al., 2021).

One of the issues in segmentation is the occurrence of objects
with different morphologies. StarDist approaches this problem by
training a convolutional neural network (U-Net) to predict a star-
convex polygon (instead of a bounding box) for each pixel (only for
non-background pixels of an object) in the image for the cell
instance at a specific position. The advantage of this polygon-
based method is that it can cope with several shapes and
efficiently segment images with very crowded nuclei. It is worth
mentioning that the mistakes made by StarDist are handled either by
omitting a particular cell or by predicting a plausible cell shape
(Schmidt et al., 2018). In contrast, mistakes made by other
segmentation methods potentially lead to implausible outcomes
(Schmidt et al., 2018). An example of StarDist application to
HMTI data is segmenting high-grade serous ovarian cancer
(HGSOC) images leading to immune recognition and evasion
investigations (Vázquez-García et al., 2022).

Many segmentation pipelines focus on adjusting the model
architecture to optimize performance. However, universal Models
for Identifying Cells and Segmenting Tissue (UnMICST) was
developed to enhance the performance by manipulating the input
data. UnMICST is a family of neural networks, each being trained
separately (Yapp et al., 2022). UnMICST comprises UNet, Mask
R-CNN, and the Pyramid Scene Parsing Network (PSPNet). The
authors showed that the segmentation accuracy is improved by
manipulating the input rather than the network’s architecture (Yapp
et al., 2022). To this end, two ways were shown to improve
segmentation accuracy. First, adding nuclear envelope staining

(NES) images to images of nuclear chromatin obtained by DNA-
intercalating dyes. Second, real augmentation which is the process of
intentionally oversaturating (by means of long exposure time) and
defocusing the images to mimic the artifacts happening in real tissue
imaging so that the trained models are more robust. The results
showed that real augmentation outperforms augmentation by
conventional Gaussian blurring (Yapp et al., 2022). Furthermore,
training the models on data including real augmented data and NES
data was shown to have a cumulative effect. Interestingly, the
cumulative effect could be observed across different tissue types
(Yapp et al., 2022). To test the robustness of the trained UnMICST
on segmenting highly multiplexed images, 64-plex CyCIF images of
non-neoplastic small intestine tissue were fed into the UnMICST.
Segmentation masks were accurately located and almost no under-
or over-segmentation was detected (Yapp et al., 2022). In addition,
low abundance (3%) of CD45 and E-cadherin double-positive cells
was detected, reflecting accurate segmentation due to mutual
exclusion. Investigation of CD45+ E-cadherin + cells revealed that
some were CD3+ T-cell which were in close proximity to or between
epithelial cells of the intestinal villi. This observation aligns with the
intestinal epithelium’s known role in immune homeostasis. In such
cases, humans can distinguish between the epithelial and immune
cells based on subtle shape and texture differences, as well as multi-
dimensional intensity features which are not featured in the model
training. Therefore, developing a model that is aware of physiology
could allow the recognition of biologically relevant features (Yapp
et al., 2022). Other studies segmented their data using UnMICST to
investigate immune evasion and immunoediting in primary
melanoma (Nirmal et al., 2022) and the purinergic signaling
topology in glioma (Coy et al., 2022).

Finally, nucleAIzer was developed to segment cells based on the
image style transfer concept combining a Mask R-CNN-based
instance segmentation network and a U-Net-based semantic
segmentation network to provide a robust segmentation of a
wide variety of cell types from different staining methods and
diverse image modalities (Hollandi et al., 2020). To our
knowledge, nucleAIzer was not yet used to segment HTMI data.

Deep learning in cell type annotation

A central aspect of single-cell analysis in spatial and non-spatial
contexts is the cell type annotation of measured cells. This task is
challenging because single-cell data suffers from high
dimensionality, noisiness, and technical artifacts. With the rise of
machine learning and DL in the past years, various algorithmic
approaches have been proposed to overcome this challenge. Current
research mainly uses manual annotation of cells using domain
knowledge, which is considered the gold standard for this task.

The proposed methods for cell type annotation (summarized
with pros and cons in Table 1) can be divided into two groups based
on the machine learning paradigm they are based on: unsupervised,
as in clustering, and supervised, as in classification.While supervised
annotation tools require ground-truth labels for training,
unsupervised methods are purely data-driven, although they
might consider prior knowledge.

Established procedures for cell-type annotation have been
applied to studies using spatially resolved data and are still used.
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As suspension-based single-cell data is the predecessor of spatially
resolved single-cell data, many computational methods designed for
suspension-based single-cell data have later been applied to spatially
resolved single-cell data. Only recently, specialized methods
accounting for spatial information have been developed. Thus,
we will first give an overview of methods used for non-spatial
data, followed by more recent approaches.

Prior to the development of distinguished methods for single-
cell data, classical machine learning approaches for clustering have
been used, including K-means clustering and graph-based Louvain
clustering. Generally speaking, community detection on graphs has
become the method of choice for clustering single-cell data (Luecken
and Theis, 2019).

FlowSOM was one of the earliest tools designed explicitly for
cell-type annotation in cytometry data (Van Gassen et al., 2015). It is
based on a self-organizing map (SOM) and is thus a DL-based
clustering method. Levine et al. proposed a graph-based approach,
PhenoGraph, which extends established community detection
methods like Louvain clustering to detect rare phenotypes more
accurately (Levine et al., 2015). This is achieved by refining the
underlying graph to account for shared neighbors of nodes.

ACDC. proposed by Lee et al. (Lee et al., 2017), allows the user to
incorporate prior knowledge about marker expression to define a
matching score used for clustering. Following these and other
methods engineered to be suitable for phenotyping single cells,
Abdelaal et al. suggested linear discriminant analysis (LDA) for
classification, thus using a supervised learning approach (Abdelaal
et al., 2019). The authors have shown that LDA outperforms more
complex methods in this task on chosen datasets.

CELESTA. Although research on spatially-aware cell type
annotation tools has just started, a few methods are already
available. Zhan et al. presented CELESTA, a method that
leverages a cell-type signature matrix to assign cell-type
probabilities to each cell (Zhang et al., 2022). In the first step, so-
called “anchor cells” are defined based on amarker-scoring function.
Subsequently, the remaining cells are assigned to cell types based on
a combined marker- and spatial-scoring function in an iterative
fashion. The algorithm converges after a specified threshold of
identified cells is reached.

Pixie. developed by Liu et al., annotates cell types in highly-
multiplexed in-situ imaging by clustering each pixel of the provided
image (Liu et al., 2022). The method combines self-organizing maps
and consensus hierarchical clustering to assign classes to each pixel
while allowing for manual interventions. These pixel classes are then
used as features of each segmented cell for assigning each segmented
cell to a cell type.

Astir. proposed by Geuenich et al. for automated probabilistic
cell-type assignment (Geuenich et al., 2021). While the authors
apply the method for both suspension expression and highly
multiplexed imaging data, it is of note that Astir does not account
for spatial information provided by the imaging data.

STELLAR. a pipeline based on a graph convolutional neural
network (GCN), that was proposed by Brbić et al. (Brbić et al., 2022).
The method requires annotated data to be trained, putting it in the
supervised learning category. The method uses a k nearest neighbor
graph with marker expression as node features. The authors
demonstrate that the generated embeddings can potentially be
interpreted as spatial modules.

CellSighter is another neural network-based approach proposed by
Amitay et al. (Amitay et al., 2022). CellSighter is based on multiple
convolutional neural networks (CNNs) which operate on the provided
imaging data. Themodel accounts for uncertainty by assigning each cell
a probability for all available classes. EachCNN input is a 3-dimensional
tensor containing images of K proteins centered in the cell. As
additional input, two images are provided. The first image encodes
the segmentation of the cell to be classified, while the second image
contains similar information but also includes neighboring cells.

Applications in image analysis

As shown in “Deep Learning in Segmentation”, upgrading the
segmentation pipelines to be used on highly multiplexed images
enabled biological discoveries with mechanistic insights that could
have never been obtained if “simple” imaging was used. In this
section of the review, we elaborate more on this concept by giving
examples of what could be obtained from combining DL with
“simple” images and combining DL with highly multiplexed
images. We conclude that the biological information obtained
from the combination of DL with “simple” images is limited to
disease diagnosis, classification and therapy outcome predictions
with little mechanistic insights even with the aid of explainable AI
tools. However, if “simple” images are replaced with HMTI, the
same questions are more precisely addressed and accompanied by a
multitude of additional insights, as summarized in Figure 6.

Applications in conventional medical
(“simple”) images

Classification. DL was effectively used for medical image
classification and segmentation (Hashemzadeh et al., 2021),
showing a considerable potential in pathological image analysis,
such as tumor and metastasis localization (Wang S. et al., 2019). The
successful applications of DL were expanded to cover brain tumor
identification (Hossain et al., 2019), breast cancer research (Ragab
et al., 2019), segmenting gastrointestinal malignancy (Yoon and
Kim, 2020), classification of lung tumors (Alakwaa et al., 2017),
prostate cancer detection (Yoo et al., 2019), and many more. For
instance, ResNet-101 (He et al., 2015) was trained on multi-phase
computed tomography images to classify the renal tumors into their
major subtypes (Uhm et al., 2021); clear cell renal cell carcinoma
(RCC), papillary RCC, and chromophobe RCC, angiomyolipoma
and oncocytoma, where the first three are malignant and the last two
are benign (Moch et al., 2016; About Kidney Cancer, 2023). In
another study, microfluidic technology was combined with DL
algorithms to classify between five distinct lung cancer cell lines
and a healthy cell line (Hashemzadeh et al., 2021). The authors have
trained five CNN models, ResNet18, SqueezeNet (Iandola et al.,
2016), AlexNet (Krizhevsky et al., 2017), GoogLeNet (Szegedy et al.,
2015), and Inceptionv3 (Szegedy et al., 2016), which were pre-
trained on ImageNet (Deng et al., 2009). ResNet18 outperformed
the other networks (Hashemzadeh et al., 2021). In another work, DL
extracted decisive features from ultrasound (US) images to predict
the risk of breast malignancy (Qian et al., 2021). The images were
bimodal and multimodal US images, including ultrasound
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elastography images, ultrasound color Doppler and US B-mode
(Qian et al., 2021). The DL model was an integration of ResNet-18
with SENet (Hu et al., 2019) backbone (Qian et al., 2021). The model
was pre-trained on ImageNet dataset via transfer learning (Qian
et al., 2021). In addition, the gradient-weighted class activation
mapping (Grad-CAM) (Selvaraju et al., 2020) provided the
explainability to the prediction, which assists the clinicians in
comprehending the classifications made by the model (Qian
et al., 2021).

Yu, G. et al. built a semi-supervised learning (SSL) model that
classifies colorectal cancer samples into cancerous and
noncancerous based on whole slide images (Yu et al., 2021). SSL
with a small amount of labeled data outperformed the supervised
Learning model (SL) with larger labeled data (Yu et al., 2021). This
was proven at both patient-level and patch-level colorectal cancer
(Yu et al., 2021). The model was trained on lung and lymph nodes
cancer datasets, which showed the superiority of SSL over the SL (Yu
et al., 2021). At the patch-level, the SLmodel is built on Inception V3

(Yu et al., 2021). While the baseline for SSL model employs two
Inception V3, the first one is called teacher and the other one is
called student. This method is named the mean teacher method
(Tarvainen and Valpola, 2018). At the patient-level, the inception
V3 network was trained on the pathological images after pre-
training on ImageNet dataset (Yu et al., 2021).

The success of DL continues with the histological images. A DL-
basedmodel analyzed the cellular morphology of H&E images to create
a classifier that predicts the breast cancer grade, estrogen receptor status,
histologic subtype (lobular or ductal tumor), histologic subtype (lobular
or ductal tumor), gene expression score and the risk of recurrence score
(Couture et al., 2018). The authors applied CNN and
VGG16 architectures (configuration D) (Simonyan and Zisserman,
2015) for image pre-processing and features identification. The
VGG16 was pre-trained on the ImageNet dataset. A probabilistic
model was exploited to determine the class of each group. A linear
support vector machine (SVM) calibrated with isotonic regression was
employed to predict these probabilities (Couture et al., 2018).

FIGURE 6
The significant upgrade of the outcomes of combining HMTI with DL. (A), when “simple” imaging (like hematoxylin and eosin [H&E]-stained slides) is
combined with DL, the outcomes provide little mechanistic insights. (B) On the other hand, when a highly multiplexed image is analyzed using DL, the
provided outcomes do not only cover what “simple” images cover but also providemore detailedmechanistic insights. (C–D) Zoomed in sight for an area
of the image showing 6 channels as (C) overlay and (D) separate images, where each channel is defined by a specific marker. The H&E and CODEX
images are reproduced from (Schürch et al., 2020) under a CC-BY license.
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Therapy outcomes. DL successfully predicted therapy outcomes
for several tumors using data obtained from different modalities. For
instance, a multi-task DL strategy which exploits the dynamic
information in longitudinal images, was used to predict tumor
response to treatment (Jin et al., 2021). The multi-task learning
framework is based on a 3D RP-Net architecture (Wang L. et al.,
2019) consisting of two parts: one of them being feature extraction
and tumor segmentation, which is a convolutional encoding/
decoding subnetwork, and a response prediction part which is a
multi-stream Siamese subnetwork. The framework was trained on
magnetic resonance imaging scans of rectal cancer patients to
predict the pathologic complete response (pCR) after
neoadjuvant chemoradiotherapy. Network visualization
highlighted that the extramural vascular invasion and the depth
of tumor invasion are correlated with the poor response of the
patients (Jin et al., 2021); however, that does not guide well to
mechanistic insights.

Other work demonstrated anti-VEGF therapy outcomes on
metastatic colorectal cancer patients by using a DL-based framework
only trained on computed tomography (CT) scan images obtained from
the VELOUR trial (ClinicalTrials.gov identifier NCT00561470), and
combined with the standard tumor size-based evaluation methodology.
Interestingly, when the DL-based method was used without a
combination of the standard tumor-based method, the DL-based
framework still performed better than the standard tumor-based
method (Lu et al., 2021). The DL-based framework consists of two
neural networks: a convolutional neural network CNN (pre-trained
GoogleNet on ImageNet), which was trained on the CT scans to extract
the important features from lesions of different organs, and a recurrent
neural network RNN which learned the changes happening in these
lesions across multiple time points. Furthermore, Grad-CAM was used
to find out the regions of the input CT scans that contributed the most
to the framework predictions. However, further investigations are
required to understand the underlying biology of these significant
regions (Lu et al., 2021).

Other studies investigated the early postoperative recurrence in
intrahepatic cholangiocarcinoma patients. CT scans were used from
a pilot study of intrahepatic cholangiocarcinoma patients to train a
residual neural network (ResNet50) (He et al., 2015)). The pilot
study contained patches collected from patients with and without
early recurrence. The DL approach preoperatively predicted the
recurrence risk after surgery (Wakiya et al., 2022).

Previously, DL-based frameworks were able to predict the ERBB2
(HER2) status based on learning tissue architecture from digitized
H&E-stained specimens (Shamai et al., 2019). An extension of this
was training a DL model on H&E-stained formalin-fixed primary
breast tumor tissue images (weak supervision by
ERBB2 amplification), given that the ERBB2 gene amplification
was detected using chromogenic in situ hybridization. The
predicted ERBB2 amplification was called the H&E-ERBB2 score
and was correlated with distant disease-free survival. Besides a fully
connected block, the framework consists of a stack of layers from
se-resnetxt50_32 × 4d, ‘a squeeze-and-excitation convolutional
neural network architecture’ (Hu et al., 2019). The neural
network’s weights were the ones trained on ImageNet.
Interestingly, there was a significant variability of the H&E-
ERBB2 score across and within the samples indicating a
heterogeneous distribution of the ERBB2-associated patterns in

the tissues. Therefore, Grad-CAM activation maps were used to
find the regions of the tissue which are the most predictive of the
ERBB2 gene amplification. The Grad- CAM activation maps
showed that the regions of in situ carcinoma components and
the tumor epithelium are the most predictive. In addition, this
study showed that there is an association between breast cancer
survival and some features, such as the distance between the tumor
regions, the stroma-tumor interface, and the size of the tumor
nests. However, highly multiplexed techniques are required for
further investigations (Bychkov et al., 2021).

Finally, a DL model was trained on quantitative ultrasound
multiparametric images of breast cancer to predict the neoadjuvant
chemotherapy response. This study tested the performance of two
different neural network architectures (residual network and
residual attention network) using two different experiments. In
the first experiment, the feature map was extracted only from the
tumor core, while in the second experiment, the feature map was
extracted from both the tumor core and its margin. It turned out that
the best performance was obtained from the RNN architecture with
the feature map including both the tumor core and its margin
(Taleghamar et al., 2022).

Biological discovery. Many instances of machine learning have
been applied to “simple” imaging techniques for biological discovery.
Saltz et al. detected tumor necrosis and tumor-infiltrating
lymphocytes on H&E stainings. They achieved this by using a
CNN-based model to produce a so-called “computational stain”.
Additionally, the semi-supervised initialization for the lymphocyte
CNN was achieved by leveraging an unsupervised convolutional
autoencoder (Saltz et al., 2018). Similarly, Chuang et al. developed
a DL model capable of detecting micrometastasis on annotation-free
whole slide images (Chuang et al., 2021). Again, this model was based
on a CNN (ResNet-50) architecture. The model was only presented
WSI being annotated as either positive or negative. However, by
applying the class activation mapping (CAM) method (Zhou et al.,
2016), the authors could show that the network based its decision on
the tumor cells. The aforementioned ResNet-50 architecture has also
been used to identify axillary lymph node involvement in patients
with early-stage breast cancer. Zhen et al. adapted themodel to receive
ultrasound and shear wave elastography images as input.
Additionally, the authors included clinical information of patients
in their study. By extracting the features of the CNN and combining
them with the clinical status, a support vector machine was trained to
predict the patient status (Zheng et al., 2020).

Additionally, DL was successfully used to identify predictive
features. Koyuncu and Lu et al. showed the predictiveness of their
proposed multinucleation index for p16+ oropharyngeal carcinoma.
Their proposed model calculates the multinucleation index on H&E
stains using two conditional Generative Adversarial Networks
(cGANs). While the first neural network is used to detect
multinucleation (MN) events, the second cGAN segments cancer
nuclei in epithelial regions. To calculate the multinucleation index,
the ratio of multinucleation events and epithelial nuclei was considered
(Koyuncu et al., 2021). Furthermore, Da et al. quantified the
morphological characteristics and atypia of signet ring cells (SRCC)
using DL. Deep Layer Aggregation (Yu et al., 2017), a neural network-
based approach, was used to segment the cells and corresponding nuclei
(Da et al., 2022). The resulting quantification of morphology allows the
prediction of biological behavior of SRCC.
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Applications in highly multiplexed images

Considering the availability of spatial information, the most
downstream analysis that will follow the annotation of cells is
automated detection and analysis of tissue patterns, which enable
scientists to unravel the correlation between the high-level vision of
medicine (e.g., disease diagnosis, and treatment) and the deeper
levels of the underlying biological organization/mechanisms.

For instance, Schürch et al. analyzed the colorectal cancer invasive
front and by calculating the composition of the k-neighborhood of each
cell, higher-level features (cellular neighborhoods) were generated
enabling the assignment of each cell to a primary tissue type (e.g.,
smooth muscle, bulk tumor). Interestingly, an association between
specific cellular neighborhoods and the overall survival of colorectal
cancer patients was shown (Schürch et al., 2020). Furthermore, studying
cutaneous T-cell lymphoma, the authors established a spatial score
based on the distances of cell types in the tissue topography, which was
associated with the outcomes of pembrolizumab therapy (Phillips et al.,
2021). In another study, the TME was dissected into three hierarchical
levels, termed “local cell phenotypes”, “cellular neighborhoods”, and
“tissue areas” (the interactions between the neighborhoods). The TME
elements on these hierarchical levels were learned by a multilevel DL-
based method ‘NaroNet’. Afterwards, an association between the
learned TME elements and patient labels was established such that
the model could perform a classification task based on the learned
TMEs (Jiménez-Sánchez et al., 2022). Furthermore, a differential TME
analysis was done to investigate which TMEs were mainly guiding for a
specific patient label prediction. NaroNet was trained on breast cancer
and endometrial carcinoma datasets and could successfully relate TMEs
with patient survival risk. Furthermore, NaroNet learned to relate the
TMEs with patient level labels: Copy number variation, somatic
polymerase E mutations, serous-like carcinoma, and endometrioid
carcinoma. Since NaroNet has the capability of suggesting
interpretations on three complexity levels as described above, it stands
as one of themost powerful computational pipelines that could be used to
get biological insights from highly multiplexed images (Jiménez-Sánchez
et al., 2022). Another association was discovered by Babaei et al. using S3-
CIMA (supervised spatial single-cell image analysis), which is a weakly
supervised convolutional neural network model. S3-CIMA identifies cell-
cell interactions and cellular compositions and associates them with
patient outcomes (Babaei et al., 2023).

Tissue-based cyclic immunofluorescence (t-CyCIF) (Lin et al.,
2018) images of colorectal cancer were analyzed with spatial
statistics and supervised machine learning to identify cell states
and types with morphologies of known prognostic and diagnostic
significance. Interestingly, the spatial analysis of the entire tumor
region showed a correlation between molecular gradients and
repeated transitions between histological archetypes as
morphologies and tumor grades (Lin et al., 2021). Recently,
Graph Neural Networks (GNNs) (Scarselli et al., 2009) were used
to model the TME. For instance, a two-layer GNN was used to
analyze the TME of multiplexed immunofluorescence images (IF).
The analysis defined biologically meaningful compartments and
predicted tumor stages. In addition, with the aid of GNNExplainer
(Ying et al., 2019), the GNN identified the top features (the average
expression of CD20, the FoxP3+, and epithelial cells’ interactions,
and the proportion of CD4+ and CD8+ cells’ interactions) deciding
the tumor stage classification (Martin et al., 2022).

Finally, Kim et al. proposed UTAG (unsupervised discovery of
tissue architecture with graphs) as an unsupervised learning
method to detect tissue types. Using unsupervised learning
saves the need for training examples and manual annotation.
UTAG was applied and validated on healthy and diseased lung
tissue (Kim et al., 2022).

All the methods discussed in Image analysis are summarized in
Table 2.

Applications in spatial transcriptomics

Spatial transcriptomics combines tissue imaging and RNA
sequencing and provides both spatial location and expression
profiles of cells. The complexity and noisiness of the generated
data require efficient computational tools to obtain useful
biological information. To this end, DL is utilized in several
spatial transcriptomics computational tools, as outlined in
Table 3.

Machine learning analysis can be subdivided into the following
tasks and has been addressed by the different approaches: (Siegel
et al., 2023): identification of spatial expression covariance patterns
(CoSTA, SpaGCN, MEFISTO), (Gill et al., 2004), low dimensional
representations (ConST, SpaCell), (Cone et al., 2020), cell type and
state annotation (DEEPsc, DestVI), possibly accounting for low-
resolution ST approaches including cell type deconvolution
(DSTG, MAPLE) or tissue type annotation (SCAN-IT) and
(Sun et al., 2020) integration of spatial transcriptomics and
conventional pathology images (DeepST) or suspension based
single-cell/single-nucleus RNA sequencing data (Tangram).
Pipelines such as stLearn have been developed to cover multiple
of the above tasks. Below follows a more detailed description of the
above approaches.

CoSTA. A DL-based approach that utilizes convolutional neural
network clustering to find spatial similarities among the expression of
many genes. Furthermore, CoSTA finds spatially related expressions of
genes in a context of plausible biological information. Contrary to other
methods, CoSTA captures a narrow range of genes whose expression is
spatially related, making it a good candidate for researchers interested in
decreasing the number of related genes for further experiments (Xu and
McCord, 2021).

SpaGCN. A graph convolutional network (GCN)-based
approach. It is an adaptive method in analyzing various
spatially resolved transcriptomics data types, such as spatial
transcriptomics, STARmap, MERFISH, 10x Visium, and SLIDE-
seqV2 (Stickels et al., 2021). SpaGCN is a technique that combines
spatial position, gene expression, and histology to simulate the
spatial dependence of gene expression in order to discover the
spatial domains and domain-dense spatially variable genes SVGs.
SpaGCN ensures spatial expression patterns in the SVGs it detects
(Hu et al., 2021).

MEFISTO. A factor analysis approach that includes Gaussian
process priors for factors over variables with continuous covariates.
While these covariates are typically time points from time series
data, MEFISTO has also been demonstrated on spatial covariates
from spatial transcriptomics data (Velten et al., 2022).

ConST. A contrastive learning-based method that takes multi-
modal data (spatial information, gene expression, and morphology) as
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its input and returns low-dimensional expressive embeddings as output.
ConST embeddings output could be used in several downstream tasks
such as cell-cell interaction, clustering, and trajectory and pseudo-time
inference. Furthermore, GNNExplainer defined which spots ConST
used to make its predictions. This interpretability feature of ConST

nominates it to be used for more complex studies as its predictions
could be explained and hence checked whether they are biologically
plausible (Zong et al., 2022).

SpaCell. A cutting-edge piece of software that uses deep neural
networks to combine image pixel data with thousands of spatially

TABLE 2 The core learning approach/model used in image analysis and the corresponding clinical relevance.

Machine Learning
approach/model

Data type for training the model Clinical relevance References

Conventional ‘simple’ images

ResNet-101 multi-phase computed tomography images of renal
tumors

Classify the renal tumors into its major subtypes Uhm et al. (2021)

ResNet18 Microfluidic technology of different lung cancer cell lines Classify between five distinct lung cancer cell lines and a
healthy cell-line

Hashemzadeh et al.
(2021)

ResNet-18 with SENet
backbone

Bimodal and multimodal Ultrasound images, including
ultrasound elastography images, ultrasound color Doppler
and ultrasound B-mode

Predict the risk of breast malignancy Qian et al. (2021)

Inception V3 Whole slide histological images of colorectal cancer Classify colorectal cancer samples into cancerous and
noncancerous

Yu et al. (2021)

CNN and VGG16 H&E-stained whole slide images of breast tumors Predict breast cancer grade, estrogen receptor status,
histologic subtype, PAM50 intrinsic subtype and the risk
of recurrence score

Couture et al. (2018)

3D RP-Net and multi-stream
Siamese subnetwork

MRI scans of rectal cancer patients Predict the pathologic complete response (pCR) after
neoadjuvant chemoradiotherapy

Jin et al. (2021)

CNN and RNN CT scan images of metastatic colorectal cancer Predict anti-VEGF therapy outcomes Lu et al. (2021)

ResNet50 CT scans were used from a pilot study of intrahepatic
cholangiocarcinoma patients

Predict the recurrence risk after surgery Wakiya et al. (2022)

se-resnetxt50_32 × 4d besides
a fully connected block

H&E-stained formalin-fixed primary breast tumor tissue
images

H&E-ERBB2 score and was correlated with the Distant
Disease-Free Survival ‘DDFS’

Bychkov et al. (2021)

RNN Quantitative ultrasound multiparametric images of breast
cancer

Predict the neo-adjuvant chemotherapy response Taleghamar et al.
(2022)

ResNet50 Ultrasound and shear wave elastography images of breast
cancer

Identify axillary lymph node involvement in early-stage
breast cancer

Zheng et al. (2020)

CNN H&E stainings, 13 different tumor types Detect tumor necrosis and tumor-infiltrating
lymphocytes

Saltz et al. (2018)

Deep Layer Aggregation Whole slide images of signet ring cell carcinoma Analyze signet ring cells Da et al. (2022)

cGAN p16+ oropharyngeal carcinoma H&E stainings Calculation of a predictive index for p16+ oropharyngeal
carcinoma

Koyuncu et al. (2021)

CNN Whole slide images of colorectal cancer Detection of micrometastasis Chuang et al. (2021)

Highly multiplexed images

multilevel DL model
‘NaroNet’

Breast cancer mass cytometry images and seven-color
multiplex-immunostained endometrial carcinoma images

Associate TME hierarchical levels with patient survival
risk

Jiménez-Sánchez
et al. (2022)

spatial statistics and
supervised model

Tissue-based cyclic immunofluorescence images of
colorectal cancer

Correlate molecular gradients and repeated transitions
between histological archetypes as morphologies and
tumor grades

Lin et al. (2021)

GNN Colorectal cancer multiplexed immunofluorescence
images

Define biologically meaningful compartments and
predict tumor stages

Martin et al. (2022)

CNN (S3-CIMA) CODEX images of colorectal cancer Cell interactions, cell niches Babaei et al. (2023)

GCN (STELLAR) CODEX images of Barrett’s esophagus Detection of tissue structure Brbić et al. (2022)

Unsupervised Graph-based
Model (UTAG)

IMC images of healthy lung and infected lung Tissue architecture Kim et al. (2022)
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barcoded spots in tissue that represent different body regions.
SpaCell outperforms using gene-count data alone or pixel
information alone in autonomously and statistically classifying
cell types and disease phases (Tan X. et al., 2020).

DEEPsc. A DL-based method that maps the spatial information on
a reference atlas of single-cell RNA sequencing data. DEEPsc takes two
vectors, a low-dimensional vector of a single position in the spatial
reference atlas and the corresponding vector of the gene expression for a
single cell. The output of DEEPsc is the likelihood that the input cell is
actually at the input position (Maseda et al., 2021).

DestVI. Lopez et al. proposed DestVI, a method for
deconvolving spatial transcriptomics profiles (Lopez et al., 2022).
In detail, DestVI is designed to determine the proportions of
different cell types within a tissue sample and identify continuous
sub-states within those cell types. It is based on two different latent
variable models and, thus, a probabilistic method. The input for
DestVI consists of a pair of transcriptomics datasets. One from a
spatial transcriptomics study and the other from a scRNA-seq study
of the same tissue. The scRNA-seq data must be annotated with
cell-type labels. DestVI generates output consisting of two
components: first, the predicted proportion of cell types for
each spot, and second, the continuous estimate of the cell state
for each cell type in each spot, which reflects the average state of
cells of that type in that spot.

DSTG. Song et al. developed a method for deconvoluting spatial
transcriptomics data through graph-based convolutional networks
(Song and Su, 2021). The model requires both real spatial
transcriptomics data and pseudo spatial transcriptomics data.
The pseudo-data is generated from single-cell RNA sequencing
data of the same tissue. Furthermore, a link graph between both
datasets is learned to connect similar spots, also used as input for the
method. DSTG is used to predict the composition of cell types in the
real spatial transcriptomics data. This goal is achieved by not only
using the features of each spot but also the known composition of
spots in the real spatial transcriptomics data encoded in the graph.

MAPLE. (Multi-sAmple sPatiaL transcriptomics modEl) is a
modeling framework for multi-sample spatial transcriptomics data
leveraging machine learning and Bayesian statistical modeling,
which was proposed by Allen et al. The method aims to
simultaneously detect cell spot sub-populations on multiple
samples while accounting for uncertainty. First, spatially aware
gene expression features are extracted using scGNN (Allen et al.,
2022).

Using the extracted features, spatially informed cell subpopulations
are detected in each sample using a Bayesian multivariate finite mixture
model. The priors are selected to induce a correlation between cell spots
within each sample. Lastly, MAPLE quantifies the effect of covariates
(e.g., treatment responders vs non-responders) on tissue architecture by

TABLE 3 The core learning approach/model of each spatial transcriptomics data analysis pipeline and the corresponding applications.

Method Learning approach/model Method highlights References

CoSTA Convolutional neural network Find spatial similarities among the expression of many genes Xu and McCord
(2021)

ConST Contrastive learning Interpretability feature Zong et al. (2022)

DEEPsc Feedforward neural network References mapping Maseda et al.
(2021)

DeepST Transfer learning, graph neural network autoencoder, denoising
autoencoder, adversarial neural network

Integrate spatial transcriptome data from several technologies or
batches

Xu et al. (2022)

SpaCell Transfer learning, convolutional neural network, feedforward
neural network

Integrate spatial gene expression and image pixel data Tan et al. (2020b)

SpaGCN Graph convolutional network Integrate histology, spatial location and gene expression data Hu et al. (2021)

stLearn Transfer learning, convolutional neural network Integrate tissue morphology, spatial dimensionality, and the
genome-wide transcriptional cellular profile

Pham et al. (2020)

Tangram Siamese neural network, U-Net Map snRNA-seq data to spatial data of different resolutions, ISH
associated with histological and anatomical coordinates, mid-
resolution Spatial Transcriptomics, and high-resolution STARmap
(Wang et al., 2018) and MERFISH

Biancalani et al.
(2021)

DestVI Deep generative models (single cell Latent Variable Model ‘scLVM’,
and spatial transcriptomics Latent Variable Model ‘stLVM’)

Determine the proportions of different cell types within a tissue
sample and their corresponding cell states

Lopez et al. (2022)

DSTG Graph convolutional network Predict the composition of cell types Song and Su
(2021)

SCAN-IT Graph convolutional network Treats the spatial domain determination problem as an image
segmentation problem, such that cells are the pixels and gene
expression values of a cell are the color channels

Cang et al. (2023)

MAPLE Graph neural network Quantifies the effect of covariates (e.g., treatment responders vs non-
responders) on tissue architecture

Allen et al. (2022)

MEFISTO Gaussian process factor model Factor analysis for variables with continuous covariates (e.g., spatial
coordinates)

Velten et al. (2022)
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using a multinomial logistic regression model for the spot-level mixture
component probabilities.

SCAN-IT. Proposed by Cang et al. is a GCN-based method for
tissue identification in spatial transcriptomics data (Cang et al,
2021). To solve this problem, they state spatial domain
identification as an instance of image segmentation. Each cell
corresponds to a pixel with its gene expressions representing
color channels. In the first step, a graph representation of the
spatial spots is generated by using the alpha complex. Following
that, multiple GCNs are used as encoders. Using the resulting
embeddings, consensus clustering is performed to obtain the
segmented tissue domains.

DeepST. A DL-based method that utilizes a pretrained neural
network that is fed with morphological images to extract feature
vectors from them. Afterwards, it takes gene expression and spatial
data, and integrates them with the extracted feature vectors forming a
spatial augmented gene expression matrix. Furthermore, DeepST
exploits a GNN autoencoder besides a denoising autoencoder to
create a latent representation of the augmented spatial transcriptome
data. Moreover, DeepST uses domain adversarial neural networks to
integrate spatial transcriptome data from several technologies or
batches (Xu et al., 2022).

Tangram. An approach for matching single-cell and single-
nucleus RNA sequencing data to a wide difference of spatial
information gathered from the same area, such as histology
images, MERFISH, STARmap, smFISH (Femino et al., 1998),
and Visium. Tangram is a deep-learning model that integrates
histological, morphological, and in vivo findings with single-cell
and single-nucleus RNA sequencing data offering high-
sensitive spatial measurements and an atlas with high
resolution. Tangram has been developed and expanded to be
employed to different organs and tissue diseases (Biancalani
et al., 2021).

stLearn is a pioneering interdisciplinary analysis method that
uses three different data categories (tissue morphology, spatial
dimensionality, and the genome-wide transcriptional cellular
profile). stLearn allows scientists to use spatial transcriptomics
data as effectively as possible. In a morphologically intact tissue
sample, stLearn starts with cell type identification, rebuilds cell type
evolution within the tissue, then explores tissue locations with strong
cell-cell interconnections (Pham et al., 2020).

In this section, we covered the DL-methods for spatial
transcriptomics data and the kind of information that could
be obtained from each pipeline. Although DL methods suffer
from expensive computations and might not offer biological
interpretations (Heydari and Sindi, 2023), this gap could be
covered by continuous efforts to come up with interpretable
models (Weld and Bansal, 2018; Elmarakeby et al., 2021).

Discussion and conclusion

Machine learning, particularly DL, is rapidly expanding and
promising in medical imaging applications, and it is anticipated
that DL will become incorporated into the standard techniques of
medical imaging in the next decade (Suzuki, 2017). DL
algorithms can outperform the existing clinical procedures by
extracting supplementary histological information of solid

tumors that are not derived from routine analysis. As a result,
deep neural networks have proven their ability to fully influence
clinical decision-making in solid tumor treatment (Echle et al.,
2021).

Recent DL developments have illuminated medical image
analysis by facilitating image registration and identifying
anatomical and cellular structures and/or textural patterns in
images dependent only on data. Tissue segmentation (Zhang
et al., 2015), image fusion (Suk et al., 2014), image annotation
(Shin et al., 2016), microscopic imaging analysis (Cireşan et al.,
2013), computer-aided disease detection or prediction (Suk et al.,
2015), and lesion/landmark identification (Pereira et al., 2016) were
further successful applications of DL (Shen et al., 2017). The Food
and Drug Administration has so far authorized several DL
techniques to be applied in radiology and pathology. Advanced
DL applications surpass the existing pathologists’ routine reporting
(Echle et al., 2021).

Even though certain DL-based diagnostic frameworks have
already acquired official permission to be applied in conventional
clinical processes (Topol, 2019), independent verification and
comprehensive review of these innovations are still in the early
stages (Beam and Kohane, 2018). Thus, to confirm the a model
validity in clinical practice (Uhm et al., 2021), and to improve
efficacy, additional experiments with greater numbers of samples are
required. Two intriguing future approaches for DL-based single-cell
optical image investigations are developing specialized DL
algorithms with biometric translation capabilities and establishing
open-source databases of single-cell optical images (Qian et al.,
2021).

In this review, we discussed how successful DL is in enhancing
each step in highly multiplexed imaging, from image segmentation
to cell type annotation and even biological interpretations of the
generated images. Furthermore, we outlined that on the one hand,
the importance of including DL in the clinical routine as its
combination with simple images will help physicians to generate
better disease diagnoses, prognoses, and therapy outcome
predictions. On the other hand, for researchers, the upgrade from
DL/simple imaging to DL/highly multiplexed imaging is advised, as
the latter can provide hypotheses on and insights into the
mechanisms of disease initiation and progression, which, if
experimentally validated, will ultimately improve medical care for
the patients.
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