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Phylogenetic analysis frequently leads to the creation of many phylogenetic trees,
either from using multiple genes or methods, or through bootstrapping or
Bayesian analysis. A consensus tree is often used to summarize what the trees
have in common. Consensus networks were introduced to also allow the
visualization of the main incompatibilities among the trees. However, in
practice, such networks often contain a large number of nodes and edges, and
can be non-planar, making them difficult to interpret. Here, we introduce the new
concept of a phylogenetic consensus outline, which provides a planar
visualization of incompatibilities in the input trees, without the complexities of
a consensus network. Furthermore, we present an effective algorithm for its
computation. We demonstrate its usage and explore how it compares to other
methods on a Bayesian phylogenetic analysis of languages using data from a
published database and on multiple gene trees from a published study on water
lilies.
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1 Introduction

A main goal of phylogenetic analysis is to determine the evolutionary relationships and
history of a set organisms. Often, the underlying data are DNA or protein sequences, and
usually, projects give rise to many different phylogenetic trees, either because the analysis is
performed individually on several different genes (Bapteste et al., 2002), or because different
types of algorithms are applied to the same data, or because bootstrapping has been applied
(Efron et al., 1996), or because a Bayesian analysis has produced a long chain of trees (Yang
and Rannala, 1997).

For example, Rokas et al., 2003 use both maximum parsimony and maximum-likelihood
(ML) methods to investigate the phylogenetic relationships between different yeast species,
based on 106 genes. In (Leache and Reeder, 2002), multiple tree-inference methods,
bootstrapping and consensus calculation are used to obtain a more robust identification
of species among different lineages of the Eastern Fence Lizard. In the realm of human
languages, Greenhill (2015) uses Bayesian phylogenetic analysis, involving the calculation of
a profile of 10,000 trees, to determine the relationships between languages used on the Huon
Peninsula. Gruenstaeudl (2019) uses a multi-gene approach, involving 78 different protein-
coding genes, to investigate the phylogenetic relationships between water lilies and other
aquatic plants.

In another paper, Wu et al., 2020 analyse 16 species of the genus Paeonia, using the
complete chloroplast genome and also by considering different regions of the genome. They
construct both maximum-likelihood and Bayesian trees. While application of the two
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methods to some regions leads to similar tree topologies, application
to the inverted repeat (IR) region gives rise to incompatible trees.
Moreover, maximum-likelihood analysis (with bootstrapping) on
19 highly variable regions of the chloroplast genome gives rise to
several different topologies. Differences in topology are described in
the paper in words.

Given such a collection of phylogenetic trees, how to summarize
them? One approach is to compute a consensus phylogentic tree,
such as the strict-, majority-, or greedy consensus (Bryant, 2003),
say. The strict-consensus tree contains only those branches (or,
more precisely, splits) that are present in all input trees, where as the
majority-consensus tree contains all branches that are present in
more than half the input trees (see Figure 1A). The greedy-
consensus tree is obtained by greedily determining a set of
compatible splits so as to maximize the total support of the
splits, where the support of a split is the number of input trees
that contain it. Another approach is to provide a phylogenetic
network to summarize the trees, such as a consensus network
(Holland and Moulton, 2003). This is computed for a fixed

threshold p by selecting all input splits that are present in at least
p input trees and then constructing a split network to represent those
splits (Dress and Huson, 2004) (see Figures 1B,C). An alternative is
to provide a visual summary, such as a densi-tree visualization
(Bouckaert, 2010), in which all trees are overlayed in a single
drawing (see Figure 1D).

Commonly-used consensus trees can be efficiently computed
and they aim at summarizing what the input trees have in common.
One advantage of a consensus tree is that it uses O(n) nodes and
edges to represent evolutionary relationships between n taxa. One
drawback of such a consensus tree is that it provides a specific
clustering of taxa with little indication of uncertainty or alternative
groupings. This can be addressed, to some degree, by indicating the
support of edges as the proportion of input trees that contain it, say.

Consensus networks operate by collecting all splits contained in
more than a proportion of p input trees, and then using a split
network (Huson and Bryant, 2006) to visualize the data. Such
networks are able to display competing phylogenetic scenarios,
that is, incompatible splits. Note that selecting p � 1

2 will ensure

FIGURE 1
For 78 gene trees on 17 aquatic taxa [Gruenstaeudl, 2019], we show (A) the majority consensus tree (29 nodes and 28 edges), (B) the consensus
network for p =20% (37 nodes and 41 edges), (C) the consensus network for p =5% (358 nodes and 843 edges), and (D) the consensus outline (106 nodes
and 106 edges).
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that the set of collected splits is compatible and corresponds to the
majority consensus tree (Bryant, 2003).

Smaller values may give rise to non-tree networks. In practice,
choosing a suitable value of p can be challenging. If p is too large,
then conflicting splits may not be represented. If p is too small, then
the resulting set of splits may be “too incompatible” and require an
exponential number of nodes and edges in the corresponding
network. In practice, such networks can be complicated and
difficult to comprehend.

Here we propose a new type of consensus calculation that we call
a phylogenetic consensus outline. On the one hand, like a consensus
tree, it can always be computed and visualized efficiently, whereas,
on the other hand, like a consensus network, it is able to display
incompatible phylogenetic scenarios. This consensus uses a
phylogenetic outline for visualization (Bagci et al., 2021). This is
essentially a split network (Bandelt and Dress, 1992) that uses onlyO
(n2) nodes and edges to represent a set of circular splits, as an outer-
labeled planar graph.

To illustrate and compare the concepts of a consensus tree,
consensus network and outline consensus, we use as input a set of
78 gene trees on 17 aquatic taxa, based on sequence alignments
provided in (Gruenstaeudl, 2019) and computed as described
further below. In Figure 1A we show the majority consensus tree,
representing all splits present in more than p = 50% of all input trees.
In Figures 1B,C we show the consensus networks displaying all splits
present in p = 20% and p = 5% of all trees, respectively. In Figure 1D
we show the consensus outline for the same set of trees. In all cases,
edges are scaled to represent the number of trees that support them.
While the consensus network for p = 5% (shown in Figure 1C) and
the consensus outline (shown in Figure 1D) convey a similar visual
impression of where the underlying gene trees disagree, the
consensus network contains 358 nodes and 843 edges, while the
consensus network contains only 106 nodes and 106 edges.

In the following, we first describe the algorithm. We will then
will illustrate its usage and will compare it to the use of consensus
trees, consensus networks and densi-trees. For this, we use two
examples. The first is a Bayesian phylogenetic analysis of
languages from New Guinea, using data downloaded from
(Greenhill, 2015). The second is a multi-gene study of water
lilies, based on multiple sequence alignments published in
(Gruenstaeudl, 2019).

2 Methods

The majority consensus of a list of phylogenetic trees H is
obtained by collecting the set of “majority splits” that are
contained in more than half of the input trees and then
computing the phylogenetic tree that represents this set of
splits (Bryant, 2003). A phylogenetic consensus network
(Holland and Moulton, 2003) is obtained by collecting all
splits that are contained in a small fraction of all trees, 1

3 say,
and then computing the split network that represents those splits
(Dress and Huson, 2004).

The key question in such approaches is which splits to keep? The
majority splits have a straight-forward interpretation as “visualize
what the majority of trees have in common”. However, the threshold
used to compute a consensus network is not easy to interpret and is

chosen by hand to balance the task of displaying incompatibilities in
the dataset and avoiding too much visual complexity in the network.

The main idea in this paper is to compute a simple consensus
network with the help of a PQ-tree (Booth and Luecker, 1976). For
the purposes of this paper, a PQ-tree is a data structure that
maintains the set of all linear orderings (of a set of taxa) that are
compatible with a set of clusters that the tree has “accepted”. Here, to
be compatible means that the elements of a cluster appear
consecutively in the linear ordering. A PQ-tree is a rooted tree in
which every internal node is either of type P, in which case its list of
children is considered unordered, or of type Q, in which case its
children are ordered. The leaves of the tree correspond to the given
taxa. A PQ-tree accepts a cluster, if the tree can be updated so as to
continue to be compatible with all previously accepted clusters,
while also accommodating the presented cluster. A linear ordering
can be extracted from the PQ-tree by a traversal of the tree taking
into account that the children of a P node can be visited in any order,
whereas the children of a Q node must visited in the given order, or
in reverse.

Here is a brief outline of our algorithm. Setup an empty PQ-tree.
Choose a fixed taxon. (Any taxon will do, the result will always be the
same.) Extract all splits from the list of input trees and sort them by
decreasing support, where the support of a split is the number of
trees that contain it. Define the cluster associated with a split as the
side of the split that does not contain the fixed taxon. If the PQ-tree
accepts the cluster, then keep the split, otherwise discard it. The
resulting set of splits is “circular”, by virtue of the fact that the set of
associated clusters are compatible with a linear ordering, and thus
can be represented by an order-labeled planar split network (Dress
and Huson, 2004) or phylogenetic outline (Bagci et al., 2021).

In more detail, let T be a phylogenetic tree on taxon set X,
with non-negative edge weights. We will use S(T) to denote the
split encoding of T, that is, the set of all splits S = A|B, consisting of
two non-empty, non-overlapping subsets of X with A ∪ B = X,
that arise by collecting the two sets of taxa that are separated by
some edge e in T. For any such split, we will use ω(S) to denote the
weight of S, which is given by the length of the corresponding
edge e.

Choose some fixed taxon x0 ∈ X and then, for any split S on X, let
�S denote the split part that does not contain x0.

In the following, assume that our input consists of a collection
H = {T1, . . . , Tm} ofm unrooted phylogenetic trees on a set of n taxa
X. We compute a phylogenetic consensus outline for profileH using
the following algorithm:

1) Determine the set SH � ∪T∈hS(Ti) of all splits contained in any
of the input trees, and define the support of a split to be the
number of trees for which it occurs. Alternatively, if the edges of
the input trees themselves carry support values, then the support
of a split can also be defined as the sum of support values of the
corresponding edges.

2) Let P be a PQ-tree (Booth and Luecker, 1976). For each split
S ∈ SH, in order of decreasing support, attempt to insert �S into P.

3) Let SP be the set of all splits S for which �S was accepted by the
PQ-tree P.

4) Extract an ordering Z from P.
5) Apply the phylogenetic outline algorithm to SP and Z to

compute the visualization.
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In the first three steps, we use a PQ-tree P to greedily collect a set
of splits SP that are consistent with some linear ordering of the set of
taxaX. This is based on the fact that a PQ-tree maintains the set of all
linear orderings of X that are consistent with all clusters that have
been successfully inserted. (We say that a cluster C is consistent with
a linear ordering Z, if the elements of C appear consecutively in Z.
Similarly, a split S is consistent with Z, if �S is.) In the fourth step, we
extract an ordering for SP, and then finally, in the fifth step we
compute the outline.

The algorithm requires at most O (mn2) steps. To see this,
note that the number of input splits is O (mn) and sorting these
by decreasing support can be done in O (mn) steps using radix
sort. The PQ-tree algorithm performs an insert-if-possible
operation in O(n) steps, and so the computation of SP

requires O (mn2) steps in total. An ordering can be extracted
from P in O (n2) steps and drawing the outline requires only O
(n2) steps (Bagci et al., 2021).

The consensus methods discussed here all aim at selecting an
informative subset of the input splits. To provide a measure of how
much information is retained, for each split, we determine what
proportion of the total weight of each tree it provides, and then
compare the sum of all such values for the output splits with the sum

for all the input values, and report the ratio of sums as a percentage,
with a value of 100% indicating that all input splits are also in the
output. For the four graphs shown in Figure 1, the values are: a)
94.9%, b) 96.7%, c) 98.0% and d) 97.6%, suggesting that little
information is lost when using a consensus outline rather than a
consensus network.

3 Results

We have implemented the algorithm for computing a
phylogenetic consensus outline in our open-source program
SplitsTreeCE (https://github.com/husonlab/splitstree6). In this
section we illustrate the application of the method and compare
it to the use of the majority consensus tree, consensus networks and
densi-tree visualizations.

3.1 Bayesian analysis and consensus outlines

TransNewGuinea.org is a database of New Guinea languages
provided by Greenhill (2015). It currently contains 1,219 words

FIGURE 2
Bayesian phylogenetic analysis of languages from the Rigo area of the Central district of Papua. We show in (A) and (B): a densi-tree visualization and
the majority consensus tree respectively; (C) and (D): a split network displaying all splits that are present in all trees and a consensus outline, respectively.
We indicate Austronesian languages in red, Kwalen languages in purple, Doromu languages in green and Maria languages in blue [Dutton, 1970].
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from 34 language families and 14,257 cognate sets, obtained from
19 different sources. Each cognate set contains many words and
each word is linked to various cognate sets, allowing the
application of phylogenetic methods to the languages.

Greenhill (2015) demonstrates how Bayesian phylogenetic
analysis can be used to analyze such data. We performed a
similar analysis on a collection of cognate sets and languages that
we downloaded from TransNewGuinea.org. For 13 languages of the
Rigo area of the Central district of Papua, we downloaded
1,123 congate sets, and we coded these as binary data, based on
the presence or absence of the cognate set in each language.

These 13 languages are categorized into two classes,
Austronesian and Non-Austronesian, containing three and ten
members, respectively (Dutton, 1970). Non-Austronesian
languages are further divided into three catergories: The Kwalen
languages (Humene, Uare and Mulaha), the Doromu languages
(Bareika, Lafaika and Aramaika) and the Maria languages
(Maranomu, Maiagolo, Uderi and Maria). Doromu and Maria
form the Manubaran language family in a broader context and
are more closely related to each other.

Bayesian analysis was performed using the BEAST2 framework
(Bouckaert et al., 2019), employing a mutation-death model, which

FIGURE 3
For 78 plasmid gene trees [Gruenstaeudl, 2019] fromwater lilies and other aquatic plants, we show (A) and (B): themajority consensus tree, scaled by
support, and by mean branch length, respectively; (C) and (D): a split network displaying all splits that are present in >5% of all trees, scaled by support,
and by mean branch length, respectively; and (E) and (F): a consensus outline, scaled by support, and by mean branch length, respectively. We highlight
Trithuria in blue, Nuphar in yellow and Cabombaceae in red.
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is suitable for binary data, using the settings described in (Greenhill,
2015). We ran the program for 30 million iterations, sampling every
1000-th iterations and discarding the first 300,000 iterations as
burn-in.

We summarize the sampled trees in Figure 2. Image a) was
generated using the DensiTree program (Bouckaert, 2010). The
images (b)–(d) were generating using SplitsTree (Huson and
Bryant, 2006) (version 6.0.8-beta) and here edge lengths are
scaled by the number of trees that have a corresponding edge. In
all four visualizations, the two classes of languages are clearly
separated. Among the Non-Austronesian languages, the
placement of Maranomu appears to be the most conflicted.
While it clusters closely with the other Maria languages
(Maiagolo, Maria and Uderi), there is a some support for an
alternative clustering with the Doromu languages (Aramika,
Bareika and Lofaika). The alternative clustering is not obvious in
the densi-tree visualization (Figure 2A) or in the majority tree
(Figure 2B); however it is clearly suggested in a visualization of
all splits contained in the input trees (Figure 2C) and the outline
consensus (Figure 2D).

3.2 Multi-gene analysis and consensus
outlines

Gruenstaeudl (2019) provides multiple sequence alignments
for each of the 78 different protein coding genes that comprise
the plastid genomes of 13 Nymphaeaceae (water lilies) and four
other aquatic plants. For each of the alignments, we computed a
maximum likelihood tree using RAxML v.8.2.12 (Stamatakis,
2014) with optimization of substitution rates and GAMMA
model of rate heterogeneity. Branch supports were computed
using 1000 bootstrap replicates using the rapid bootstrap
analysis algorithm, obtaining 78 best-score gene trees, each
on 17 taxa.

A main question addressed in (Gruenstaeudl, 2019) is whether
the family of Nymphaeaceae is monophyletic, or whether the
members of the Numphar genus prefer to cluster with the
outgroup taxa, which are two members of the family of
Cabombaceae and two members of the genus Trithuria in the
family of Hydatellaceae.

Here we look into using different consensus calculations to
shed light on this question. In the visualization of consensus
splits, one can scale the length of edges to represent “support”,
that is, the number of gene trees that contain the corresponding
split. Another option is to scale by the mean branch length in the
input trees, assuming that all trees have been scaled to the same
total length. The majority consensus tree displays a polytomy
between Numphar, Cabombaceae, Trithuria, and the set of nine
remaining taxa (see Figures 3A, B). In contrast, a consensus
network (using a threshold of 5%) indicates several different
groupings of the genera in different combinations. The network
contains higher-dimensional boxes that are very difficult to
interpret (see Figures 3C, D). In contrast, the consensus
outline clearly shows that the two members of the family

Cabombaceae are grouped by some gene trees with the
Trithuria genus, and are grouped by other gene trees with the
Nuphar genus. Some gene trees support the placement of Nuphar
taxa together with the Cabombaceae, where others place them
closer to the other Nymphaeaceae (see Figures 3D, E).

4 Discussion

The motivation to use a phylogenetic network, rather than a
phylogenetic tree, to represent the consensus of a collection of
trees, is that a network has the potential to display
incompatibilities among the input trees. The concept of a
consensus network (Holland and Moulton, 2003) does this
well when the data contains few incompatibilities, as shown in
Figure 2. However, for more complex data, the consensus
network requires a careful tuning of the threshold p; choosing
p too close to 1

2 may show no incompatibilities, whereas choosing
smaller values of p can lead to an explosion of the number of
nodes and edges required for visualization, as illustrated in
Figures 3C,D.

Here we have introduced the concept of a phylogenetic
consensus outline, which is computed by greedily collecting a
circular set of splits from a collection of phylogenetic trees,
which are then represented by a phylogenetic outline that
contains only O (n2) nodes and edges, where n is the number of
taxa, as illustrated in Figures 3E,F. Our approach uses the classic PQ-
tree algorithm (Booth and Luecker, 1976) and produces an network
that is “outer-labeled planar”, thus ensuring that the displayed
visualization is easy to grasp.

The outline consensus uses a greedy heuristic and is thus
sensitive to the order in which choices are made. Slight
differences in the input and differences in tie-breaking, might
lead to very different solutions. Due to the PQ-tree acceptance
criterion, on the one hand, it can happen that splits with strong
support do not make it into the network. On the other hand, a split
might make it into the final output, even if it is supported by only
very few trees. To address the latter problem, our implementation
allows edges to be scaled by support (number of trees that contain a
given split) or by the sum of weights of all occurrences of the split in
the input trees.

A related method, Neighbor-Net (Bryant and Moulton, 2004),
uses a greedy approach to determine a circular ordering that is then
used to compute a set of splits that give rise to a planar network, for a
given input distance matrix. While Neighbor-Net suffers from the
problems described above, in practice it is widely used. Neighbor-
Net requires a distance matrix as input and thus could, in theory, be
applied to a distance matrix computed from the input trees. An
advantage of our method is that doesn’t require such a calculation
and operates directly on the input splits.

One feature of Neighbor-Net is that it provides the user with a fit
statistic indicating how well the network represents the input
distances. In this paper we propose to report the proportion of
total weight (normalized by tree lengths) of the output splits to
indicate how well the network represents the input data.
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Consensus outlines have a role to play between consensus trees
and consensus networks. Like the former, consensus outlines
provide clear graphical representations in the terms of an out-
labeled planar graph. Like the latter, consensus outlines can
visualize incompatible phylogenetic signals, but without
burdening the user with higher-dimensional elements that are
very difficult to interpret.
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