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We present a general purpose visual analysis system that can be used for exploring
parameters of a variety of computer models. Our proposed system offers key
components of a visual parameter analysis framework including parameter
sampling, deriving output summaries, and an exploration interface. It also provides
an API for rapid development of parameter space exploration solutions as well as the
flexibility to support customworkflows for different application domains.We evaluate
the effectiveness of our system by demonstrating it in three domains: data mining,
machine learning and specific application in bioinformatics.
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1 Introduction

Many complex computer models require users to provide several parameters to tune the
output based on the specific computational needs. Such models appear in a variety of
modeling approaches, such as data science (regression, classification, and clustering) but also
computational science (numerical modeling). Today, there is almost no field of science
untouched by the application of such modeling techniques. In many applications, fully
automated optimization is not possible due to the trade-offs between the often contradicting
objectives. A classical example is the trade-off between precision and recall for classification
problems, where a higher value of one leads to a lower value for the other. This requires a
domain expert to inspect different models (or results of the modeling process) to make an
informed decision. Manual trial and error of running models with different parameter
settings is tedious and usually requires many iterations involving guess-work and luck. In
addition, the required effort for trying different parameters increases exponentially with the
number of the parameters of the model. This not only makes the exploration of the
parameter space extremely inefficient, it also prevents a global understanding of the model
capabilities.

To address this, several systems and workflows have been developed to automate the
process. These solutions run the model with different combinations of parameter values
sampled from parameter space. This is done in a preprocessing step and the results are
collected. Then a visual exploration interface is used to systematically explore the parameter
space and further analyze the results. Many of the systems that support these types of “visual
parameter space analysis” (vPSA Sedlmair et al. (2014)) techniques are built for various
modeling approaches and applications domains such as simulation Potter et al. (2009);

OPEN ACCESS

EDITED BY

Helena Jambor,
Technical University Dresden, Germany

REVIEWED BY

Jefrey Lijffijt,
Ghent University, Belgium
Charles Oluwaseun Adetunji,
Edo University, Nigeria

*CORRESPONDENCE

Hamid Younesy,
hyounesy@sfu.ca

Torsten Möller,
torsten.moeller@univie.ac.at

RECEIVED 30 January 2023
ACCEPTED 09 May 2023
PUBLISHED 25 May 2023

CITATION

Younesy H, Pober J, Möller T and
Karimi MM (2023), ModEx: a general
purpose computer model
exploration system.
Front. Bioinform. 3:1153800.
doi: 10.3389/fbinf.2023.1153800

COPYRIGHT

© 2023 Younesy, Pober, Möller and
Karimi. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Bioinformatics frontiersin.org01

TYPE Methods
PUBLISHED 25 May 2023
DOI 10.3389/fbinf.2023.1153800

https://www.frontiersin.org/articles/10.3389/fbinf.2023.1153800/full
https://www.frontiersin.org/articles/10.3389/fbinf.2023.1153800/full
https://www.frontiersin.org/articles/10.3389/fbinf.2023.1153800/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2023.1153800&domain=pdf&date_stamp=2023-05-25
mailto:hyounesy@sfu.ca
mailto:hyounesy@sfu.ca
mailto:torsten.moeller@univie.ac.at
mailto:torsten.moeller@univie.ac.at
https://doi.org/10.3389/fbinf.2023.1153800
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2023.1153800


Waser et al. (2010); Bergner et al. (2013); Luboschik et al. (2014);
Wang et al. (2017), image analysis Torsney-Weir et al. (2011);
Pretorius et al. (2015); Fröhler et al. (2016); Teodoro et al.
(2017), data mining Padua et al. (2014); Kwon et al. (2018),
industrial decision making Afzal et al. (2011); Booshehrian et al.
(2012); Pajer et al. (2017) and bioinformatics Hess et al. (2014).
These solutions are custom-made and developed for specific
application domains. The cost of building these tools is usually
high and often involves several months of development work. As a
result, parameter exploration solutions lack a wide-spread adoption
for many computer models that can benefit from the approach.

In this paper we propose ModEx, a general purpose system that
facilitates visual parameter analysis for a wide variety of computer
models. Our system offers key components of a visual parameter
analysis framework including parameter sampling, deriving output
summaries and an exploration interface, which can work with a wide
range of tools and libraries minimizing the required setup time. It
also provides a flexible API for rapid development of parameter
space exploration solutions for custom application domains. We
demonstrate this flexibility and effectiveness in three application
domains: data mining, machine learning, and bioinformatics.

As part of our vPSA system introduced in Section 4, we make three
primary contributions. First, we present a novel method of creating user
interfaces suitable for specifying the relevant parameter space and
parameter sampling. These interfaces are created automatically and
seamlessly for computer models wrapped into modules called apps
using a parameter description API. Second, we present a generic
approach to handle derivations of outputs and show how it can be
extended for custom application domains. Our third primary
contribution is the design and implementation of a visual
exploration interface to allow analyzing the results of parameter
sampling, either to find “right” parameters for a specific problem
(for model users), or to get a deeper understanding of a computer
model’s inner workings (for model developers). The user interface is
designed to be flexible and to allow creating custom workflows by
linking either existing computational modules or creating new ones.

Our secondary contribution is an evaluation of our system in
different application domains. We present three case studies: First, we
consider the problem of clustering and demonstrate howModEx can be
used to quickly recreate themain functionality of similar state-of-the art
tools for comparing different cluster algorithms. In our second case
study, we use ModEx to analyze two widely used bioinformatics
methods. In our third case study, we study the problem of
hyperparameter tuning for neural networks and use a popular
educational neural network application as our model for ModEx.

2 Related work

Sedlmair et al. (2014) introduced the conceptual framework for
visual parameter space analysis (vPSA). They identified a dataflow
model with the essential components of the model, a surrogate model
as well as the derive step. Their work was based on 21 papers from
the visualization community. This was the main inspiration of our
work and we followed their guidelines. We are supporting themodel
component as well as the derive component. However, currently we
do not support the surrogate model—only 5 of the 21 papers
analyzed by Sedlmair et al. used such a component. Still, such a

component is of importance but is left as future work for now. Since
the publication of Sedlmair et al. (2014), the design of parameter
exploration systems has continued. We will report on the state-of-
the-art for the specific application domains we do consider in this
paper. We will not report vPSA systems in other domains not
directly relevant to this paper.

2.1 Applications in machine learning

The terms Machine Learning as well as Data Mining are often
considered to be rather broad terms encompassing techniques in
regression analysis, classification analysis, clustering, outlier detection,
and dimensionality reduction. For the purpose of this paper, however, we
consider the focus and contributions of machine learning to bemainly in
the area of classification analysis and the contribution and focus of data
mining to be mainly in the area of clustering analysis.

As far as classification is concerned, TreePOD by Mühlbacher
et al. Mühlbacher et al. (2018) supports a user in understanding the
trade-offs of various decision trees. Through a parameter sampling
approach, a large number of decision trees are built. They are then
evaluated based on accuracy in addition to aspects such as ease of
understanding by decision makers. The user is then able to inspect
relevant trees that are on the Pareto Frontier of such trade-offs.

One of the most promising approaches for machine learning
today are deep neural networks Goodfellow et al. (2016). There has
been a lot of attention paid to the analysis of particular deep neural
networks. One of the hardest challenges considered today is the
understanding of a proper network architecture, or the
determination of proper hyperparameters. Recent surveys by Liu
et al. (2017) and Hohman et al. (2018) focus on visual analytics
approaches, however, to our best knowledge there is no generic
vPSA framework solution addressing this problem.

2.2 Applications in data mining

In data mining and particularly clustering, Kwon et al. (2018)
presents a comprehensive discussion of clustering methods and
visualization systems for cluster analysis and discusses several
categories of systems. One group are “visual analytics systems that
employ clustering as a part of high dimensional data analysis” which
include Hierarchical Clustering Explorer (HCE) Seo and Shneiderman
(2002), VISTA Chen and Liu (2004), and DICON Cao et al. (2011). A
second group are those which “allow users to provide feedback on
clustering results so that the next run applies their inputs” such as
desJardins et al. (2007), iVisClustering Lee et al. (2012), Cluster Sculptor
Bruneau et al. (2015), Boudjeloud-Assala et al. (2016), and Clusterix
Maguire et al. (2016). A third group are those which “allow users to
generate and compare multiple clustering results with respect to their
quality”. Example research falling in this group are Turkay et al. (2011)
and XCluSim L’Yi et al. (2015).

2.3 Meta tools

Another category of systems related toModEx are so called meta
tools or visualization design environments which are developed with
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the intention of making the visualization creation process accessible
to non-programmers. These tools provide an interactive
environment with drag-and-drop interactions to allow creation of
customized linked visualizations and visual analysis workflows
without requiring textual programming. Among the most known
tools in this category are Lyra Satyanarayan and Heer (2014),
iVisDesigner Ren et al. (2014), Voyager Wongsuphasawat et al.
(2016), Voyager2 Wongsuphasawat et al. (2017), iVoLVER Méndez
et al. (2016), as well as commercial tools such as Tableau Stolte et al.
(2002) and Keshif Yalçın et al. (2018). Most of these tools utilize a
visualization grammar such as the Grammer of Graphics Wilkinson
(2006), Vega Satyanarayan et al. (2014) and Vega-Lite Satyanarayan
et al. (2017), or a visualization toolkit such as Protovis Bostock and
Heer (2009), and D3 Bostock et al. (2011), to describe the visual
appearance and interactive behaviour of the visualizations. Some
also provide an interface to programming languages such as python,
R, or javascript to increase expressiveness and flexibility for more
advanced users.

2.4 Definitions

The terminology used throughout this paper, closely follows the
guidelines in the vPSA conceptual framework Sedlmair et al. (2014).
For clarity, we will briefly explain some of the most frequent terms
used in our paper.

• Computer model or simply the model, is the algorithm or set of
algorithms to which the vPSA system is being employed. In
this paper with computer models wemean statistical models as
it is common in data science or simulation models as it is
common in computational science. The terminology used in
the vPSA conceptual framework is computational input-
output models.

• Run is one execution of the model with specific parameter
values.

• Parameter combination is the randomly generated set of values
used as control parameters in a single execution of the model.
Different runs of the model will often use different parameter
combinations.

• Derived output are objective measures that summarize the
essential characteristics (e.g., quality) of the complex model
output.

3 VisR system

We built our parameter exploration system as part of the VisR
Younesy et al. (2015) framework (formerly called VisRseq). VisR is a
visual analysis system that provides an accessible interface for non-
programmers to run computational libraries implemented in the R
programming language R Core Team (2019a). VisR was originally
designed to address the challenges in the domain of genome
sequencing (hence the suffix -seq), but has evolved toward a
more generic visual analysis system.

3.1 VisR apps

The functional units in VisR are called apps. A small number of
the apps are interactive apps, are developed natively to allow
interactive exploration and filtering. A larger number of the apps
are developed in R and are called R-apps. The graphical user
interface for an R-app is created automatically from a simple
specification of the parameters similar to the toy example shown
in Figure 1. The graphical user interface generated for the code is
shown in Figure 2A. To run an app, a user drag-and-drops the app
icon to the workspace to create an active window for the app. The
user then specifies the input and parameters through the app’s
graphical user interface. For interactive apps the app updates in real
time as the user interacts with the active window or modifies the
parameters. For R-apps, the user specifies the parameters and then
presses the “Run” button (Figure 2A). VisR will then pass the user’s
input data and parameters to the R environment, run the
corresponding code and return the output results back to the
workspace. The output can be images, data tables, columns
appended to the input data table or files. The user can then use
other apps to explore the results and link multiple apps to create
more complex workflows.

3.2 The challenge

The rapid development API of VisR Younesy (2016) allowed us
to create many (50+) R-apps in a short period of time and the usage
shows a growing number of users since the release (600+ users from
30+ countries). However, even though the graphical user interface of
the R-apps allowed non-programmers to utilize the computational
power of the R environment, a new challenge surfaced. Most apps
have several (typically between 3 and 5, but sometimes over 10)
numerical or categorical control parameters. Although the
parameters for each app were initialized with the default values
suggested in the corresponding R package and some documentation
was provided in the form of tool tips, finding the “right” parameters
for each use case involved a tedious manual trial-and-error
approach. Encouraged by the previous successful attempts with
visual parameter exploration tools we implemented ModEx as an
extension of VisR to support general visual parameter space analysis
for R-apps. The next section discusses our approach.

4 A general purpose system for visual
parameter space analysis

This section introduces our general purpose system for visual
parameter exploration of computer models. We were initially
focused on addressing the challenges in the bioinformatics
application domain. However, through the development process
we realized that most of the analysis tasks are generic and applicable
in other application domains. As suchModEx has iteratively evolved
to be usable in a wider variety of application domains. We will
demonstrate this generality in Section 5.

Frontiers in Bioinformatics frontiersin.org03

Younesy et al. 10.3389/fbinf.2023.1153800

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1153800


4.1 Design goals

From the very early phases, an essential design goal was to
develop ModEx such that it follows the same design principles of
VisR to avoid alienating the existing user base. We also wanted to

utilize the methodology of vPSA for existing R-apps without
requiring significant development. In addition, we wanted the
possibility of utilizing ModEx for models not implemented in R.
We will elaborate our design decisions based on these goals in the
remainder of this section.

FIGURE 1
R code for an R-app in the VisR framework specifying the app’s name, the parameters, and the code to perform the desired functionality.

FIGURE 2
The GUI generated from the parameter specification in Figure 1: (A) Standard view, and (B) ModEx view. (a) run the R-app. (b) switch the GUI to
ModEx view. (c) number of times to run the app. (d) start running the R-app for the specified number of runs. (e) directory to store the output of runs.
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4.2 Parameter sampling

Our first contribution is extending the existing automated GUI
system so that it can be used to specify a range (or space) of
parameter combinations. Figure 2A shows the generated standard
(single parameter) view which is the default when a user adds an app
to the workspace. In a typical scenario, a user specifies the
parameters through the standard view and then clicks on the
“Run” button (Figure 2A). VisR then passes the user specified
parameters to the R environment, executes the app’s code, and
returns the results back to the workspace for further exploration. In
ModEx, a user can now click on the toolbar button shown in
Figure 2B to toggle between the standard view and the ModEx
view mode shown on Figure 2B. In the ModEx view mode the user
interface controls are generated such that they allow specifying
ranges of valid values for the parameters as follows:

• integer/double: integer/double lower and upper bounds for the
parameter sampling range. The acceptable minimum and
maximum can be specified in the app’s declaration script
(see Figure 1).

• Boolean: two check boxes with options yes and no
• string with defined items: a check box for each item.
• other parameter types: such as generic string, filenames, or
output parameters will not require custom made UI
controls.

UI controls are initially set to the default value specified in the
app’s declaration script. At that state, the value for the
corresponding parameter will stay constant during the parameter
sampling. This allows users to choose which parameter values are
kept unchanged and which ones are sampled randomly from the
specified range. Currently only random uniform sampling is
implemented and exploration of other sampling methods is
discussed as a possible future work in Section 8.1. The total
number of parameter combinations can be modified by changing
the value of “Number of Runs” shown in Figure 2C. We initially had
the option to specify either the number of runs, or an end time when
sampling should be stopped. However using end time turned out to
be inconvenient as different computer models had significantly
varying execution times which could result either in too many or
too few number of runs. We instead decided to allow users to stop
any time without corrupting the final output. They can also resume
the runs at a later time if they later realize more samples are required.
This allows partial and off-line (as opposed to real-time) support for
the simulation steering strategy explained in the conceptual
framework where the user can make adjustments while the
computer model runs, for example, to change some input
parameter settings.

The parameter sampling will start when a user clicks on the
“Start Sampling” button (Figure 2D) and the results are stored in the
user specified directory (Figure 2E). The sampling process is
demonstrated in Figure 3A and includes the following:

FIGURE 3
The ModEx data flow: (A) Parameter Sampling step; (B) Derivation step. Parameter sampling includes: (a) the computer model/app; (b) input data to
the app; (c) parameters of the app; (d) runsInfo table containing information about each run, e.g., parameter values; (e) data outputs of the app; (f) image
outputs of the app. Derivation includes: (g) derivation methods; (h) derived output (in memory); (i) derived output added to the runsInfo table.

Frontiers in Bioinformatics frontiersin.org05

Younesy et al. 10.3389/fbinf.2023.1153800

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1153800


• input.txt: the data table used as the app’s input, shown in
Figure 3B.

• paramInfo.txt: a data table containing the name and type of
the app’s parameters, shown in Figure 3C.

• runsInfo.txt: a data table with each row corresponding to a
single run and columns containing the values for the
parameter combination, as shown in Figure 3D. In addition
to the parameter combination values, each run is also assigned
with a unique integer ID used to reference the output for
that run.

• < runs>: subdirectory containing all output from the runs,
each suffixed with the run ID. For instance if the R-app
outputs two data tables, TableA and TableB, the < runs >
directory will contain TableA_0.txt, TableB_0.txt, TableA_
1.txt, TableB_1.txt and so on, such as the example shown in
Figure 3E.

• < images>: subdirectory containing image outputs from the
runs, named as [ID].[ext], e.g., 0.png, 1.png, and so on, as
shown in Figure 3F. This can be extended to include other
complex objects.

This directory structure is the same for all R-apps sampled in
ModEx. To use ModEx with non-R models, there are two
alternatives: If the model has a command-line interface, we can
create an R-app that includes the parameter specification, but utilize
the R’s “system” function R Core Team (2019b) to invoke the non-R
tool with the user parameters. The second alternative, which we
employed in Section 7, is to perform the parameter space sampling
and execution of runs outside ModEx and to collect the results in a
directory structure compatible with the above.

4.3 ModEx app

To explore and analyze the output of the runs, we built an
interactive VisR app, the ModEx app. Once users have launched
ModEx, they have to first specify the runs’ output directory. The app
will then process the directory and show the UI options for further
analysis. The ModEx app provides two of the main components of a
vPSA framework: computing derived output, and an interactive
exploration interface. The following sections describe the design and
functionality of each component.

4.3.1 Derivation
To be able to effectively analyze the results of many runs of a

computer model, we have to summarize its output into objective
measures referred to as derived output. However, supporting the
functionality to compute the derivations for a wide array of models
is an extremely challenging endeavor due to the wide variety of the
output types. E.g., image segmentation or clustering algorithms
output a different label for each pixel/input element, classifiers
output a label for each input, etc. In order to balance between
flexibility and usability, our system offers a set of out-of-the-box
derivation methods, as well as the means to have custom derivation
methods when needed. The data flow for the derivation step is
illustrated in Figure 3B. Output derivation can be performed in one
or more passes. In each derivation pass, shown in Figure 3G, a user
selects a derivation method as well as the output data to which the

derivation should be applied. The outcome will be a vector of one or
more numerical or categorical values per run, examples of which are
shown in Figure 3H. These values will be collected and appended to
the runsInfo table as new columns with labels generated based on the
derivationmethod as shown in Figure 3I. The choices for out-of-the-
box derivations methods are:

• Aggregate: includes eight derivation methods. A group of these
functions (mean, sum, median, min, and max) are used to
aggregate numerical data columns. Another group are meant
for categorical output: Number of class labels counts the
number of different class labels, Mode of class labels finds
the mode (label occurring the most), and Count per class label
counts the occurrence (histogram) of each different class label.

• Comparison with ground truth: is useful for analyzing models
where a data set with ground truth output exists. For example,
in a supervised classification model, the training data will have
ground truth labels. This method will compare the predicted
labels for each run with the ground truth labels, and output the
number of matches and mismatches per label. For a detailed
example usage see Supplementary Material.

• Dimensionality Reduction”: provides MDS, PCA, and tSNE
functions. All perform dimensionality reduction on the
selected output. An example usage will be discussed in
Section 5.1.

• Take first row: will just use the first row of the selected output
table. Despite its simplicity, that is actually what enables
embedding custom derivation methods in computer
models. It lets a computer model itself to compute any
special derived output and export them as a table with a
single row. For instance in Section 5.1, the clustering app
computes clustering quality metrics as derived output for
each run.

• None: skips the derivation pass altogether. This is helpful when
runsInfo contains the necessary derived output already, e.g.,
when a different tool was used for parameter sampling and
derivation, or when the derivation step had already been
performed.

We will further discuss the usage of the derivation methods in
our case studies in Section 5. But for now let’s go through a simple
example based on the data flow in Figure 3B. The result of applying
the “mean” method on the column “A1” of “TableA” generates a
column “mean_A1”. In a second derivation pass, applying the
“Count labels” method on the column “A2” of “TableA”, results
in two new columns labeled “n(A2 = x)” and “n(A2 = y)”,
corresponding to the total number of “x” or “y” values in “A2”
for each run. In another derivation pass, using the “Take first row”
method on “TableB” will take the first rows as-is and add the
columns “B1”, “B2”, and “B3” to the runsInfo table.

Figure 4B shows the UI for the derivation step. To keep the user
interface simple, each pass will only perform one derivation method
on one of the output data tables. However, multiple passes can be
performed to generate additional types of derived output as needed.
When all passes are performed, a user can select the “Start
Exploration” option so that the exploration interface is launched
immediately. It is worth noting that the user interface and
functionality of the derivation component is also developed as an
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R-app, so like all other R-apps, its UI and functionality can be easily
extended or customized for future needs.

4.3.2 Exploration
The core exploration interface of ModEx, shown in Figures

4C–F, allows the user to interactively explore the results of
parameter space sampling. Here we will briefly introduce
different views and features and will demonstrate more details
through the case studies in Section 5.

The “Runs overview” in Figure 4D shows an interactive scatter plot
of the runsInfo table where each data point is one of the runs of the
computer model. As a user hovers the mouse pointer over a run data
point, a thumbnail of the output of the run is shown as a tooltip. When
user clicks on a run data point, it is selected and its image output is
displayed on the “Output of Selected Run(s)” pane as shown in
Figure 4E. Multiple runs can be selected by holding the shift button.
The user can specify a parameter or derived output column as the
scatter plot axis by clicking on the axis label, and can change the visual
properties such as the point size, colormap, axis scalingmode, etc. using
the parameters pane (not shown in the figure). The runsInfo table as
well as the output tables for the currently selected run can be accessed
through the data pane Figure 4C and are updated as the user changes
the currently selected run. This allows the user to chain the outputs to
any of the apps available in VisR. We will see examples of this in
Section 5.1.

The “Runs Distribution” view shown in Figure 4F displays a
list of the parameters and derived outputs of the computer model.
Each item in the list consists of a histogram (bar plot) and a
smaller scale of the “Runs Overview” scatter plot. The histograms
have active brushing which can be used to filter the runs with the
desired values for the parameters or derived outputs. A user can
click on the (−) icons beside each list item, to minimize (collapse)
the plots for that list item. The values for the currently selected
run(s) and the hovered run under the mouse cursor are indicated
by up-side-down triangles above the histograms. The scatter
plots use the same axis as the “Runs Overview”, but color the
run data points based on the values of the parameter or derived
output for the corresponding list item to allow a user to quickly
check for any specific patterns. Selecting a list item updates the
“Run Overview” plot to use the selected item for colouring the
run data points. To reduce redundancy we chose to hide the
legend by default and instead use the colors shown for the
histogram labels. A user can however turn it back on through
the scatter plot app’s parameters.

The core interface described above provides the initial means for
exploratory analysis of the runs, however the main strength of
ModEx comes from the ability to add other apps to the workflow
to extend and customize its functionality based on the specific
application domain. We will further explore this in the upcoming
section.

FIGURE 4
An overview ofModEx used for visual parameter exploration in a clustering application domain: (A)ModEx parameter view mode for the clustering
app; (B) Calculating derived output; (C–F) The generic parameter space exploration interface; (G–I) Additional apps linked to the generic exploration
interface to create a customized workflow; (C) Data view providing access to the data tables in the workspace; (D) Runs Overview showing a scatter plot
of derived outputs (here the aggregated quality metric vs. number of clusters) for runs; (E) Image Output of Selected Runs highlighted in the Runs
Overview plot. (F) Runs Distribution showing a list of histogram distributions and filters for input parameters and derived output; (G) Radar plot showing
the quality metrics for the selected runs; (H) Scatter plot linked to the output of the latest selected run; (I) Lineplots/parallel coordinates linked to the
output of the latest selected run.
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5 Evaluation

To demonstrate the effectiveness of our framework on different
application domains, we will go through three usage scenarios two of
which are provided as Supplementary Material. First, we will look at
a clustering problem and compare our results with a tool developed
recently to address this problem. In the second case study provided
as Supplementary Material, we will study the problem of setting
hyperparameters for training of neural networks. We will use an
educational neural network application as our model and show how
ModEx can help find proper values for the hyperparameters. In the
third case study also provided as Supplementary Material, we will
look at two commonly used bioinformatics methods and report the
insights gained from utilizing ModEx.

5.1 Case study: clustering

In our first case study, we will look at the data mining
application domain and evaluate the effectiveness of ModEx by
comparing it to a recently published visual parameter space analysis
tool called Clustervision Kwon et al. (2018). Clustervision was
developed to help with finding the right parameters for
unsupervised clustering. As one of their case studies, Kwon et al.
analyze the “Bob Ross Paintings” dataset created by Hickey Hickey
(2014). They state that they “use this dissatisfaction by Hickey to
motivate [their] discussion of how Clustervision could potentially be
used to arrive at more satisfactory clusterings”. The “Bob Ross
Paintings” dataset hereinafter referred to as the paintings dataset
is a dataset about the 403 paintings produced on the PBS show “The
Joy of Painting”. It includes 67 binary values per painting specifying
the existence of features such as trees, water, mountains, and weather
elements, as well as meta information about each painting such as
number of used colors and the TV episode name.

5.1.1 Preparations
For this analysis workflow, we developed and added the following

R-apps to theVisR framework. It is worth noting that by taking advantage
of the available functionality in R for analyses such as clustering and
dimensionality reduction, and using VisR’s app development API,
developing these R-apps was done in a matter of hours.

• The Clustering app, implements four clustering methods:
k-means, spectral clustering Karatzoglou et al. (2004),
hierarchical clustering and DBSCAN Hahsler and
Piekenbrock (2018). A user can select the input data
columns to which the clustering should be applied. The
app will output two data tables: A table of cluster IDs
which has one column and as many rows as the input data
table, and a data table of clustering quality metrics computed
using the NbClust R package Charrad et al. (2014). It also plots
a static scatter plot and bounding hull of the dimensionality
reduced tSNE projection of the input columns, colored by the
cluster IDs. Examples of such output plots are shown in
Figure 4E.

• The DimRed app, includes dimensionality reduction methods
such as PCA, MDS, and tSNE. It allows users to select several
numerical columns on a data table and computes a 2D
projection using the specified method.

• The RadarChart app, plots a Radar Chart of user specified
numerical columns, an example of which is shown in
Figure 4G. This was made to replicate the visual encoding
of clustering quality metrics in ClusterVision as shown in
Figure 5A.

Prior to starting the parameter space analysis, we imported the
paintings dataset in VisR and used the DimRed R-app to compute
two dimensional projections of the 67 features. We ran the R-app
using the three available dimensionality reduction methods,
resulting in 6 new columns to be added to our original input
table (two dimensions for each method). This was done in order
to better visualize the clustering results in the exploration step.

5.1.2 Parameter sampling
To perform parameter sampling on the Clustering app, we first

drag-and-dropped it into the VisR workspace and drag-and-
dropped the paintings dataset into its view. We then switched
the parameter view to ModEx view mode. Figure 4A shows the
ModEx view mode and the UI controls to specify the desired
parameter ranges for each clustering method. To be consistent
with the Clustervision case study, we selected the three clustering
methods: k-means, hierarchical, and spectral clustering. For all
methods we set the range of the “k” parameter (number of
clusters) to [2, 19] and enabled all options for their categorical
parameters “algorithm”, “method”, and “kernel”. We finally
specified the directory to store the results, set the number of runs
to 1,000 and started the parameter sampling process. Running
clustering for 1,000 random parameter combinations took about
2 h on a 2012 Macbook Pro. Once done, the output directory will
contain the following:

• The paramsInfo table with the names and types of the
parameters.

• The runsInfo table with one row for each run (1,000 rows
total) and one column per parameter specifying the value
assigned to the parameter for each run.

• Two data tables (cluster_ids and quality_criteria) per run
(total of 2 × 1,000 data tables)

• One output image per run (total of 1,000 images).

5.1.3 Derivation
The next step after parameter sampling was computing the

derived outputs. We added the ModEx app to the workspace and
specified the directory of runs to the output directory created in the
previous step. For this case study, we ran two passes of the derivation
step: In the first pass we chose the derivation method “Number of
class labels” on cluster_ids table. This added a new column
Num(cluster_ids) to the runsInfo table, specifying the number of
clusters generated for each run. Note that even though the number
of clusters was specified as an input parameter, it was possible for
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some clustering methods to converge to fewer number of clusters. In
the second pass, we chose the derivation method “Take first row”
and specified the quality_criteria table as shown in Figure 4B. We
picked the five clustering quality metrics used in the Clustervision
including Calinski-Harabaz index, Silhouette Coefficient, Davies-
Bouldin index, Gap Statistic and SDbw as well as the mean
normalized value as an aggregated quality metric. This added one
column per quality metric to the runsInfo table.

5.1.4 Exploration
In this section we will compare the exploratory analysis of the

paintings dataset usingModEx and Clustervision. Themain purpose
of this case study is to demonstrate how custom parameter space
analysis workflows such as Clustervision can be prototyped and
developed in our general purpose framework. So we will not be
focusing on the effectiveness of Clustervision’s proposed workflow
and rather will discuss how much of it could be recreated and
possibly enhanced in our framework.

The ranked list view of Clustervision (Figure 5A) shows different
clustering results. A set of horizontal colored stripes show a
representative of a clustering where the length of the colored
stripes represents the number of data points (e.g., paintings) in a
cluster. The User can adjust a range slider to focus on clustering sizes
relevant to their analysis. On the right of each bar, a radar chart is
shown consisting of a sequence of five spokes, each representing one
of the quality metrics. The length of each spoke from the center is
proportional to the normalized score of the quality metric and they
are connected to form a polygon shape.

The initial configuration of the exploration interface of
ModEx after start up, contains the views in Figures 4C–F. The
Data view in Figure 4C is populated with three data tables. The
input table is the input data set, i.e., the meta data of the
paintings. The runsInfo table is the parameter values as well

as the derived outputs for each run. The Run Output table
contains the results for the currently selected run (i.e., cluster
IDs) concatenated to the input table.

The “Runs Overview” in Figure 4D takes the runsInfo table as
input. We were not able to create the exact user interface of the
ranked list view of the Clustervision in ModEx without creating a
new app. However to reproduce a similar functionality, we set the
x-axis of the “Runs Overview” to the mean normalized metric and
the y-axis to the number of clusters. A quick browsing revealed that
the clusterings with the higher quality metrics are those with lower
number of clusters. This was consistent with the findings in the
Clustervision. Alternatively a user could also set the x-axis to any of
the metrics to study the clusters based on that metric. This is shown
in Figure 6. A user could click to select the run(s) with the desired
quality metric and number of clusters. The image output of the
selected runs would show in the “Output of Selected Run(s)”
(Figure 4E). Also the Run Output data table will update to the
output of the main selected run.

Users can also use the sliders in the “Runs Distribution” view
(Figure 4F) to filter the runs to a smaller group, for example, to focus
on specific range of cluster numbers or specific clustering methods.
We will further demonstrate the use of this feature in the next
section.

To reproduce the radar charts in the ranked list of
Clustervision, we drag-and-dropped the RadarChart R-app to
our workspace and assigned the runsInfo table as its input as
shown in (Figure 4G). Within the RadarChart app’s parameter
view, we selected the five columns of quality metrics as the
dimensions to be shown on the plot and enabled the “Auto
Run” option of the R-app. Every time one or more runs were
selected in the “Runs Overview” the RadarChart would refresh to
show the polygons formed by the quality metrics of the selected
run(s).

FIGURE 5
An overview of the Clustervision on “The Joy of Painting” dataset [source: Kwon et al. (2018) Figure 1]. (A) Ranked List of Clustering Results sorted by
the aggregated quality measures; (B) Projection shows a selected clustering result colored according to corresponding clusters; (C) Parallel Trends show
the trends of feature values of data points within corresponding clusters; (D) Cluster Detail shows quality measures of a selected individual cluster; (E)
Data Point shows the feature value distribution of the selected cluster.
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The Projection view of Clustervision shows input data points
(here the paintings) in a two dimensional tSNE projection,
resembling a scatter plot, as shown in Figure 5B. When users
select a clustering result from the Ranked List of Clustering
Results view (Figure 5A), the data points in the Projection view
are colored to match its cluster.

To recreate this behaviour in ModEx, we drag-and-dropped the
Scatter Plot app of the VisR framework to the workspace and
assigned the “Runs Output” table as its input. As shown in
Figure 4H, we then assigned the cluster ID column as the point
colors and the tSNE1 and tSNE2 columns to the x and y-axis (we
could also use the MDS or PCA columns). Every time the user was
selecting a run in the “Runs Overview”, the Run Output table would
be updated and as a result the scatter plot would refresh to draw the
points colored by the new cluster IDs for the selected run. In
addition we also found it useful to set the image column to the
tooltip of the scatter plot so it would show a thumbnail of the
paintings as the user moved over the data points.

The Parallel Trends view of Clustervision shown in Figure 5C uses
vertical axes to represent each feature of the data points. It draws a line
per cluster to show the mean values for each cluster for the
corresponding data feature and an area path to represent standard
deviation or 95% confidence intervals. We used the existing Pararallel
Coordinates app of the VisR framework to recreate a similar visual
encoding as shown in Figure 4I. Similar to the tSNE scatter plot, we
assigned the Run Output table to the input of the Parallel Coordinates
app. We then set it up to only show the 67 columns corresponding to
the painting features and to use the cluster ID column for coloring the
lines. The Parallel Coordinates app, offers an aggregation mode which
allows drawing aggregate values such as the mean, median, standard
deviation and quartiles for each group of data based on the values in the
column specified for the color. We used this mode to show the mean
values of the data features for each cluster and specified the column
sorting through clicking on the legend (clusterID).

The Clustervision has the option to rank input features in order
of importance based on the ANOVA F-Value. The existing Parallel
Coordinates app in the VisR framework did not include this feature.
Although it was technically possible to develop this new feature in
the app, we did not invest on doing this. However, just by sorting
features based on the aggregated value of each cluster, we could
already detect similar patterns reported by Clustervision.

Figure 7A, shows the top 8 most important features in
Clustervision. Figures 7B, C show the top 8 features sorted by
the aggregated value of cluster 4 (purple) and cluster 2 (red)
respectively. We can see that the top features of the purple
cluster (ID: 4) of Figure 7B include “Ocean”, “Waves” and
“Beach” which are also contained in the green cluster of
Figure 7A. Also the red cluster (ID: 2) of Figure 7C includes
“Mountain” and “Snowy Mountain” features which are also
contained in the yellow cluster of Figure 7A. Additionally we see
that “Tree” and “Trees” features are prominent in all but one of the
clusters, the green cluster of Figure 7A and the purple cluster of
Figure 7C.

The two remaining views of Clustervision “Cluster Detail”
(Figure 5D) and “Data Point” (Figure 5E) were not added to our
workspace as we did not have existing apps in VisR that could
reproduce them. Although it was not technically difficult, we did not
create two new R-apps for this purpose as they would have been apps
only specific to this case study and we believed they would not contribute
in further demonstrating the flexibility and generality of our tool.

5.1.5 Further analysis
While exploring the runs in the “Runs overview” of Figure 4D,

we noticed a fairly large group of runs (in red color) that had a much
lower value of the mean quality metric regardless of the number of
clusters. To further analyze these runs, we used the filters in the
“Runs Distribution” view of Figure 4F. The steps of our analysis are
shown in Figure 8. First, as shown in Figure 8A, we noticed that all
the low quality clusters were using the “Hierarchical” clustering
method (red color). So we used the corresponding histogram filter to
select those runs, as shown in Figure 8B. We then browsed the other
parameters for the remaining runs and noticed a distinct pattern for
the “agglomeration method”. As shown in Figures 8C, D the values
of “single”, “median”, and “centroid” (yellow, orange, and blue
colors), were used in the low quality runs. These runs could then
easily be removed by filtering out those values.

5.2 Case study: differential gene expression

In this section we demonstrate the effectiveness of ModEx using
a case study performed in collaboration with a group of biologists.

FIGURE 6
Exploring the quality of the clusterings using different clustering quality metrics: (A) Calinski-Harabaz index, (B) Silhouette Coefficient, (C) Davies-
Bouldin index, (D) Gap Statistic, and (E) SDbw.
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5.2.1 Related work in bioinformatics
Our initial motivation for developing ModEx came after our

collaborations with biologists to develop methods for understanding
biological data. Recent advances in next-generation sequencing
technology have significantly progressed understanding of
genomics and molecular biology. Most of the related
bioinformatics research has focused on statistical and
computational methods for processing and analysis of the
biological data. Some of the most used ones are limma Smyth
(2005), edgeR Robinson et al. (2010), and DESeq Anders and
Huber (2010); Love et al. (2014) which will be further discussed
in our case study in Section 6.

There have also been several works done to provide guidance in
selecting the suitable algorithms and parameters for those
computational methods based on the dataset and the goals of the
analysis. Among them, a group that are most related to this work are
approaches that combine cluster analysis with interactive
visualization techniques to facilitate analysis and understanding

of large data. Examples of such methods which provide visual
interfaces for tasks such as comparison of several clustering
results are Genesis Sturn et al. (2002), HCE Seo and
Shneiderman (2002), Mayday Battke et al. (2010), XCluSim L’Yi
et al. (2015), MLCut Vogogias et al. (2016), VisExpress Simon et al.
(2017) and Kern et al.Kern et al. (2017).

5.2.2 Introduction
Differential gene expression (DGE or DE) analysis is one of the

common analysis in genome biology and is used to identify genes (or
other genomic features) that are expressed in significantly different
quantities in distinct groups of samples Huss (2014). These data are
acquired using genome sequencing technologies (e.g., RNA-seq)
from samples collected in different biological conditions such as
drug-treated vs. controls, diseased vs. healthy, different tissues or
different stages of development. Bioinformaticians have developed
several computational methods such as Limma Smyth (2005), edgeR
Robinson et al. (2010), DESeq Anders and Huber (2010) and

FIGURE 7
Exploring top features of a selected clustering in Clustervision and ModEx: (A) Top features in Clustervision based on the ANOVA F-Value; (B, C) Top
features in ModEx based on sorting by aggregated value for cluster 4 (purple) and cluster 2 (red).

FIGURE 8
Visual analysis of the clusterings: (A)Observing the group of runs with low quality are from hierarchical clusteringmethod; (B) filtering selecting runs
using the hierarchical clustering method; (C,D) Observing the group of runs with low quality use “single”, “median” and “centroid” values for the
“agglomeration method” parameter.
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DESeq2 Love et al. (2014) that employ various statistical models to
identify differentially expressed (DE) genes. These methods take two
groups of gene expression datasets (with two or more replicates per
group) as input and assign a label of either “0”, “-1”, or “+1” to each
gene. A none DE gene is labelled “0”, while a DE gene is labelled “+1”
when it is detected to be expressed in significantly higher quantity in
the second group (a.k.a. upregulated) or “-1”when it is the other way
around (a.k.a. downregulated).

Our users were interested in using DESeq Anders and Huber
(2010) and edgeR Robinson et al. (2010) as the two most commonly
used methods for DE analysis Anders et al. (2013). R-apps for these
methods were already incorporated in VisR as shown in Figures 9A,
C. One of the main questions that biologists had when using these
apps, was whether the genes were classified as DE through a
stringent computer model (i.e., specificity) or more tolerant one
(i.e., sensitivity). They also wanted to have control over the
sensitivity. That was because sometimes in earlier stages of their
studies they wanted to cast a wide net to identify a large set of
possible candidates and later perform more rigorous focused
analysis (e.g., pathway analysis or wet lab analysis) to narrow
down the results, while other times they wanted to be most
confident about the detected DE genes.

5.2.3 Parameter sampling
In order to study the effect of parameters on the sensitivity of

DE analysis methods, we used a benchmark gene expression

dataset called SEQC (a.k.a. GSE49712) Rapaport et al. (2013).
The data was prepared under two biological conditions, and for
each condition, the sample collection and measurement was
repeated 5 times (biological replicates). In addition to the
genetic material from tissues, a mixture of 92 synthetic genes,
called spike-in, was added to each sample with known
abundance, so the DE states of those genes were known in
advance. For 25% (23) of the spike-in genes the ratio of
genetic material added to both groups of samples was
identical, so they were expected to be detected as non-
differentially expressed. For the remaining 75% (69) spike-in
genes the ratio was different (0.5, 0.67 or 2) so they were expected
to be detected as differentially expressed. The final sequenced and
processes dataset was stored in a data table with 21,716 rows (one
per gene, 92 of which were spike-in), 10 columns of gene
expression values (5 for each of two biological conditions) and
one column “GT_DE”, indicating the ground truth DE state, with
a value of TRUE or FALSE for the 92 spike-in genes, and NA for
the remaining of the genes. First we used the ModEx view for each
app shown in Figures 9B, D and performed the DE analysis for
500 runs with random combinations of input parameters. The
output of each run was the computationally determined DE state
for each gene. This was stored as a data table with one row per
gene, and two columns, “DE” with a value in {-1, 0, +1} and
“isDE” with a value of FALSE when DE = 0 or TRUE when
DE = −1 or +1.

FIGURE 9
R-apps for differential expression analysis: (A) DESeq: standard view (B) DESeq: ModEx view (C) edgeR: standard view (D) edgeR: ModEx view (E)
Derivation method “Comparison: with ground truth”.

Frontiers in Bioinformatics frontiersin.org12

Younesy et al. 10.3389/fbinf.2023.1153800

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1153800


5.2.4 Derivation
Our goal was to compare the actual DE state of the control spike-

in genes, with the DE state computed by the DESeq and edgeR apps
given a set of parameters. We studied each of these apps separately.
For derivation, we used the “Comparison: with ground truth”
derivation method as shown in Figure 9E and set it to use the
“isDE” column of the app’s outputs with the “GT_DE” column of
the input dataset. Each gene’s computed DE condition,“isDE”, could
take one of the two values of TRUE or FALSE and the ground truth
DE condition, “GT_DE”, could take one of the three values of TRUE,
FALSE, or NA, so there were a total of six combinations possible for
the output of each run for each gene:

• isDE = TRUE & GT_DE = TRUE: indicating a true positive
• isDE = TRUE & GT_DE = FALSE: indicating a false positive
(type I error)

• isDE = FALSE & GT_DE = FALSE: indicating a true negative
• isDE = FALSE & GT_DE = TRUE: indicating a false negative
(type II error)

• isDE = TRUE & GT_DE = NA: possibly a DE gene
• isDE = FALSE & GT_DE = NA: possibly a non-DE gene

The derivation step counted the combinations for each run. This
resulted in 6 columns that were added to the runsInfo table. Each
column contained the count of genes for one of the 6 combinations.
For example, the column “n(isDE = TRUE & GT_DE = TRUE)”
contained the number of true positives for each input parameter
combination.

5.2.5 Exploration
We will now discuss our findings using the ModEx

exploration interface, first for the DESeq app and then for the
edgeR app. For studying the sensitivity of a classifier model, the
“receiver operating characteristic” plot (ROC plot) is one of the
most well known visualizations. The ROC plot is created by
plotting the true positive rate (TPR) against the false positive rate
(FPR) at various parameter settings Wikipedia contributors
(2018).

To get a ROC plot, we selected the “n(isDE = TRUE & GT_DE =
FALSE)” (to represent the FPR) as the x-axis and the “n(isDE =
TRUE & GT_DE = TRUE)” (to represent the TPR) as the y-axis of
the plots. Note that these represented counts (not rates) as they were
computed by the derivation method without the knowledge of the
total counts. To compensate for this, we set the x-axis maximum to
23 (the number of non-DE spike-in genes) and the y-axis maximum
to 69 (the number of DE spike-in genes).

Figure 10A shows one of the ROC plots for DESeq runs. Each
point represents one run (i.e., an input parameter combination) and
the color represents the value used for the categorical parameter
“method”. In a ROC analysis, the optimum points are those for
which there is no other point with both lower FPR and higher TPR.
These points form a set known as the Pareto set and are referred to as
the Pareto Frontier in a ROC plot. Browsing through the ROC plots,
we observed that a large group of points in the Pareto set were
colored red as shown in Figure 10A. Those were the runs that used
the value “blind” for the “method” parameter, so we used the

histogram filter Figure 10B to select them. We then observed that
the categorical parameter “sharing mode” was determining the
Pareto set, more specifically the two values of “fit-only”(red) and
“maximum”(green), as shown in Figure 10C. So we used the
histogram filter once more Figure 10D to select runs using those
two values. The remaining points were those either in the Pareto set
or very close to it. For these points, the parameter “FDR-threshold”
had a clear correlation as shown in Figure 10E. Runs with a lower
value for “FDR threshold” had a low FPR and TPR, while those with
a higher value for “FDR threshold” had also high FPR and TPR. A
value of near 0.4 seemed to be a reasonable value to have keep the
FPR low at 4% ( 1

23) and TPR high at 87%(6069). Last but not least, a
forth parameter “fit type” seemed to have a slight effect on the
number of detected DE genes. As shown in Figure 10F, when
plotting the total number of DE genes vs. the FDR threshod, we
could see that a value of “local” resulted in detecting slightly more
DE genes compared to a value of “parametric”.

We performed a similar ROC analysis on the runs of the
edgeR app. Unlike DESeq, we initially did not see a single
parameter that would clearly define the Pareto set. As shown
in Figure 11A The “CPM cutoff” parameter had a negative
correlation with the TPR, but did not directly effect the FPR.
On the other hand, the “P-value adjust method” parameter had
some effect on the FPR but not directly on TPR: As shown in
Figure 11B the value “holm” (purple) resulted in runs with lower
FPR. The “Method for differential test” parameter was another
parameter that had some effect on the FPR: As shown in
Figure 11C, runs with “glm likelihood ratio test” parameter
value (blue) resulted in relatively lower FPR than the runs
with “exact test” value (red). To further explore the
parameters affecting FPR, we set the plots to show FPR vs. “P-
value adjustment method”. The plot that used “Method for
differential test” parameter as the point color, had a visible
association. As shown in Figure 11D the “holm” value for “P-
value adjustment method” parameter (x-coordinate) resulted in
overall reduced FPR among other groups, but within each group,
the runs using “glm likelihood ratio test” parameter value (blue)
had always less FPR than those using the “exact test” parameter
value (red). Note that there is a slight jitter on point coordinates
to handle over-plotting. So we used the histogram filters
(Figure 11E) to select the runs with “glm likelihood ratio test”.
This made it easy to observe that the “P-value” method had a
positive correlation with FPR as shown in Figure 11F.

In order to explore the effect of parameters on the total number
of detected DE genes, we set the plots to show the number of
detected DE genes, “n(isDE = TRUE)”, vs. the “CPM cutoff”
parameter. As shown in Figures 11G, H, the number of detected
DE genes decreases by increasing the value of “CPM cutoff”. The
“holm” value for “P-value adjustment method” parameter detected
the least number of DE genes (Figure 11G). For each selected value
of the “P-value adjustment method” parameter the “P-value”
parameter had a slight positive correlation with the number of
detected DE genes (Figure 11I).

We also noticed that the “Method for differential test” parameter
introduced a bias in detecting upregulated (DE = 1) vs.
downregulated (DE = −1) genes. As shown in (Figure 11H),
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when using “exact test” value (red), more upregulated (DE = 1)
genes were detected. In contrast, using the “glm likelihood ratio test”
(blue) showed a bias toward detecting more downregulated
(DE = −1) genes.

To summarize, we find that the DE results of the DESeq
method seem to be closer to an ideal ROC, than the edgeR
method. For DESeq it seems the parameter combination of
{‘method’: ‘blind’, ‘sharing mode’: ‘fit-only’} should be used
and the ‘FDR threshold’ can be used to control the specificity
of the detection method.

5.3 Case study: neural network playground

Neural networks have gained an unprecedented popularity in
recent years thanks to their effectiveness in many application
domains. In the context of machine learning, the term
“parameter” is referred to model variables (such as weights
and biases) values of which are learned automatically through
a training process. For the constant values that are specified
manually to fine tune a model the term “hyperparameters” is
used. To solve problems with neural-networks, a machine
learning expert would choose a network architecture and set
the hyperparameters. These choices are based on heuristics and
the expert’s knowledge of the specific problem, and often involve
a trial-and-error strategy.

The Neural Network Playground Smilkov et al. (2017)
(hereinafter referred to as the Playground) is a web-based
interactive application that captures the essence of this task by
allowing users to create simple neural networks, visualize the
learning progress, and modify hyperparameters. In this section
we demonstrate the ModEx workflow and system features using
a problem inspired by the Playground application.

Figure 12D shows an example view of the Playground
application. The Playground offers two problem types: A binary
classification problem and a regression problem. Here we will be
focusing on the binary classification problem as it is the more

complex one. To generate the dataset for the classification
problem, a user selects from one of 4 dataset shapes (Gaussian,
Circle, Xor, and Spiral) and a noise value between 0 and 50 and the
Playground generates a random two dimensional dataset. The
resulting dataset has 200 points which are divided equally into
two class labels, −1 and +1, visualized with orange and blue
respectively.

To build a neural network, a user can add between 0 and
6 hidden layers (excluding the input and output layers) and set
the number of neurons in each layer between 1 and 8 and a fully
connected network architecture will be constructed. For the input
layer, a user can independently toggle any of the seven input
features X1, X2, X2

1, X2
2, X1X2, sin(X1), and sin(X2). Before

training, several hyperparameters can be specified: “Ratio of
training to test data”, “Batch size”, “Learning rate”,
“Activation” function, “Regularization” method, and
“Regularization rate”. Once done, a user can start the training
and the Playground will visualize the results in real time after
each training epoch.

5.3.1 Parameter sampling
We were interested in using ModEx to explore the parameter

space for this application. The Playground is developed in
TypeScript using D3 so creating a VisR app directly from the
code was not practical. Instead we decided to reimplement the
playgrounds machine learning model using Python and
TensorFlow Abadi et al. (2016) to be able to run the tool in
batch mode with different combinations of parameters. At the
time of the implementation, we were not aware of the existence of
a recent R implementation of TensorFlow so the parameter space
sampling is not done in ModEx, but the results were stored in the
same structure described in Section 4.2. We made an effort to
make our implementation as close as possible to the online demo,
however, there were occasionally some subtle differences between
the outcomes of the two which we believe were the result of the
differences between the implementations of the simpler online
version of the neural network library compared to the standard

FIGURE 10
ModEx exploration of DESeq app: (A) ROC plot of runs colored by the “method” parameter. (B) selecting runs that use the “blind” value for the
“method” parameter. (C) ROCplot of selected runs colored by the “sharingmode” parameter. (D) selecting runs that use the “fit-only” or “maximum” value
for the “sharing mode” parameter. (E) ROC plot of filtered runs colored by “FDR threshold” parameter. (F) Correlation of number of detected DE genes
with the “FDR threshold”.
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Python version as well as the differences in the random number
generators. As input, we created one of each of the four dataset
types with a noise level of 25. Each input dataset has 200 data
points, each with values for the seven input features in the
Playground application, as well as its “true” label. For each
dataset, we ran the network with 2,500 random combinations
of parameters and recorded the results at 4 epochs: 50, 100,
200 and 400. So at the end, for each input dataset, we had a total
of 10,000 records in the runsInfo table. For each run we saved an
output table of the predicted labels as well as a 2D scatter plot
image of the input data points and the predictions, examples of
which are shown in Figure 12C. The points are coloured based on
their true label (orange for −1 and blue for +1) and their inclusion
in the training or the test set is indicated with a white or black
stroke color respectively. The background color of the plot shows
what the network has predicted for a particular area after
each run.

5.3.2 Derivation
The neural network playground script collects several

measures after running each configuration of the network for
the specified number of epochs. Those include “total
time”(training), “mean time”, “train loss”, “test loss”, “train
TPR” (True Positive Rate), “train FPR” (False Positive Rate),
“test TPR”, and “test FPR”. We could derive some of these
measures (e.g., TPR and FPR) within ModEx, but others could
only be collected during the training of the network. As such,
this example demonstrates how ModEx can still be utilized for
parameter exploration of applications developed outside the
VisR framework.

5.3.3 Exploration
We will now discuss some of the insights from the parameter

space exploration of the neural network outputs. We will
specifically focus on addressing the feedback from the users of

FIGURE 11
ModEx exploration of edgeR app. ROC plot of runs with the x-axis set to FPR and the y-axis set to TPR and colored by the parameters: (A) the “CPM
cutoff”, (B) “P-value adjustment method”, and (C) “Method for differential test”. (D) effect of “P-value adjustment method” (x-coord) and “Method for
differential-test” (color) parameters on the FPR (y-coord). (E) Selecting runs using “glm likelihood ratio test” value. (F) Positive correlation between “P-
value” (color) parameter and FPR (y-coord). (G) Effect of “CPM cutoff” (x-coord) and “P-value adjustmentmethod” (color) on the number of detected
DE genes (y-coord). (H) Effect of “CPM cutoff” (x-coord) and “P-value” (color) on the number of detected DE genes (y-coord). (I) “Method for differential
test” parameter biases the detection of downregulated (x: n (DE = −1)) and upregulated (y: n (DE = 1)) genes.
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the Playground application stated by Ha Ha (2016): “People
started experimenting with different neural network
configurations, such as how many neural network layers are
actually needed to fit a certain data set, or what initial features
should be used for another data set. Which activation functions
work better for which dataset?”.

We started by exploring the scatter plots of train loss vs. test
loss (Figure 12A), with runs colored by different
hyperparameters (Figure 12B). We selected runs that best fit
each dataset (i.e., runs that led to low train loss and test loss) by
clicking on the points on the bottom left of the scatter plot
(Figure 12C). The values of the hyperparameters for the selected
runs would also be indicated by a pointing down triangle above
the histogram for each hyperparameter. We could also link the
workflow to a simple custom R-app that launches the Playground
with the hyperparameter configuration of the selected run in the
URL (Figure 12D).

Even though this workflow helped us get some initial
intuitions, it was still difficult to get any global insights as we
did not see any obvious patterns in most of the scatter plots. This
was partially due to over plotting but also since the effectiveness
of the runs was affected by a combination of a large number of
hyperparameters rather than a few individual ones. We were
interested in studying the hyperparameters for the runs which
converged and correctly fit the classes in each data (i.e., runs with
small loss). Example outputs of such runs are shown in
Figure 13A. So we used the filters shown in Figure 13B to
filter out the runs with a high training loss (> 0.2). The
percentage of the remaining effective runs were highest for the

“gauss” dataset (24%) and lowest for the hardest “spiral” dataset
(1%) while the “circle” and “xor” both had around 19% runs
remaining after filtering. This was not surprising given the
relative difficulty of the classification for each dataset. Next we
set the x-axis to test_loss and browsed through different
hyperparameters for the y-axis. Looking through the input
features we could see distinctive patterns for each dataset. The
input features that had the most effect on converged runs were X1

and X2 for the “gauss”, X2
1 and X2

2 for “circle”, X1X2 for the “xor”
and sin(X1) and sin(X2) for the “spiral” datasets. Examples of
each case are shown in Figure 13C.

We then looked at the effect of the number of layers. As shown
in Figure 13D, for the “spiral” dataset a minimum of two layers were
required, however the runs for other datasets could converge even
without any hidden layers. We could even notice that there were
slightly more converged runs when the number of layers were low.
This was because these datasets could be fitted easily without any
hidden layer given the convenient set of input features. As the
number of layers increased, more epochs were needed to converge
the network thus runs for lower epochs did not pass the filter we set
earlier on train_loss.

We next looked at the activation functions. There were four
choices for the activation function to be applied to the output of
all hidden layers: “linear”, “relu”, “sigmoid”, and “tanh”. The
linear activation function, was simply passing the input to output
(i.e., f(x) = x), while the other three added some nonlinearity to
the output of layers, something which is required when classes
cannot be fitted properly using only a linear combination of input
features. Figure 13E shows the histogram of the runs using each

FIGURE 12
Linked views in ModEx parameter space exploration: (A) “Runs Overview” showing a scatter plot of the runs for the selected derivations, (i.e., “train_
loss” and “test_loss”) and colored by the currently selected parameter (i.e., “activation”). (B) “Runs Distributions”, showing a list of histogram distributions
for input parameters and derived output together with a scatter plot colored by the corresponding parameter. (C) Image output of the runs selected in the
“Runs Overview” plot. (D) Neural Network Playground launched in a browser and initialized automatically after clicking on a run.
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activation function. As expected, all four activation functions
performed similarly on the linearly separable gauss dataset. For
the “spiral” dataset we saw that only the runs using either of the
three nonlinear activation functions converged. However it
appeared as if the choice of activation function had little effect
on the outcome of the runs on the “circle” and “xor” datasets. Our
hypothesis was that those runs were benefiting from the
nonlinearity of their input features. So, to verify that, we

filtered out all runs which used any input feature other than
X1 and X2. As shown in Figure 13F, for the gauss dataset all four
activation functions still had a similar outcome, but for the other
three datasets, only the runs with nonlinear activation functions
converged.

In addition to the patterns we observed for the runs for each
specific dataset, we also observed some patterns common in runs
for all datasets. As shown in Figure 14A the most effective values

FIGURE 13
Selected plots from exploration of runs for the Playground case study: (A) Example outputs from converged runs for each dataset; (B) Filtering out
runs with high train_loss; (C) Example of input features showing high correlation with converged (low loss) runs; (D) Exploring effect of the number of
hidden layers; (E) Exploring the effect of activation functions; (F) Exploring the effect of activation functions on runs that only used X1 and X2 as input
features. Except for the gauss data, a nonlinear activation function is needed to train a successful classifier.
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for the learning rate seemed to be in the [0.001, 1.0] range. To
study regularization rate, we first selected runs that used either
L1 or L2 regularization (Figure 14B) and observed that the most
effective values for the regularization rate seemed to be in the
[0.001, 0.3] range. We were also interested in the computational
cost of the networks. We explored association of different
hyperparameters with the average epoch time and noticed the
batch size and neuron count to be the two hyperparameters
showing the strongest association with the mean epoch time
(Figure 14D).

6 Conclusion and future work

In this paper we introducedModEx, a novel general purpose system
for visual parameter analysis of computer models. By offering key
components of a visual parameter analysis framework including
parameter sampling, deriving output summaries and an exploration
interface, as well as a flexible API for further extension, ModEx can be
employed in a variety of application domains with a reduced
development time. We demonstrated the usability and flexibility of
our system in three application domains: datamining,machine learning
and bioinformatics. However there remains several important
limitations that provide opportunities for extending the current
work. We would like to address these limitations while we continue
evaluating our system on more scenarios in different application
domains.

6.1 Parameter sampling

Our current implementation only uses random uniform
sampling of the parameter space. We did not experiment with
other sampling methods as it was not a direct focus of our study.
We leave detailed studies of different parameter sampling methods,
such as grid sampling, or stratified random sampling, as important
future work. Moreover, ModEx does not include the “prediction”
component of the conceptual framework for visual parameter space
analysis the purpose of which is to predict or estimate model outputs
for parameter combinations that have not been sampled.

6.2 Analyzing output

Currently we only allow a side-by-side comparison of output
images in the exploration interface. However, we believe better
comparison methods of images as well as output data tables will
improve the effectiveness of analysis. A different type of useful
comparison, is the comparison of multiple computer models
together. Currently to compare different models together, a user
needs to first combine them into a meta-app similar to our
approach for the Clustering app. Another missing feature is the
ability to group runs with similar output (images or data) to
reduce the clutter during exploration and better help with
finding patterns or anomalies. Note that in some cases a
brute-force grouping by comparing the output values may not
work well, for example, when the output are IDs for cluster
labels.

6.3 Browsing parameters

Our current implementation displays parameters and derived
output independent of each other. However in many models,
dependent parameters may exist. For example, in our Clustering
app, the algorithm parameter is only relevant when the clustering
method is set to k-means. The R-app API already allows declaring
these dependencies to show parameters only as needed, however
this information is not utilized during the exploration. We
initially experimented with a hierarchical view of parameters
instead of a list, however the resulting UI turned out to be too
complex and we opted out to a basic list view until we find a better
alternative. Another useful feature when browsing parameters is
to be able to sort parameters by some sort of importance metric
that measures the significance of the parameters on the output of
the models.

6.4 Guiding the exploration

In our current exploration interface the user has to manually
experiment with different configurations of axis to look for interesting

FIGURE 14
Some patterns common in the runs for all datasets: (A) learning rate. (B,C) regularization rate for the runs with L1 and L2 regularization. (D)
Association of mean epoch time with batch size and neuron count.
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patterns. One area of potential improvement is to utilize scagnostics
Wilkinson et al. (2005) to help the user find interesting views of the data.
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