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Introduction: Blood coagulation is an essential process to cease bleeding in
humans and other species. This mechanism is characterized by a molecular
cascade of more than a dozen components activated after an injury to a blood
vessel. In this process, the coagulation factor VIII (FVIII) is a master regulator,
enhancing the activity of other components by thousands of times. In this sense, it
is unsurprising that even single amino acid substitutions result in hemophilia A
(HA)—a disease marked by uncontrolled bleeding and that leaves patients at
permanent risk of hemorrhagic complications.

Methods: Despite recent advances in the diagnosis and treatment of HA, the
precise role of each residue of the FVIII protein remains unclear. In this study, we
developed a graph-based machine learning framework that explores in detail the
network formed by the residues of the FVIII protein, where each residue is a node,
and two nodes are connected if they are in close proximity on the FVIII 3D
structure.

Results:Using this system, we identified the properties that lead to severe andmild
forms of the disease. Finally, in an effort to advance the development of novel
recombinant therapeutic FVIII proteins, we adapted our framework to predict the
activity and expression of more than 300 in vitro alanine mutations, once more
observing a close agreement between the in silico and the in vitro results.

Discussion: Together, the results derived from this study demonstrate how graph-
based classifiers can leverage the diagnostic and treatment of a rare disease.
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1 Introduction

Blood coagulation is a vital process that stops the bleeding that ensues after a blood vessel
is damaged. Injuries to the endothelial cell layer of blood vessels lead to the production of
Tissue Factor Pathway Inhibitor (TFPI), which in turn starts a cascade of signals that activate
and inhibit more than a dozen factors and lead to the assembly of a fibrin clot at the site of
injury (Hoffbrand et al., 2016). Evidently, any mutations to the genes involved in this delicate
system lead to the disruption of this essential process; for instance, patients harboring
mutations on the SERPINC1 gene are prone to develop thrombosis [the excessive formation
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of blood clots (Hoffbrand et al., 2016)]. On the other hand, inherited
or spontaneous mutations to the Coagulation factor 8 (F8) lead to
hemophilia A (HA), a coagulation disorder that cause patients to
have uncontrolled bleeding episodes.

This is an X-linked heritable disease affecting approximately
1 in every 5,000–10,000 live male births (Hoffbrand et al., 2016),
and as a result, the blood coagulation cascade is impaired to
different extents depending on the type of mutation on the
F8 gene. Disease symptoms may vary from mild (clotting
activity level 5%–40%, with only rare bleeding episodes), to
moderate (clotting activity 1%–5%, more frequent episodes),
and severe [clotting activity < 1%, permanent bleeding risk and
chronic joint damage (Lee et al., 2014)].

Although it is a relatively rare disorder, the coagulation
pathway is well-characterized and treatment options are
improving since the 1950s, evolving from blood-derived FVIII
concentrates (Lee et al., 2014) to recombinant proteins (Peters
and Harris, 2018), monoclonal antibodies (Kitazawa et al., 2012;
Østergaard et al., 2021) and gene therapy (Nathwani, 2019).
However, current treatment options still have major issues
that have to be addressed (Lenting et al., 2017), for instance, it
is of paramount importance to improve the half-life of
recombinant FVIII proteins (currently ~ 12–19 h), as well as
its immunogenic profile to avoid the development of neutralizing
antibodies, a condition affecting 30% of patients (Peters and
Harris, 2018).

To this end, a deep understanding of the FVIII protein
structure is essential. Using genetic information and protein
structure properties, previous studies started to uncover
aspects of single amino acid changes and their relation to
severe or mild forms of HA (Doss, 2012). However, the lack
of strict data curation and the lack of advanced statistical and
machine learning methods hampered the mechanistic
understanding and prediction of the effect of novel mutations
on the FVIII protein.

In this study, to predict the degree of dysfunction that mutations
cause in this protein, we used a graph representation of the FVIII that
we established previously (Lopes et al., 2021a), and the mutation
profile of 5,793 patients diagnosedwithHA.We used this information
and other structural and evolutionary properties of FVIII as input to
4 different graph-based neural network architectures (GNN), and
found that this setup is highly efficient to learn the underlying
properties of the FVIII architecture, and predict with good
accuracy the effect of single-point non-synonymous mutations.

Moreover, aiming at creating recombinant FVIII proteins with
improved half-life, immunogenic and folding profiles (Prezotti et al.,
2022), we retrained these models to predict the coagulation activity
of more than 300 alanine mutations. As a result, we found that the
GNN models reliably predict the reduction in the activity of FVIII,
effectively emulating in silico the results of costly and laborious
in vitro assays.

In summary, this study builds on our previous efforts and
demonstrates the feasibility of using GNNs to advance the
understanding of a rare disease. We named this framework
GNN-HemA and made it open-source, anticipating that the
community will reproduce our findings and extend it to study
diseases beyond hemophilia.

2 Results

2.1 Creation of the FVIII residue network

The FVIII protein has 2,332 amino acids and is composed of
5 domains (A1-A2-B-A3-C1-C2) (Childers et al., 2022). It circulates
bound to the von Willebrand Factor (vWF), and after being
activated via thrombin-mediated cleavage of some residues, it
becomes detached from vWF, loses its B domain and changes
into its activated form (FVIIIa) (Childers et al., 2022). As co-
factor for the coagulation factor IXa, FVIIIa binds to the
phospholipid membrane of activated platelets and enhances its
activity more than 100,000 times (Lee et al., 2014). Together,
they form the so-called tenase complex to activate the
coagulation factor X (FX) into FXa. In turn, FXa converts
prothrombin to thrombin, already close to the end of the
coagulation cascade [i.e., the formation of a stable fibrin clot (Lee
et al., 2014)].

In previous studies, we created a residue interaction network
(RIN) of the FVIIIa protein, where each residue was represented by a
node, and two nodes were connected by an edge if the residues were
close to each other in the 3D structure (Figure 1A). This
representation of the FVIIIa protein helped us quantify the
importance of each of its residues, and understand how
perturbations (i.e., mutations), lead to the loss of its function
(Yan et al., 2014).

In this study, to create a RIN, we used the FVIIIa structure
predicted by AlphaFold2 (Jumper et al., 2021; Varadi et al., 2022),
because it had a very good agreement with experimentally
determined structures (Ngo et al., 2008; Shen et al., 2008; Smith
et al., 2020), but in contrast to these models, the
AlphaFold2 structure did not have large missing segments–an
essential requirement to create a complete residue network.

We used the FVIIIa structure as input to RINerator (Doncheva
et al., 2011). This program first adds hydrogen atoms to the
structure, allowing it to identify non-covalent interactions
between amino acids. Next, the non-covalent interactions are
identified using a small probe (~0.25 Å) rolled around the van
der Waals surface of each residue, and a contact is defined if the
probe touches two non-covalently bonded atoms (Word et al.,
1999a; Word et al., 1999b). Finally, the interactions between
residues are represented by edges, indicating that these residues
are connected by a i) side-chain–side-chain, ii) side-chain–main-
chain, iii) main-chain–main-chain hydrogen bond or non-covalent
interaction between their atoms. In the FVIIIa RIN, the distance
between the residues’ atoms was ~5 Å (Supplementary Table S1
contains the complete network).

In mathematical terms, we modeled our data as a graph
G � (V, ξ), such that V is a set of residues and ξ is a set of edges
that represents the connection between two nodes, i.e., there is a
connection (u, v) ∈ ξ if two amino acids u, v ∈ V are in close
proximity on the FVIII 3D structure. Here, the graph contains
only undirected edges. Therefore, by using GNN, it is possible to
train graph-based models (f) representing the connections from the
protein structures, thus describing better the attributes and
relationships according to our class labels (f: G → Y) (e.g., the
severity of hemophilia).
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Finally, we used the 3D structure of FVIIIa to calculate the
relative surface exposure of each residue, to produce a large multiple
sequence alignment of FVIIIa and obtain a conservation score of

each of its residues (Methods). In practical terms, these measures
quantify from a structural and evolutionary perspective the
importance of each residue of FVIIIa (Figure 1).

FIGURE 1
Design of the GNN-HemA. (A) From the pre-processed FVIII structure, we generated a residue network, obtained structural measures like solvent
accessible area as well as a conservation score for each residue. This served as input for GNN classifiers, that were trained to predict the severity of
626 patients with HA, as well as the coagulation activity of more than 300 alaninemutant FVIII constructs Pellequer et al. (2011); Plantier et al. (2012). (B) In
detail, the GNN algorithms’ training process starts by extracting sub-graphs from the residue network obtained from pre-processed the FVIII-RIN.
Next, the sub-graphs are used to train a Graph Attention Network (GAT) with four attention heads. After computing the attention scores, GAT utilizes a
Multilayer Perceptron (MLP) to classify the graph nodes according to the severity of hemophilia A or the coagulation activity of the FVIII alanine mutants.

FIGURE 2
Predicting the severity of HA. (A) After careful data sanitation, our dataset had 626 unique cases of HA (Supplementary Table S2), caused by single-
point, non-synonymous mutations. We merged the mild and moderate cases into a single class, reducing the problem to a 2-class classification. (B–C)
Mutations at residues buried at the core of FVIII (i.e., low solvent accessible area), and conserved during evolution (i.e., low conservation score) result in
severe HA, most likely due to the disruption the FVIII protein conformation. (D–E) Comparing different classifiers’ architectures, we obtained a
classification accuracy of 0.69, and F1 value of 0.44, highlighting the difficulty associated to predicting the severity of HA from clinical data, but still useful
to anticipate the effects of single-point mutations.
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Taken together, in addition to the centrality measures that can
be derived from the graph itself, we aimed at ranking the importance
of each FVIIIa residue from different perspectives. The FVIIIa RIN
and these additional measures compose the base for input to the
GNN algorithms.

2.2 Predicting hemophilia a severity with
graph-based machine learning classifiers

After generating the datasets that form the basis for GNN
classifiers, we manually collected and pre-processed thousands
of HA cases of patients harboring single-point non-
synonymous mutations (Methods). After our stringent data
sanitation, our dataset contained 626 HA cases (293 mild,
123 moderate and 210 severe), as well as the position and the
amino acid substitution of each patient (Figure 2A). While
patients with severe HA require prophylactic care that
consists of intravenous injections 2-3 times per week,
treatment for mild and moderate cases often require
intravenous injections only when an injury occurs (Prezotti
et al., 2022). For this reason, we grouped the mild/moderate
cases into one class and severe into another (majority class ratio
of 0.66). Mathematically, χ represents a dataset with the
mutations harbored by hemophiliac patients with different
severity levels Y. Each residue xi ∈ χ contains a set of
attributes A � {a1, a2, . . . , an} representing the properties of
them which was substituted in xi (namely, the structural and
evolutionary features of each amino acid).

Before using machine learning classifiers (ML) to predict the
severity of HA, we assessed whether the structural and evolutionary
properties of the FVIII residues could distinguish between severe
and mild/moderate phenotypes. We found that the solvent
accessible area and the conservation of residues are powerful
discriminators of HA severity (Figure 2B), as we observed in a
previous study with different clinical cases (Lopes et al., 2021a).
These results indicate that mutations to the most conserved and
buried residues of FVIII lead to severe hemophilia, while
substitutions of the residues close to the protein surface are
associated to mild or moderate phenotypes.

Next, we used structural and evolutionary measures in
conjunction with the FVIII-RIN for the GNN-based
classification. The predicting model used in our GNN-HemA
framework was implemented on top of the SHADOW-GNN
(Decoupled GNN on a shallow subgraph) (Zeng et al., 2021),
which is considered the state-of-the-art for implementing
different GNN models. With the Shadow-GNN, we created a
experimental setup using Graph Attention Networks (GAT)
(Veličković et al., 2017) to model the FVIII protein.

We have trained four GATmodels combining different numbers
of layers (3 and 5) and sub-graph extractors (L-HOP and PPR). In
GAT, layers refer to the repeated application of a particular
computation on the graph’s nodes, which is used to learn node
representations (Methods).

To assess our results, we designed our experiments by using
a 6-fold cross-validation strategy. We split our dataset into
6 folds due to the small amount of available data, i.e., by using
more folds (e.g., 10 folds as usual in ML tasks), a larger number

of nodes were available for training, but only a few would
remain for the validation stage.

Using this training regimen and comparing the performance of
the different GNN architectures, we found that the best model GAT
with 3-PPR predicted the severity of HA with accuracy of 0.7 and
F1 value of 0.44 (Figures 2D, E), indicating that the GNNmodels are
able to find with modest performance the characteristics
distinguishing severe and mild/moderate HA phenotypes
(Figure 2C). Compared to existing methods that attempt to
predict harmful effects of mutations (e.g., Polyphen-2 and
Provean (Adzhubei et al., 2013; Choi and Chan, 2015), the
GNN-Hema produced equivalent results in all cases
(Supplementary Figure S1).

In summary, the best prediction of HA severity was obtained
using the Shadow-GAT, an attention-based architecture for
classifying nodes in graph-structured data (Veličković et al.,
2017). By using a self-attention strategy, Shadow-GAT
computes hidden representations of each node. This attention
architecture has several desirable features (Veličković et al.,
2017), including the fact that it is efficient and parallelizable,
can handle nodes of varying degrees by assigning arbitrary
weights to neighbors, and is suitable for inductive learning
[i.e., the tasks where the model must generalize to new,
unseen graphs (Veličković et al., 2017)].

2.3 Predicting in vitro activity

After using the GNN-Hema to predict the severity of HA in
patients, we wanted to assess the feasibility of using the same
framework to predict the effect of targeted alanine mutations.
For this purpose, we used the coagulation activity and the
antigen levels of 344 alanine mutations on the A2 and the
C2 domains of the FVIII protein (Pellequer et al., 2011; Plantier
et al., 2012). The A2 domain is the most important domain of this
protein, as it has binding sites for FIXa and for FX [the members of
the tenase complex (Lee et al., 2014)]. Moreover, by itself, the
A2 domain is able to enhance the activity of FIXa [albeit with
lower efficiency compared to the full-protein (Fay and Koshibu,
1998; Fay et al., 1999)]. The C2 domain exerts multiple activities,
including interaction with the membrane of platelets and binding to
the von Willebrand Factor (Inaba et al., 2022). Hence, anticipating
the effects of mutations in these domains can enhance the
understanding of vital FVIII functions.

First, we divided our dataset into two-classes, namely, the
mutations that retained a medium or high coagulation activity of
FVIII, and the mutations that considerably disrupted its function
(coagulation activity > 50% and < 50% of WT, respectively;
Figure 3A; Supplementary Table S3). We verified that
substitutions of residues buried at the core of FVIII and
conserved during the course of evolution, often reduce
dramatically the coagulation activity of the recombinant proteins
(Lopes et al., 2021b; Lopes et al., 2022; Figures 3B, C). Next, we used
this dataset as input to the GNN-Hema, together with the FVIIIa-
RIN and the structural and evolutionary measures of all residues,
and observed that the GNN could classify the alanine mutations in
the A2 and the C2 domains with accuracy of 69% and F1 of 0.61
(Figures 3D, E). While these results do reach the threshold necessary
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for clinical diagnosis, in practice they help reduce the number of
candidates designed to generate recombinant FVIII proteins.

Next, we aimed to predict the antigen levels of the 333 alanine
mutant proteins (Plantier et al. (2012); Pellequer et al. (2011);
Figure 4A; Supplementary Table S4). The antigen was measured

by “sandwich” ELISA. This assay was used to evaluate the
effectiveness of expressing and secreting FVIII mutant constructs.
The ELISA assay is also known as an antigen assay because it
measures both functional and nonfunctional FVIII proteins by
measuring the amount of FVIII antigen (protein) that is

FIGURE 3
Predicting the reduction of coagulation activity in alanine mutants. (A)We considered 344 alanine mutations to the A2 and the C2 domains of FVIII.
We divided thesemutations into two groups, namely, those that retained at least 50% of the coagulation activity of theWT, and those below this threshold,
measured by a chromogenic assay (Pellequer et al., 2011; Plantier et al., 2012) (Supplementary Table S3). (B–C) As it happens with clinical cases, the
targeted mutations at the core hydrophobic residues and to those that are highly conserved, impair the co-factor activity of FVIII (Lopes et al.,
2021b). (D–E) The GAT 3 HOP architecture presented the best predictive power, with an accuracy of 0.7 and F1 value of 0.61, indicating that this GNN
model can be used to simulate in silico the effect of targeted alanine mutations to FVIII.

FIGURE 4
Predicting the reduction of coagulation activity in alanine mutants. (A)We considered 333 targeted alanine mutations to the A2 and C2 domains of
FVIII. We divided these mutations into two groups, namely, those that retained at least 50% of the coagulation activity of the WT, and those below this
threshold, measured by an ELISA (antigen) assay (Pellequer et al., 2011; Plantier et al., 2012) (Supplementary Table S4). (B–C) As expected, substitutions of
the residues located at the core of these domains, as well as the most conserved ones, result in poor rescue of recombinant proteins by ELISA,
suggesting that these mutations affected to a higher extent the correct folding and expression of FVIII. (D–E) The classification evaluation emphasizes
GAT 5 PPR and GAT 3 PPR presented the best accuracy and F1 results, respectively.
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immobilized on the ELISA plate. Once more, we observed that
substitutions of the most buried and conserved residues of the
A2 and C2 domains lead to a major reduction of the antigen
rescue levels of the mutants [Lopes et al. (2021b; 2022)] (Figures
4B, C). We found that the GAT-5 PPR architecture successfully
distinguished mutants that retained high antigen levels (> 50% of
WT), against those that displayed low antigen levels (< 50% of WT;
Figures 4D, E). These results indicate that the GNN-Hema reliably
identify mutants with unusual conformation, and as the shape
defines the function in the protein world, these predictions can
be used to discard unpromising candidate molecules.

Together, these results indicate that using GNN-based classifiers
is a viable approach to emulate in silico, the mulecular perturbations
that could only be obtained by in vitro experiments.

3 Discussion

In this study, we established a computational pipeline to anticipate
the effects of mutations in the FVIII protein.We found that representing
its structure as an undirected graph, and using it as input for graph-based
neural networks is viable to predict the severity of hemophilia A in
patients harboring non-synonymous mutations. Moreover, the same
classifiers were retrained to predict the loss-of-function of more than
300 targeted alanine mutations (Pellequer et al., 2011; Plantier et al.,
2012), establishing an helpful resource for the rational design of
recombinant therapeutic FVIII proteins.

The so-called protein residue networks are well-studied
representations that enable researchers to ellucidate the underlying
3D biophysical and biological properties (Yan et al., 2014). For instance,
there is a close relationship between the centrality of nodes in a network,
and the level of disruption to the protein function caused by mutations
[i.e., substitutions of the most central nodes lead to a complete loss-of-
function (Amitai et al., 2004)]. Additionally, protein networks have
helped to ellucidate the organization of amino acids into modules,
maintaining the correct positioning of binding sites (del Sol et al., 2006).
In our case, we leveraged on this knowledge to created residue networks
specifically aimed at studying the effect of mutations related to
hemophilia A (Lopes et al., 2021b), hemophilia B (Lopes et al.,
2022), and to thrombosis (Lopes et al., 2023). While we obtained
good results in those studies, we used only general-purpose ML
algorithms suitable for tabular data.

Here, we introduced the use of GNNs–a more close
representation that learn directly from a graph structure, without
having to first calculate centrality measures and convert them to
tabular data. In general, the execution of GNNs depends on encoder-
decoder functions to represent the graph as node embeddings, which
is processed by using Neural Message Passing (NMP). Each
message-passing iteration performed during the training phase,
new knowledge from node embeddings are updated according to
information aggregated from their neighborhoods (Zeng et al.,
2021). This approach displayed positive results when predicting
new edges and node importance (Hamilton, 2020). However, the
fundamental difference between these applications and the present
study is the size of the datasets used.

While previous studies used graphs of millions of nodes and
edges, our hemophilia datasets had only a few hundred cases–as is
often the case when researching rare diseases. After comparing

several GNN architectures and training regimens, we observed
that it is possible to predict with reasonable certainty the effect
of substitutions of the FVIIIa residues. This compares well with our
previous studies (Lopes et al., 2021b), and surpassed existing
alternatives (Adzhubei et al., 2013; Choi and Chan, 2015)
(Supplementary Figure S1). As others also observed, predicting
the effect of harmful or benign mutations is a difficult problem
in the structural biology field (Broom et al., 2020), but there are high
hopes placed on strategies based on deep-learning (Akdel et al.,
2022).

In particular for the study of hemophilia, we are aware of the
factors that hinder a more favorable prediction of mutation
effects. First, there are known inconsistencies in the diagnosis
of patients due to difficulties in standardizing reagents,
discrepancies between one- and two-stages assays (Potgieter
et al., 2015), and the reported diagnosis and what is observed
in terms of bleeding frequencies (Inaba et al., 2022). Moreover,
albeit the GNN models used here are the state-of-the-art
algorithms (Zeng et al., 2021), they were not designed for
small datasets; this requires its underlying architecture to be
modified, varying the number of layers to properly extract
implicit information from the FVIII proteins. Moreover, we
have fine-tuned the hyperparameters to adjust the final model
to our data, thus reaching the best performance in classifying the
hemophilia severity (Methods). Yet, we are confident that with
sequencing technology becoming widely available, and a vibrant
community continuously improving GNN algorithms, the field is
headed for accurate and personalized diagnostics.

In conclusion, the GNN-Hema is to our knowledge, the first
application of graph-based classifiers to predict the effect of
mutations to the FVIII protein–an application urgently required
for diagnosis and for the generation of superior recombinant
proteins. We implemented GNN-Hema as an open-source
application, anticipating that the research community will extend
and repurpose it to study other diseases.

4 Materials and methods

4.1 Creation of the RIN

We downloaded the FVIII structure generated by AlphaFold 2
(Jumper et al., 2021; Varadi et al., 2022), and removed the residues of
the initial signal peptide, and the a1, a2 and B domain regions
(residues −19 to −1, 336-372, 711-740, 741-1,689, respectively, in the
legacy numbering system), because they had low modeling quality
(pLDDT). Hence, our FVIIIa structure started at the residues Ala-
Thr-Arg.

We used the Rosetta software suite release 280 and the
ref2015 score function (Leaver-Fay et al., 2011) to find the
most appropriate rotamer conformation of all residues, in a
way to minimize the overall free-energy of the structure. We
used the parameters -ignore_unrecognized_res

-relax:constrain_relax_to_start_coords

-relax:coord_constrain_sidechains -relax:

ramp_constraints false -ex1 -ex2 -use_input_

sc and generated 100 structures as output, from which we
selected the one with the lowest energy score.

Frontiers in Bioinformatics frontiersin.org06

Ferreira et al. 10.3389/fbinf.2023.1152039

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1152039


We used this structure as input to RINerator version 0.5.1
(Doncheva et al., 2011), which rely on the Probe and Reduce
programs (Word et al., 1999a; Word et al., 1999b). In the first
step, it adds hydrogen atoms to the structure, which is essential to
identify non-covalent interactions between amino acids, and second,
it identifies the non-covalent interactions using a small probe
(approximately 0.25 Å), rolled around the van der Waals surface
of each amino acid, and a contact is established if the probe is
simultaneously in contact with two non-covalently bonded atoms.

We considered that two residues interacted if there was at least
one edge between them, independent of the edge type. To analyze
the FVIII-RIN, we used R version 3.6.3 (R Core Team, 2022) and the
iGraph package, version 1.2.5 (Csardi and Nepusz, 2006). With the
iGraph package, we used the function simplify to remove redundant
edges and self-interactions. We visualized the networks using
Cytoscape version 3.8.2 (Shannon et al., 2003).

4.2 Structural and evolutionary measures of
FVIII

We used Chimera version 1.14 (Pettersen et al., 2004) to extract
the solvent-excluded area (areaSES) and the solvent-accessible
surface area (areaSAS), and to calculate the relative surface
exposure of all amino acids from the customized FVIIIa
structure. We divided the solvent-excluded area of the residue by
the surface area of the same type of residue in a reference state; in our
case, we used the reference values of the 20 standard amino acids in
Gly-X-Gly tripeptides (Bendell et al., 2014). Moreover, we obtained
the conservation score from the ConsurfDB webserver (Ben Chorin
et al., 2020), using the FVIII protein structure as input for the search
query.

4.3 Genetic data and mutations datasets

For the training and prediction of the severity of HA, we
manually searched the EAHAD and the CHAMP FVIII mutation
databases (McVey et al., 2020) (https://www.cdc.gov/ncbddd/
hemophilia/champs.html; visited in 19 April 2022), and searched
for single-point, non-synonymous mutations. We remove
conflicting instances, such as those reported with multiple
phenotypes at the same time (e.g., “Mild/Moderate”), or with
mismatches between the residue position and the actual amino
acid, as well as those that introduced a stop codon. Moreover, if there
were multiple phenotypes reported for the mutations at the same
position, we kept those that could be disambiguated by majority
voting. Our final dataset had 626 instances (293 mild, 123 moderate,
210 severe). For the residue network used as input to the GNNs to
predict the HA severity, we selected only the edge with the highest
score between two residues, independent of the edge type (e.g.,
main-chain - main chain, or side-chain - side-chain). Next, we
normalized the weights of all selected edges to the interval [0,1], and
used the areaSAS and the conservation of each residue of the
network in conjunction as input to the GNNs.

For the training and prediction of the coagulation activity and
the antigen levels of the FVIII alanine mutants (Pellequer et al.,
2011; Plantier et al., 2012). We divided the dataset into two

classes ( > 50% percent of WT, and < 50% percent of WT). For
the residue network used as input to the GNNs, we selected only
the edge with the highest score between two residues,
independent of the edge type (e.g., main-chain - main chain,
or side-chain - side-chain), and normalized the weights of all
selected edges to the interval [0,1], but reversed it, so that the
most meaningful edges had a higher score. We used the relative
surface exposure and the conservation of each residue of the
network in conjunction as input to the GNNs.

4.4 The GNN architecture

As previously mentioned, the GNN models used to learn from
the FVIII protein structure were trained using shadow-GNN
(Decoupled GNN on a shallow subgraph) (Zeng et al., 2021) by
using the steps summarized in Figure 1B.

The next step is responsible for extracting sub-graphs from the
protein structure. The SHADOW implementation contains two
extractors: i) L-HOP, which retrieves an entire or a random subset
of the target node’s L-HOP neighbors; and ii) PPR, which uses the
Personalized PageRank (PPR) algorithm to compute the scores of other
nodes relative to the target node, then selects the top K nodes with the
highest scores. In our experiments, we define the hyperparameter space
for L-HOP extractor as Depth (L = 2), Budget (b = 20); and for PPR
extractor as: Budget (b = 150), with thresholding (epsilon = 1e − 5).

In the subsequent phase, the outputs obtained from the
extractors were utilized to optimize the parameters of our GNN.
Specifically, in this study, we have trained a Graph Attention
Network (GAT) architecture with four attention heads. In
essence, attention heads compute the importance of different
interactions (e.g., node-node), keeping the focus on the most
relevant information in the graph. As output in our case,
attention heads provide scores to weigh the contribution of
nodes to the final representation of the graph.

Following the computation of the attention scores, GAT utilizes a
Multilayer Perceptron (MLP) network to classify the nodes in the graph.
In the present study, the MLP network is implemented with a hidden
dimension of 256, a dropout rate of 0.35, random subset aggregation
(drop edge) of 0.1, a learning rate of 1e − 3 and a batch size of 128. These
specific hyperparameter settings were chosen based on the results
obtained from our experimental evaluations, and were selected to
optimize the performance of the GNN model. Next, we used the Relu
activation function (f(u) � max u, 0{ }) to process a givenMLPoutput u
and provide the estimated target. Finally, it is worth mentioning that all
hyperparameters were set in an experimental setup using the vanilla
version of Shadow-GNN.

5 Statistical analysis

The validation metrics used to assess the GNN model were the
accuracy and the F1, as usually considered in the literature (Veličković
et al., 2017; Zeng et al., 2021). Both metrics were calculated from the
contingency tables produced by the validation process, considering the
number of True Positive (TP), True Negative (TN), False Postive (FP),
and False Negative (FN). The accuracy was calculated using Eq. 1, in
which n represents the total number of nodes used to validate the final
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models. The F1 measure was calculated using Eq. 2, such that Eqs 3, 4
compute the recall and precision measures, respectively.

acc � TP + TN

n
(1)

F1 � 2 · Recall · Precision( )
Recall + Precision

(2)

Recall � TP

TP + FN
(3)

Precision � TP

TP + FP
(4)

F1 complements the accuracy and majority ratio by combining
information from precision and recall measures. Precision estimates
the fraction of correctly classified nodes among the ones classified as
positive, while recall is the fraction of total positive nodes indeed
classified as positive (Fernández et al., 2018).

The statistical tests were performed using the R statistical
package version 4.2.2 (R Core Team, 2022).
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