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The scale and capability of single-cell and single-nucleus RNA-sequencing
technologies are rapidly growing, enabling key discoveries and large-scale cell
mapping operations. However, studies directly comparing technical differences
between single-cell and single-nucleus RNA sequencing are still lacking. Here, we
compared three paired single-cell and single-nucleus transcriptomes from three
different organs (Heart, Lung and Kidney). Differently from previous studies that
focused on cell classification, we explored disparities in the transcriptome output
of whole cells relative to the nucleus. We found that the major cell clusters could
be recovered by either technique from matched samples, but at different
proportions. In 2/3 datasets (kidney and lung) we detected clusters exclusively
present with single-nucleus RNA sequencing. In all three organ groups, we found
that genomic and gene structural characteristics such as gene length and exon
content significantly differed between the two techniques. Genes recovered with
the single-nucleus RNA sequencing technique had longer sequence lengths and
larger exon counts, whereas single-cell RNA sequencing captured short genes at
higher rates. Furthermore, we found that when compared to the whole host
genome (mouse for kidney and lung datasets and human for the heart dataset),
single transcriptomes obtained with either technique skewed from the expected
proportions in several points: a) coding sequence length, b) transcript length and
c) genomic span; and d) distribution of genes based on exons counts. Interestingly,
the top-100 DEG between the two techniques returned distinctive GO terms.
Hence, the type of single transcriptome technique used affected the outcome of
downstream analysis. In summary, our data revealed both techniques present
disparities in RNA capture. Moreover, the biased RNA capture affected the
calculations of basic cellular parameters, raising pivotal points about the
limitations and advantages of either single transcriptome techniques.
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Introduction

Single transcriptome sequencing has emerged as a powerful
technique to understand the cellular complexity of multicellular
organisms during development and disease (Tang et al., 2009; Shalek
et al., 2014; Aibar et al., 2017; England et al., 2020; Jovic et al., 2022)
Currently, there are two major techniques to profile individual
transcriptome from cells: single-cell (whole cell) RNA sequencing
and single-nucleus RNA sequencing. Single-cell RNA sequencing is
based on live single-cell isolation, and whole-cell mRNA sequencing
(i.e.,: cytosolic and nuclear RNA pools are assessed and sequenced).
Whereas, single-nucleus RNA sequencing relies on nuclear isolation,
and therefore only the nuclear mRNA pool is harvested (Grindberg
et al., 2013).

All single-cell RNA sequencing protocols have inherent
methodological requirements such as live cells isolation and
immediate sample processing (cells cannot be fixed or frozen)
and long processing protocols (30 min to 1 h) in which, physical
(sample agitation, temperature) and chemical (proteases, EDTA)
methods are combined to dissociate cells (Jovic et al., 2022; Adam
et al., 2017; Potter and Steven Potter, 2019; Jiang, 2019; Brunskill
et al., 2014; van den Brink et al., 2017). Single-nucleus RNA
sequencing is a derivative technique that relies on nuclear
isolation, and it has emerged as an alternative approach for
tissues that have been fixed, frozen, or are hard to dissociate
(e.g.,: adipocytes, neurons, muscle cells) (Grindberg et al., 2013).
It allows samples to be collected, preserved, and sequenced at later
times (Dueck et al., 2016; Svensson et al., 2017; Ziegenhain et al.,
2017; Jovic et al., 2022) presenting an advantage when serial time
points are required, or co-staining and tissue genotyping are needed
before sequencing is performed.

Several studies have focused on comparisons between single-cell
RNA sequencing methods (Dueck et al., 2016; Svensson et al., 2017;
Ziegenhain et al., 2017; Zhang et al., 2019). Unfortunately, some of
them were inadequately conceived, either by not being performed
with single cells or for instance, by carrying out comparisons
between different biological samples. Most studies limited their
analysis to cell classification or to basic technical inferences, but
do not evaluate the technical limitations or ability to recover
meaningful biological information, such as cell heterogeneity,
tissue structure, or biased RNA capture. Often, these studies
focused on cultured cell lines, with a rather uniform expression
profile, however, in practice, most single-transcriptome studies
pursue insights from complex tissues, organs, or entire organisms
with heterogeneous cell populations during development or disease.

More recently, a few studies have mapped disparities between
single-cell vs. single-nucleus RNA sequencing. Yet, again, these
studies were limited to the analysis of cell type classification and
transcriptome distortions caused by the specific requirement of cell
processing protocols (Adam et al., 2017; Lake et al., 2017; Wu et al.,
2019; Koenitzer et al., 2020).

Therefore, despite the widespread usage of both technologies,
studies aiming to understand the disparities in transcriptome
profiles obtained with single-cell and single-nucleus RNA
sequencing are still limited. Hence, to better understand how the
different single transcriptome techniques affect cellular RNA
profiling, we directly compared paired single-cell and single-
nucleus RNA sequencing datasets from three different complex

organs: heart (Selewa et al., 2020), lung (Koenitzer et al., 2020)
and kidney (Wu et al., 2019). We found that the single-nucleus RNA
sequencing technique is biased towards genes with longer sequence
lengths and roughly >10 exons whereas the single-cell RNA
sequencing technique captures shorter genes more efficiently.
Several short genes with fewer exons (< 10) showed lower or
undetectable levels of expression with single-nucleus RNA
sequencing. Interestingly, when compared to the whole host
genome, transcriptomes obtained with both techniques were
significantly skewed from the host genome in coding sequence
length, transcript length, genomic span, and average exon
number. This biased capture impacted enrichment and gene
ontology analysis between the two techniques. Our study raises
pivotal points about the advantages and limitations of these two
techniques.

Materials and methods

All datasets utilized for this study are available at Gene
Expression Omnibus (GEO)-NBCI under the following accession
numbers: heart (GSE129096), kidney (GSE119531) and lung
(GSE145998) datasets.

Inclusion criteria

As inclusion criteria, we search the Gene Expression Omnibus
(GEO) for single transcriptome datasets from different tissues with
the following characteristic: a) performed together within the same
facility and equipment; b) sequenced with similar depth; c) 3′end
sequencing; d) genome alignment performed with similar
parameters and e) processed with the same post-sequencing
algorithms. The goal was to minimize batch effect generated
sample processing and sequencing. Further removal of batch
effect was performed during data processing as explained below.

Data processing and statistical analysis

All data processing and statistical analysis were performed in R
v4.1.1. The downloaded files from GEO were analyzed with Seurat
v4.1.1 (20). As quality control, after building the Seurat object we
subset the count matrix for cells that include features detected in at
least 5 cells and with a cell expressing at least 300 features.

After quality control, we followed the standard Seurat vignette
CCA-based integration protocol. Briefly, to integrate the different
paired datasets and to minimize batch effects Seurat’s CCA
algorithm reduces data dimensionality and captures the most
correlated data features to align the data batches in two steps.
First, CCA projects the data into a shared subspace to find
correlations between datasets. Second, in the CCA shared
subspace the mutual nearest neighbors (MNNs) are calculated.
These calculated MNNs and called “anchors” and used to align
the datasets. The “anchors” represent a similar biological state,
weighted based on the overlap in their nearest neighbors. The
kidney datasets were integrated in two steps, first the three
single-nucleus RNA datasets were integrated. Then, the batch

Frontiers in Bioinformatics frontiersin.org02

Pavan et al. 10.3389/fbinf.2023.1144266

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1144266


corrected, and integrated single-nucleus object was used to perform
a second integration with the kidney single-cell RNA sequencing
dataset. This way cells that failed to align (i.e.,: batch effects were not
possible to be removed) were discarded. Also, this strategy
minimizes distortions between the single nucleus datasets that
could interfere were downstream analysis.

Corrected and aligned cells were clustered based upon
transcriptome similarity. The Uniform Manifold Approximation
and Projection (UMAP) was calculated, and the resulting cell’s
projections plotted into two-dimensional space when needed. The
following functions and arguments were set during clustering and
dimensionality reduction of the data: 1) RunUMAP(Object,
reduction = “pca”, dims = 1:25); 2) FindNeighbors (Object,
reduction = “pca”, dims = 1:25); 3) FindClusters (Object,
resolution = 0.2 (lung) or 0.4 (kidney and heart)). Then, to find
differentially expressed genes we run the function FindAllMarkers
(Object, only. pos = TRUE, min. pct = 0.25, test. use = ‘negbinom’).
We set the min. pct (minimum percent) parameters of this function
to detect only genes that are expressed in at least 25% of all cells
within their cluster and limit testing to genes which show, on
average, at least 0.25-fold difference (log-scale) between the two
groups of cells. We set “negbinom” parameter as the type of test used
for differential gene expression. It identifies differentially expressed
genes between two groups of cells using a negative binomial
generalized linear model. Similar models have been used to better
fit the multidimensional and non-parametric distribution of single-
cell RNA sequencing analysis (Love et al., 2014; Vallejos et al., 2017;
Hafemeister and Satija, 2019).

Generation of the RNA read-depth-
corrected and sample-size balanced objects

We selected 1,000 cells from each technique (single-cell and
single-nucleus RNA sequencing). The subset cells were taken from
the aera where a linear relationship between read counts/cell and
genes/cell was observed. Each final sampled object contained
2000 cells (1,000 cell/technique) with the same read depth per
technique (for heart datasets, RNA reads/cell were >1,100 and <
2,000; for kidney datasets, RNA reads/cell were >1,300 and < 2,000;
for lung datasets, RNA reads/cell were >1800 and < 2,500).

Next, we used the log normalized counts of the depth and batch-
corrected sampled datasets to run a Wilcoxon Rank Sum Test to
identify DEGs between the two techniques, in all three organs.
Single-nucleus RNA sequencing fails to capture mitochondrial and
ribosomal protein-coding genes. Thus, we removed the
mitochondrial genes (prefix = “mt-”) and the ribosomal protein-
coding genes (prefix—“Rpl/s”) from the single-cell RNA sequencing
list of DEGs. They would otherwise dominate the DEGs between the
two techniques. Next, we selected the top-100 DEG genes/technique
and used them for downstream analysis.

Other bioinformatic tools used for plotting
and sample processing

We used the library “rentrez” to compute the sequence length
and number of exons for each gene. For the statistical analysis in all

figures, we used the library “ggpubr” (https://github.com/
kassambara/ggpubr) to plot and to run the Wilcoxon rank sum
test between the two techniques (p < 0.05 was assumed significant).
We generated normalized enrichment scores (NES) for specific
pathways as described before (Borcherding et al., 2021; Martinez
et al., 2022). The generated NES is detailed in the results section.
Other plots and analysis were made “tidtverse” core packages
(https://tidyverse.tidyverse.org).

The density curves (Figure 4) were generated from the top
200 DEG genes across techniques (top-100 from each technique).
We used the FindAllMarkers function (Seurat package) to generate
the DEG list between single-cell and single-nucleus RNA sequencing.
Only positive, meaning upregulated markers were selected.

The input was the Seurat object generated subsetting the original
large and unbalanced object containing the whole dataset, described
in the methods (briefly, 1,000 cells from each technique were
randomly selected from the window where a linear relationship
was marked, in Figure 2).

Then, the top 100 genes per technique were combined to form a
data frame. The exon content of each gene was calculated, in R
programing language, with the library (rentrez) and following
function find_exons <—function (gene){

Res <—entrez_search (db = “gene”, term = glue (“{gene}
[gene] AND.

(Homo sapiens [orgn]")) #(or mus musculus for the kidney and
lung datasets).

esums <—entrez_summary (db = “gene”, id = res$ids [1])
n_exons <—extract_from_esummary (esums,

“genomicinfo")$exoncount.
# extract number of exons
df <—tibble (gene = gene, id_ncbi = res$ids [1], exons = ifelse

(is.null (n_exons), NA, as. numeric (n_exons)),description = ifelse
(is.null (extract_from_esummary (esums, “description")), NA,
extract_from_esummary (esums, “description"))) return (df)}

Next, we used the following code to generate the density plots in
R with the library ggpubr.

ggdensity (df, x = “exons”, add = “mean”, rug = TRUE, color =
“cluster”, fill = “cluster”, palette = c (“#00AFBB”, "#E7B800″)),
where df is the data frame containing the top100 positive DEG
from each technique.

The volcano plots were generated with the R package
EnhancedVolcano (https://github.com/kevinblighe/
EnhancedVolcano). As input, the DEG list obtained from the
differentially expressed genes across clusters with the Seurat
library function FindAllMarkers with the following arguments
“FindAllMarkers (obj, only. pos = F, min. pct = 0.1, logfc.
threshold = 0.4). Each DEG list was generated per organ and per
single-transcriptome technique individually.

Results

Integration and profiling of single
transcriptome techniques from paired organ
datasets

We compared three published paired single-cell and single-
nucleus transcriptome profiles, from three different organs: the
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heart (Selewa et al., 2020), lung (Koenitzer et al., 2020), and kidney
(Wu et al., 2019), to evaluate the characteristics of the transcriptome
output between single-cell and single-nucleus RNA sequencing. To
account for batch variations, we selected datasets that were collected
and processed together, according to specific inclusion criteria,
specified in the methods. We used the canonical correlation

analysis (CCA) (Seurat package) (Stuart et al., 2019) to integrate
each organ-specific paired dataset (single-cell and single-nucleus
RNA sequencing) and to correct residual batch effects (detailed in
methods) (Figure 1).

Overall, all three datasets integrated very well (Figures 1A, C, E).
Two out of the three datasets showed clusters specific to single-

FIGURE 1
Cell distribution on low dimensional space after integration of single-cell and single-nucleus RNA sequencing datasets. Integrated organ derived
datasets for heart, kidney, and lung are depicted. The total number of cells per dataset is shown on each panel ((A, C, E) respectively). Distribution of
cellular proportions between single transcriptome technique and clusters for heart, kidney, and lung are shown ((B, D, F) respectively). Single-Cell RNA
sequencing dataset (single_cell); single-nucleus RNA sequencing dataset (single_nuc).
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nucleus RNA datasets, the kidney and lung groups (Figures 1C, E,
clusters marked with blue arrows). The heart datasets presented a
relatively even distribution of cells/technique/cluster (Figure 1A).

However, the proportions of cells in each cluster varied according to
the technique of origin in the kidney and lung datasets (Figures 1B,
D). The total number of cells/organ/dataset is depicted in Figure 1.

FIGURE 2
Measurements of RNA capture, gene mapping and subsampling of cells from single-cell and single-nucleus RNA sequencing. The number of
features (genes) was plotted against the RNA reads mapped (counts) per cell, for both single-cell or single nucleus RNA sequencing, in all three organs
(A–C) respectively). Total number of RNA reads mapped (counts) per cell compared between techniques (D–F) top panels). Comparisons of the total
number of identified genes per cell between techniques (D–F) bottom panels). Comparisons of the total number of counts and features obtained
from the sub-sampled datasets are depicted (G–I). Sample comparison performed with Wilcoxon Rank Sum test, **p < 0.001 and ***p < 0.0001, ns = not
statistically significant.
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Cluster analysis indicated that the two techniques performed
well to separate distinct cell types. But the scope of our investigation
was not to measure the ability of each single transcriptome
technique to separate different cell types since it has been already

performed in the original papers (Wu et al., 2019; Koenitzer et al.,
2020; Selewa et al., 2020), rather we aimed to systematically compare
the output of the two techniques and evaluate differences regarding
their transcriptome profiling capabilities. First, we inquired whether

FIGURE 3
Different gene capture between techniques reveals a bias toward gene length. Dotplots depicting the expression of long vs. short genes in single-
cell RNA sequencing (Single-Cell) or single-nucleus RNA sequencing (Single_Nuc). Vertical numbers on the right side of each panel represent exon
counts for genes in heart, kidney, and lung groups ((A–E) respectively). Expression scores for long and short genes plotted on the UMAP projections of
each cell for all paired datasets from heart, kidney and lung (B–F). The color key indicating normalized expression scores, and it was set to have the
same intensity between the two single transcriptome technique (yellow = low, blue = high).
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the calculation of gene markers of different cell types would be
dependent upon the single transcriptome technique used. We
hypothesized that the collection of genes that determine a cell’s
identity would not change across techniques. To test it, we split each
integrated object (heart, kidney, and lung objects) based on the
sequencing technique used (single-cell or single-nucleus RNA
sequencing). Then, we used a negative binomial generalized
linear model to identify differentially expressed genes (DEG) in
all clusters (see methods for detailed description). We selected the
top-100 DEG/cluster/technique and superimposed these resulting
gene lists with Venn diagrams (Supplementary Figure S1 kidneys,
S1B heart, and S1C lung datasets). Only 21% of the resulting gene
markers list were shared between single-cell and single-nucleus RNA
sequencing in the kidney datasets (Supplementary Figure S1). The
other 2 datasets (heart and lung) had higher shared marker
percentages (36% and 42%) respectively (Supplementary Figure
S1), but a perfect match was not achieved. The complete lists
resulting of the DEG test for each organ and single
transcriptome analysis are in the Supplementary Tables S1–S6.
The use of different DEG tests such as the Wilcoxon Rank Sum
test (Zhu et al., 2019), MAST (Finak et al., 2015), and DESeq2 (Love
et al., 2014) did not abolish the differences, as expected (data not
shown). Supporting the idea that the differences in DEG lists from
distinct techniques did not emerge from the bioinformatic analysis
itself.

Differences in transcript abundances,
sensitivity, and gene expression between
single-transcriptome techniques

To quantitatively assess the differences in single transcriptome
profiling obtained with either technique, we compared: a) the
number of reads/cell; b) genes/cells, and: c) the relationship of
read depth/cell and mapped genes, across the two techniques
(single-cell and single-nucleus RNA sequencing) in all three
organs (heart, kidney, and lung) (Figures 2A–F).

At less than �5,000 RNA reads per cell, we observed a linear
correlation between the number of genes/cell and the number of
RNA molecules per cell (Figures 2A–C). For the heart and the lung
datasets, at more than 5000 RNA read counts, the linear relationship
between reads/cell and genes/cells was weakened, and the distances
between the fit curves derived from the two techniques were wider
(Figures 2A–C). This linear relationship was present with the kidney
dataset as well. However, the total number of RNA reads per cell was
less than 5,000 in all cells (Figure 2B), and therefore, there was no
data available for higher sequencing depths.

At higher sequencing depth (roughly >5,000 RNA reads/cell),
the number of detected genes/cell plateau with single-cell but not
single-nucleus RNA sequencing in the lung datasets (Figure 2C).
This phenomenon was, however, observed with a small number of
cells (~100 out of 11,912 cells) and it did not affect the average
number of gene detected/cells/technique (Figure 2F, bottom panel).
The highest number of genes detected per cell was 2,998 and
2,499 with lung single-nucleus and lung single-cell RNA
sequencing respectively.

In all three organs analyzed, the total RNA reads/cell was
statistically different across techniques, determined with

Wilcoxon Rank Sum Test, p < 0.0001 (Figures 2D–F, top panels).
The lung group presented a higher average of reads/cells compared
to the other two groups, in both single transcriptome techniques
(Figures 2D–F, top panels). The average number of genes/cell was
different across techniques with the heart and the kidney datasets
but not with the lung dataset, p < 0.0001 (Figures 2D–F, bottom
panels). Given the diversity of cell types in all three organs,
differences in RNA reads, and mapped genes across cells, was
not a surprise. However, differences in read depth and mapped
genes across techniques in paired datasets demanded a deeper
investigation.

Subsampling, sequencing depth correction,
sample size balancing, and gene detection
between single transcriptome techniques

The RNA reads depth was statistically different in all paired
datasets, from the three organs (Figures 2D–F, top panels, Wilcoxon
test, p < 0.001). This was expected due to the cellular diversity
present in complex tissues. Nonetheless, it raised the possibility that
the observed differences in cluster markers across techniques
(Supplementary Figure S1) could have resulted from differences
in sequencing depth and imbalanced sample size in the studied
datasets. Therefore, to control the read depth and sample size, we
sampled 1,000 cells per technique per dataset, at a set RNA
sequencing depth (detailed in methods). Only cells within the
linear relationship between the number of RNA reads/cell
(nCounts RNA) and genes/cell (nFeatures RNA) were
subsampled (Figures 2A–C, red dashed square and inset in the
same figures). The subsampled cells retained the expected linear
relationship, as demonstrated in the insets of Figures 2A–C.
Interestingly, after RNA read depth and cell number corrections,
the average number of features detected per cell was still statistically
different across techniques. The heart and the kidney datasets
showed a higher average number of features (genes) with single
nucleus RNA sequencing, but the opposite was observed with the
lung datasets (Figures 2G–I, Wilcoxon test, p < 0.0001). The number
of clusters and their cellular proportional representation remained
unchanged after subsampling cells with the same sequence depth, as
expected (Supplementary Figure S2).

We performed the Wilcoxon Rank Sum test on these sequence-
depth-corrected subsampled objects to list statistically significant
DEG between the two techniques (single-cell versus single-nucleus
RNA sequencing) on each organ group. The test was limited to genes
with a 0.25-fold difference (log-scale) or greater between the two
techniques. The results of the DEG test can be visualized with the
volcano plots to show global differences, for the heart, the kidney,
and the lungs datasets, respectively (Supplementary Figure S3). The
top-100 positive markers list of the DEG test for each organ-specific
analysis can be found in Supplementary Tables S7–S9 and the
complete list from which the volcano plot was derived can be
found in Supplementary Tables S10–S12.

Interestingly, we noticed that the positive DEG grouped by
technique had different genomic and morphological
characteristics. In general, long genes, with more than ~10 exons
had higher representation (meaning higher expression and a higher
percentage of cells expressing a gene) with single-nucleus RNA
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sequencing. Whereas short genes (less than roughly 10 exons) have
higher representation with single-cell RNA sequencing in all three
organ groups (Figures 3A, C, E).

Often, to visualize cluster-specific markers, gene expression
scores are combined with non-linear dimensionality reduction
techniques, such as Uniform Manifold Approximation and
Projections (UMAP) (Haque et al., 2017). This strategy allows for
quick visualization of expression levels of one or several genes and

identification of cell types. To demonstrate the disparities in gene
expression by the two single transcriptome techniques, we plotted
the normalized gene expression of DE genes with a low number of
exons and DE genes with a high number of exons for each organ
group and technique. The color key for expression scores was fixed
across techniques to make comparisons easier. Lengthier genes were
better represented with single-nucleus RNA sequencing, whereas
short genes were better captured with single-cell RNA sequencing

FIGURE 4
Comparisons of exon counts and sequencing length between single transcriptome techniques. The top-100 DEG between techniques were
compared based on their sequencing length (A–G); Exon counts (B–H) for the heart, kidney and lung. Density curves for genes vs. number of exon were
generated to each single transcriptome technique and overlapped. Themean number of exons is depicted as a dashed line, for the heart, kidney and lung
groups (C–I). The density plots were cropped for better visualization of mean distances. Inset in figures C and F represent whole distribution. The
number of genes in (I) with more the 70 exons was negligible.
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(Figures 3B, D, F). Overall, the probability of an mRNA molecule
being captured by either technique was correlated to the size of the
gene studied.

Because of the nature of the quantification measurement and
embedded implicit normalization process, we questioned whether
the observed results in Figure 3 and the Supplementary Tables S1–S6
could be due to a gene expression normalization artifact. However,
the type of normalization technique employed did not change the
gene length bias observed (Supplementary Figure S4). Indicating,
that this observed “length bias effect” was a true finding and not an
artifact introduced by the type of mathematical approach used to
normalize the single transcriptome raw counts.

Notably, the biased segregation based on gene length was not a
cell-type-specific phenomenon. Indeed, it was observed in different

clusters, in all three organ datasets (Supplementary Figures S5–S7).
Significant differences between cell vs. nucleus were observed in 6/
7 clusters for the heart datasets, regarding exon content in the DEG
(Supplementary Figure S5). The lung data sets showed differences in
4/16 clusters and showed two clusters exclusively detected with
single-nucleus RNA sequencing (Supplementary Figure S6).
Notably, we noticed that any gene can be captured by both
techniques, however, the biased gene length phenomenon is
based on the number of copies of any given transcript, which in
turn affects the gene expression calculations. The kidney datasets
show differences in 6/10 clusters, with additional three clusters,
which were exclusively found in the single-nucleus RNA sequencing
cohort (Supplementary Figure S6). Ribosomal and mitochondrial
genes were removed from DEG since they are not captured with

FIGURE 5
Exons counts comparisons betweenDEG fromeach single transcriptome techniquewith expected ratios for thewhole host genome. TheDEG from
each techniquewas comparewith the host genome to evaluate the distribution of genes containing few versus genes containing several exons in all three
organs studied (heart (A, B); kidney (C, D); lung (E, F).
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single-nucleus RNA sequencing, and thus the observed bias could
not have emerged from these RNA populations.

Disparities in gene capture between single
transcriptome techniques are dependent on
gene length

To further understand the discrepancies between the two
techniques, we examined the genomic and morphological
characteristics of the DEG lists by comparing the average sequence
length, and the average exon counts of the top-100 positive DE genes
per technique in each group (Heart, kidney, lung). All mitochondrial
genes (mt-gene) and ribosomal protein-coding genes (RPL/S) were
removed from the top-100 single-cell RNA sequencing genes because,
single-nucleus RNA sequencing did not reliably detect them, and thus,
they would influence downstream analysis. We found that both,
sequence length and exon counts were statistically different
between single transcriptome techniques in all three organ groups
(average single-cell = ~8 exons per gene; average single-nucleus =
20–25 exons per gene) (Figures 4A–I, p < 0.001). Because the average
number of exons was statistically different between the two
techniques, we considered that the whole distribution of genes,
based on their exon counts, could be skewed between techniques.
Indeed, the top-100 DEG obtained with single-cell RNA sequencing
were left-skewed whereas the curve obtained with the top-100 DEG
from single-nucleus RNA sequencing was flatter and the mean exon
count was significantly higher (Figures 4C, F, I, dashed lines represent
the mean exon count per technique). Again, supporting the idea of a
biased gene capture between techniques.

Single transcriptome gene profile is biased
by technique and skewed from the expected
host genome distribution

Given the inherent differences in gene characteristics between
techniques we decided to compare the top-100 DE genes per
technique with the entire mouse genome (or human genome in
the case of the heart datasets). The goal was to see how these top-
100 DE genes compared to the expected global characteristics of the
host genome. In all three groups, we found that the degree of skewness
was statistically significant when the top-100 DEG from either
technique was compared to the host genome, in three parameters
studied: 1) coding sequence length, 2) transcript length and 3) genome
span (Supplementary Figure S8, p-value reported in the figure). Once
again, the genes captured by single-cell RNA sequencing were left
skewed in all three parameters analyzed, whereas the opposite was
observed with single-nucleus RNA sequencing. This biased profile
prompt us to investigate whether the exons count per gene was also
shifted and biased to the single transcriptome technique used when
compared against the whole host genome. We observed that the top-
100 DEGs obtained from single-cell RNA sequencing shifted from the
expected distribution and favored genes with lower exon counts.
However, when the top-100 DEGs, obtained from single-nucleus
RNA sequencing, were used, we observed that the presence of
genes with a greater number of exons was higher than expected, in
all three groups (Figures 5A–C).

Biased single transcriptome profile impacted
gene ontology and enrichment analysis

Beyond gene characteristics, we investigate whether the
differences in the DEG could impact functional pathways and
enrichment analysis. To accomplish that, we used the top-100
DEG per technique, as input, for Kegg pathway enrichment
analysis with ShyniGO API (Ge et al., 2019). Using the DEG list
from single-cell RNA sequencing, the majority of the top-20 GO
terms were identified as metabolic terms with the Heart (11/20) and
Kidney (7/20) datasets. Whereas the top-20 GO terms derived from
the heart single-nucleus DEG were primarily related to chromatin
structure (2/20), neuron-related terms (4/20), and cytoskeleton
processes (8/20) (Figure 6). The top-20 GO terms derived from
kidney single-nucleus RNA sequencing DEG list were enriched in
cell-signaling pathways (PI3 kinase pathway, calcium pathway,
MAPK signaling pathway, Apelin), some hormone synthesis and
secretion terms (Growth hormone, glucagon) among others. The
top-20 GO terms from the lung single-cell RNA sequencing dataset
were mostly related to apoptosis and cell death regulation (8/20) and
immune or biotic response (8/20) (Figure 6). Whereas the top-20
GO terms from the lung single-nucleus RNA sequencing dataset
encompassed development and morphogenesis-related terms (17/
20), actin cytoskeleton filaments (1/20), surfactant (1/20) and
chemical homeostasis (1/20) (Figure 6). The complete list with all
GO terms can be visualized in Supplementary Tables S13–S18.

To further investigate the influence of either single
transcriptome technique on the output of gene enrichment
analysis we used a computational Single Sample Gene Set
Enrichment Analysis (ssGSEA) method (Subramanian et al.,
2005; Barbie et al., 2009; Yi et al., 2020). The score resulting
from ssGSEA reproduces the degree to which the input gene
signature is coordinately up- or downregulated within a sample.
We used the MSigDB collections Hallmark pathways (http://www.
gsea-msigdb.org/gsea/msigdb/collections.jsp) to analyze possible
differences in metabolic pathway scores across techniques. We
hypothesized that genes involved with energy production in cells
should not show any expression bias given the high transcription
rates and the importance of these genes for cells to survive. We
calculated the normalized enrichment score (NES) for genes in the
following HALLMARK pathways: Glycolysis (Figure 7A–C), Fatty
acid synthesis (Figure 7D–F), and Oxidative phosphorylation
(Figure 7G–I). We found that, in all analyzed pathways, the NES
were significantly higher with single-cell RNA sequencing than that
with single-nucleus RNA sequencing datasets using the Wilcoxon
test, p < 0.0001.

Altogether, the biased gene capture influenced gene detection,
and gene expression scores and impacted downstream analysis, such
as gene ontology and pathway enrichment analysis.

Discussion

Given the widespread usage of single transcriptome techniques,
it is important to fully understand differences in the transcriptome
output from single-cell RNA sequencing and single-nucleus RNA
sequencing, yet not fully explored. Previous studies have focused on
the capacity of each single transcriptome technique to distinguish
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between cell types (Wu et al., 2019; Koenitzer et al., 2020; Selewa
et al., 2020), others have compared the output of different
sequencing methods and sequencing platforms (Ding et al.,
2020). For this study, we applied a strict inclusion criterion and
selected three paired datasets from three different organs (heart,
kidney, lung) to analyze the output of paired single-cell vs. single-
nucleus RNA sequencing. We conducted a comprehensive and
systematic analysis focusing on the genomic and morphologic
characteristics of captured genes.

We used a negative binomial generalized linear model to run the
DEG test on each single transcriptome dataset derived from either
technique. The negative binomial generalized linear model has been
proposed to be a better fit for the multidimensional and non-
parametric distribution of single-cell/nucleus RNA sequencing
with highly sparse matrix (Love et al., 2014; Vallejos et al., 2017;
Hafemeister and Satija, 2019). We hypothesized that the top gene

markers of any given cell type would not be dependent upon the
single transcriptome technique used, since the gene markers
themselves reflect the cells’ identity and function. However, when
compared, we found that the degree of overlapping between DEG
lists from the two techniques was less than optimal and varied across
organ-specific datasets (Supplementary Figure S1 and
Supplementary Tables S1–S3).

The vast cellular diversity found in complex organs, such as: the
heart, kidney and lungs (Ziegenhain et al., 2017; Zhang et al., 2019;
Koenitzer et al., 2020) could, in part, account for, tendentious
differences in transcription levels. In addition, there are several
factors that may cause the measured mRNA molecules to be a
skewed from the expected profile. Specifically, an mRNA molecule
may fail to be captured due to diffusion during sample collection,
processing (cell dissociation or lysis) or failure to be amplified or
sequenced. Differences in RNA stability or sequence content may

FIGURE 6
Top-20 GO terms obtained with the DEG list from each single transcriptome technique in all three organs. The top-100 DEG from each technique
and organwere fed into the ShinyGOAPI. The top-20GO terms are depicted, the color key shows fold enrichment (heart (A–B); kidney (C, D); lung (E, F)).
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also interfere with mRNA preservation and capture during any
single transcriptome experiment. Surely, location in the cell (for
example, the nucleus versus the cytoplasm) may also contribute to
the observed differences (Haque et al., 2017; Jiang, 2019; Potter and
Steven Potter, 2019; Ding et al., 2020; Gibson, 2022). Or simply the

randomicity of the sampling of RNA molecules captured during the
library preparation, since only 10%–30% of RNA molecules present
in each cell is estimated to be captured with single transcriptome
RNA sequencing (Islam et al., 2011; Haque et al., 2017; Sarkar and
Stephens, 2021). Recently, a model that considers both biological

FIGURE 7
Metabolic pathways have higher normalized expression scores with single-cell RNA sequencing. All datasets were used to calculate normalized
expression scores for Hallmark pathways of glycolysis (A–C), fatty acid synthesis (D–F) and oxidative phosphorylation (G–I). The obtained scores
between different single transcriptome techniques were compared with Wilcoxon Rank Sum Test across techniques ***p-value <0.0001.
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and technical sources of variation has been proposed with the goal of
improving gene expression calculations. In this study, the authors
demonstrate that unprocessed and mature RNA molecules display
surprisingly dissimilar trends in their RNA expression calculations
and propose a mechanism of technical variability to
comprehensively explain expression differences through specific
physical mechanisms (Gorin and Pachter, 2023).

We, besides our inclusion criteria, subsampled all datasets to the
same number of cells (1,000/per technique/organ) and same
sequencing depth (Figure 2). Because variations in cell
dissociation and isolation protocols, sequencing depth, sample
size and differences in computational methods applied have been
shown to interfere with the single transcriptome profiling of cells
(Adam et al., 2017; Lake et al., 2017; Jiang, 2019; Potter and Steven
Potter, 2019; Stuart et al., 2019; Tran et al., 2020).

Our results showed that: 1) genes better detected with single-
nucleus RNA sequencing had longer sequences and higher number
of exons and, 2) genes highly expressed with single-cell RNA
sequencing had, in general, shorter sequences and fewer exons
(Figure 3). On average, there are 8.8 exons and 7.8 introns per
gene in the human genome, and this is similar to the average number
of exons in the mouse genome (8.4 exons per gene) (Wu et al., 2005;
Rédei, 2008). Interestingly, the average number of exons obtained
with single-cell RNA sequencing was roughly 8.8, versus roughly
23 with single-nucleus RNA sequencing, for all three organs, when
the DEG between the two techniques was evaluated (Figure 4). This
observation suggested that single-cell RNA sequencing was better to
recapitulate the expected ratios contained in the host genome.

It has been previously reported that the inclusion of intronic
reads increased the number of mapped genes when either single
transcriptome technique was employed. Nonetheless, this effect was
more prominent when single-nucleus RNA sequencing was
performed (Ziegenhain et al., 2017; Zhang et al., 2019; Koenitzer
et al., 2020). In fact, we found that lengthier genes and genes with
larger exon counts, and thus, several introns, were better detected
when single-nucleus RNA sequencing was used (Figure 4 and
Figure 5). However, we cannot explain why the short genes have
a lower expression or are nearly absent in single-nucleus sequencing.
One possibility is that the nuclear isolation itself is selected for genes
that have slower exportation rates and thus, are predominantly
located in the nuclei. Long and heavily processed genes take more
time to be exported (Carmody and Wente, 2009; Björk and
Wieslander, 2014; Gaidatzis et al., 2015) while genes with few
exons tend to take less time (Carmody and Wente, 2009; Björk
andWieslander, 2014). Therefore, it is reasonable that short genes or
intron-less genes quickly exit the nucleus and are washed out of
nuclear isolations before library preparation for single-nucleus RNA
sequencing. Indeed, previous studies have shown that genes with
fewer exons or intron-less genes take advantage of a “privileged”
route of exportation via TRP at the nuclear pore whereas lengthier
genes with several exons are retained until splicing is completed
(Coyle et al., 2011; Lee et al., 2020). For instance, ribosomal (few
introns) and mitochondrial (intron-less) genes which are quickly
processed and exported to the cytosol tend to be captured using
single-cell RNA sequencing but not single-nucleus RNA sequencing
(Lake et al., 2017; Wu et al., 2019; Xie and Ren, 2019; Ding et al.,
2020; Koenitzer et al., 2020; Lee et al., 2020; Selewa et al., 2020; Slyper
et al., 2020).

A recent report found that single-nucleus RNA sequencing was
not a suitable method to detect microglial activation associated with
Alzheimer’s disease in humans (Thrupp et al., 2020). This was
because a small, but important, set of genes was depleted in
microglial nuclei relative to cells. As we expected, when we
looked at the constitution of these nuclei-depleted genes (SPP1,
CD74, FTL, APOE, FTH1, CST3, RPL29, APOC1) we found that all
of them have less than 10 exons.

A recent study, also glimpse on this gene length bias effect and
provided a normalization strategy to reduce method-specific
differences related to the length of genic regions and, despite the
reduced bias, it was not able to abolish this phenomenon (Lake et al.,
2017). Similarly, we attempted different gene expression
normalization strategies and were not able to successfully
eliminate the gene length bias (Supplementary Figure S4). This
prominent length bias likely stems from a technical artifact between
single transcriptome techniques and not from computational
modeling. Our study, therefore, provides a deeper analysis of this
biased capture and its impact on the evaluation of biological
phenomena.

The subcellular localization of mRNAs allows cells to spatially
restrict and regulate protein production and plays important roles
in development and cellular physiology (Rédei, 2008; Lee et al.,
2020; Coyle et al., 2011; Thrupp et al., 2020; la Manno et al., 2018).
In the future, the use of new techniques, such as the recently
reported APEX-seq (Fazal et al., 2019) adapted to single cell-
sequencing platforms or spatial single-cell sequencing (e.g.,:
Visium, Xenium in situ, 10X genomics) may help researchers to
better understand extensive patterns of localization for diverse
RNA classes and transcript isoforms at single cell level in large
datasets. This will bring new insights into the spatial nature of
translational regulation.

In accordance with previous publications, we show that
differences between the output of the two single transcriptome
techniques impacted enrichment and gene ontology analysis
(Lake et al., 2017; Wu et al., 2019; Koenitzer et al., 2020;
Selewa et al., 2020). Looking beyond transcript capture
efficiency, we found that the top-100 DEG list from each
technique resulted in distinct gene ontology and pathway
enrichment terms (Figure 6). (Finak et al., 2015; Ziegenhain
et al., 2017; Zhang et al., 2019; Koenitzer et al., 2020).
Furthermore, we explored the source of these gene output
differences when the two techniques were compared and
found it roots in the biased RNA capture. Our results showed
that not only it affected cell markers but also, the broader analysis
as demonstrated by the enrichment pathway analysis.

We also evaluated the influence of each single transcriptome
technique on pathway analysis by applying a computational Single
Sample Gene Set Enrichment Analysis (ssGSEA) (Yi et al., 2020).
We focused on metabolic pathways as they encompass fundamental
biological processes essential to all living cells and should present
active transcriptional activity in all cells (Kiviet et al., 2014; Tatapudy
et al., 2017; Ortmayr et al., 2019; Lopes et al., 2021). The differences
between the output obtained from the two techniques affected the
ssGSEA scores of three different metabolic pathways (glycolysis,
oxidative phosphorylation, and fatty acid synthesis) (Figure 7).
Because gene set enrichment analysis is broadly used to interpret
genome-wide expression profiles and pathway activation or
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downregulations (Subramanian et al., 2005; Yi et al., 2020),
comparisons of results obtained with different single
transcriptome techniques should be taken carefully.

Here we found that both techniques present disparities in
RNA capture, and this may affect the calculations of basic cellular
parameters, raising pivotal points about limitations and
advantages of either single transcriptome techniques.
Currently, a computational strategy that abrogate the technical
differences between the two techniques has yet to be developed.
Moreover, the emergence of chemically fixed RNA profiling
protocols before mechanical and enzymatical single-cell
isolation are trending as a solution to overcome differences
between single transcriptome techniques. Fixation at the point
of sample collection will help to preserve the fragile biology of the
cell transcriptome and help scientists to perform studies with
short timescales, in which samples change rapidly in response to
a treatment or perturbation. In summary, our data revealed both
techniques present disparities in RNA profiling that emerged
from a biased gene-length capture, and this affected the
calculations of basic cellular parameters, raising pivotal points
about the limitations and advantages of either single
transcriptome technique.
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SUPPLEMENTARY FIGURE S1
Venn Diagram representing the overlap between to-100 DEG per cluster and
per single transcriptome technique. The top-100 gene markers per cluster
from each technique were compared with a Venn diagram. The number of
genes and their percentage relative to the total are depicted in the figure for
all three organs from kidneys with less shared genes (A) 21%, heart with 36%
of all genes shared between single transcriptome techniques (B) 36% and
lung with a higher number of shared genes (C) 42%.

SUPPLEMENTARY FIGURE S2
Subsampled datasets maintained the original cluster distribution and
proportions of cells per cluster per technique. All datasets were subsamples
as described in the methods, and their UMAP projections were plotted
(A,C,E). Proportional cell contribution to each cluster per technique was
plotted as a percentage and different techniques were specified by color
(B,D,F). The cluster numbers are displayed in the figure.

SUPPLEMENTARY FIGURE S3
Volcano plots showing the global transcriptional changes with the gene output
fromeach single transcriptome technique andorgan. TheDEG lists obtained per
single transcriptome technique were plotted for each organ. Heart (A); kidney
(B); and lung (C). only the top markers are labeled (logFC > 1.5 and p < 0.001).

SUPPLEMENTARY FIGURE S4
Application of different strategies to normalize gene expression does not correct
gene expression bias. The expression of long vs short geneswas compared after
applying different normalization methods, in all three datasets. Kidney dataset
(Top panel), Heart dataset (Middle panel), and lung (Bottom panel). The following
normalization techniques were applied: LogNormalize: feature counts for each
cell are divided by the total counts for that cell and multiplied by 10.000, the
scale factor. This is then natural-log transformed using log1p. CLR (centered log
ratio): Applies a centered log-ratio transformation. RC (Relative counts): Feature
counts for each cell are dividedby the total counts for that cell andmultiplied by
the scale factor. No log-transformation is applied.

SUPPLEMENTARY FIGURE S5
The heart datasets show consistently biased gene length segregation across
different cell clusters. Boxplots showing statistical comparisons in exon
counts in all clusters individually. The red rectangle indicates the clusters in
which statistical differences were found (Wilcoxon Rank Sum Test, *p < 0.05
**p < 0.001, ****p < 0.00001, ns = not significant).

SUPPLEMENTARY FIGURE S6
The biased gene length segregation is dependent on cell type with the lung
datasets. Boxplots showing statistical comparisons in exon counts in all
clusters individually. The red rectangle indicates the clusters in which
statistical differences were found (Wilcoxon Rank Sum Test, *p < 0.05 **p <
0.001, ****p < 0.00001, ns = not significant). Please not the presence of two
clusters specific to single-nucleus RNA sequencing.

SUPPLEMENTARY FIGURE S7
Most cell types retained the biased gene length segregation in the kidney
datasets. Boxplots showing statistical comparisons in exon counts in all
clusters individually. The red rectangle indicates the clusters in which
statistical differences were found (Wilcoxon Rank Sum Test, *p < 0.05 **p <
0.001, ****p < 0.00001, ns = not significant). Please not the presence of two
clusters specific to single-nucleus RNA sequencing.
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SUPPLEMENTARY FIGURE S8
Top-100 DEG per technique were skewed compared with the whole host
genome for coding sequencing length, transcript length and genome
span. The top-100 DEG from each technique (list) and organ were fed
into the ShinyGO API and the level of skewness was compared against the
whole host genome for the heart (A); kidney (B) and lung (C) in three
different characteristics: coding sequencing length, transcript length
and genome span. The level skewedness deviation of the expected
pattern was compared with Chi-square test. P-values and depicted in
the figure.

SUPPLEMENTARY TABLES S1-6
DEG lists for each paired dataset in all three organs. DEG from single cell RNA
sequencing are odd numbers (1-3-5). Even numbers (2-4-6) for DEG lists
from single-nucleus datasets.

SUPPLEMENTARY TABLES S7-9
DEG list from the subsampled datasets between the two single
transcriptome techniques (single-cell vs single-nucleus RNA
sequencing) for all three organs. The number of exons and sequence
length is shown for each gene.

SUPPLEMENTARY TABLE S1
Top-100 heart integrated markers from single-cell RNA sequencing.

SUPPLEMENTARY TABLE S2
Top-100 heart integrated markers from single-nucleus RNA sequencing.

SUPPLEMENTARY TABLE S3
Top-100 kidney integrated markers from single-cell RNA sequencing.

SUPPLEMENTARY TABLE S4
Top-100 kidney integrated markers from single-nucleus RNA sequencing.

SUPPLEMENTARY TABLE S5
Top-100 lung integrated markers from single-cell RNA sequencing.

SUPPLEMENTARY TABLE S6
Top-100 lung integrated markers from single-nucleus RNA sequencing.

SUPPLEMENTARY TABLE S7
Top-100 heart markers: comparison of expression scores, exons counts and
sequencing length between single-cell and single nucleus RNA sequencing.

SUPPLEMENTARY TABLE S8
Top-100 kidney markers: comparison of expression scores, exons counts
and sequencing length between single-cell and single nucleus RNA
sequencing.

SUPPLEMENTARY TABLE S9
Top-100 kidney markers: comparison of expression scores, exons counts and
sequencing length between single-cell and single nucleus RNA sequencing.

SUPPLEMENTARY TABLE S10
Differential gene expression between techniques single-cell and single
nucleus RNA sequencing for the kidney datasets.

SUPPLEMENTARY TABLE S11
Differential gene expression between techniques single-cell and single
nucleus RNA sequencing for the heart datasets.

SUPPLEMENTARY TABLE S12
Differential gene expression between techniques single-cell and single
nucleus RNA sequencing for the lung datasets.

SUPPLEMENTARY TABLE S13
Pathway Enrichment analysis for the kidney, single-cell RNA sequencing
dataset.

SUPPLEMENTARY TABLE S14
Pathway Enrichment analysis for the kidney, single-nucleusl RNA sequencing
dataset.

SUPPLEMENTARY TABLE S15
Pathway Enrichment analysis for the lung, single-cell RNA sequencing dataset.

SUPPLEMENTARY TABLE S16
Pathway Enrichment analysis for the lung, single-nucleus RNA sequencing
dataset.

SUPPLEMENTARY TABLE S17
Pathway Enrichment analysis for the heart, single-cell RNA sequencing
dataset.

SUPPLEMENTARY TABLE S18
Pathway Enrichment analysis for the heart, single-nucleus RNA sequencing
dataset.
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