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Metastasis of cancer is directly related to death in almost all cases, however a lot is
yet to be understood about this process. Despite advancements in the available
radiological investigation techniques, not all cases of Distant Metastasis (DM) are
diagnosed at initial clinical presentation. Also, there are currently no standard
biomarkers of metastasis. Early, accurate diagnosis of DM is however crucial for
clinical decision making, and planning of appropriate management strategies.
Previous works have achieved little success in attempts to predict DM from
either clinical, genomic, radiology, or histopathology data. In this work we
attempt a multimodal approach to predict the presence of DM in cancer
patients by combining gene expression data, clinical data and histopathology
images. We tested a novel combination of Random Forest (RF) algorithm with
an optimization technique for gene selection, and investigated if gene expression
pattern in the primary tissues of three cancer types (Bladder Carcinoma, Pancreatic
Adenocarcinoma, andHead andNeck SquamousCarcinoma) withDMare similar or
different. Gene expression biomarkers of DM identified by our proposed method
outperformed Differentially Expressed Genes (DEGs) identified by the
DESeq2 software package in the task of predicting presence or absence of DM.
Genes involved in DM tend to be more cancer type specific rather than general
across all cancers. Our results also indicate that multimodal data is more predictive
of metastasis than either of the three unimodal data tested, and genomic data
provides the highest contribution by a wide margin. The results re-emphasize the
importance for availability of sufficient image data when a weakly supervised
training technique is used. Code is made available at: https://github.com/rit-cui-
lab/Multimodal-AI-for-Prediction-of-Distant-Metastasis-in-Carcinoma-Patients.
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Introduction

Proper management planning for carcinoma patients requires accurate diagnosis, and
prognosis prediction. A major prognostic factor, metastasis, however is not always diagnosed
at initial patient presentation. Metastasis refers to the dissemination of cancer cells away from
the initial site of origin to form colonies at distant organs. This single hallmark of malignancies
is responsible for the highest proportion (approximately 90%) of cancer related mortalities
(Fares et al., 2020). In HNSCC (Head and Neck Squamous Cell Carcinoma), about 10% of
patients present with Distant Metastasis (DM) at diagnosis, while 20%–25% are detected
during the disease course (Pisani et al., 2020). Pancreatic cancer is usually diagnosed at a late
stage, and DM is quite common at presentation, however, multidetector computed
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tomography (MDCT) which is currently the optimal preoperative
investigation has poor sensitivity to liver and peritoneal metastasis,
the most common metastatic sites (Liu et al., 2018). Cases of
metastatic non-muscle-invasive bladder cancer have also been
reported (Xu et al., 2022). Early diagnosis of metastatic cancer is
critical if patients will benefit from systemic therapies, alongside other
appropriate management plans. The mechanisms behind metastasis,
however, are very complex, and a lot is still not understood. Currently,
there are no standard biomarkers of metastasis (Wang et al., 2018),
and identification of biomarkers that are associated with metastasis
will be useful in guiding clinical decisions, and as basis for
development of new therapies.

Past studies have investigated the presence or absence of
generalizable links between genes involved in the metastasis of
different cancer types, either on the basis of mutation, or expression
level. However, metastasis has proven to be a complex molecular and
biochemical process.While similarmutation rate, and expression pattern
have been reported in selected genes across groups of metastatic cancer,
there are multiple claims that there are in fact no specific cancer
metastatic genes. In a study carried out by Liu et al. (2017), mutation
rates of TP53 was significantly different between primary and metastatic
samples in seven cancer types, while PTEN mutation level was different
in five cancer types. Copy number variations also differ significantly in all
15 cancer types examined. Nguyen et al. (2022) also implicated TP53,
PTEN, CDKN2A, and MYC as significantly mutated genes in the
metastasis of various subsets of cancer types.

In specific cancer types, designated differentially expressed
signature genes are the basis of some of the past attempts to
stratify cancer patients based on the risk of DM (van de Vijver
et al., 2002). A recent study (Kaur et al., 2022) carried out in triple
negative breast cancer samples using DESeq2 software identified a
total of 1738 differentially expressed genes between metastatic and
non-metastatic primary samples, 3 of which are part of the
70 prognostic signature genes in (van de Vijver et al., 2002). An
analogous study in renal cell carcinoma noted some of the identified
differentially expressed genes as predictive of metastasis-free
survival, and overall survival (Ho et al., 2017). In melanoma,
measurement of Breslow’s thickness of the primary tumor was
correlated with the level of expression of specific genes, and the
transition to metastatic tumor (Riker et al., 2008). While all of these
reports suggest that genomic data may actually be predictive of
metastasis, the inconsistent patterns of gene mutation and
expression seen in different cancer samples makes it a challenge
to precisely identify their importance in specific cases.

The wealth of morphological information contained in the tumor
microenvironment is routinely exploited by pathologists for making
definitive diagnosis of cancer and predicting patient prognosis.
However, aside from being time consuming, this tedious process has
also been associated with inter- and intra-observer variability that
sometimes lead to unresolved diagnosis or worse, errors in
diagnosis. With the use of Convolutional Neural Network (CNN),
histopathology images have proven to be good predictors ofmalignancy
status, important molecular biomarkers of various clinical and research
relevance, as well as other cellular and extracellular processes
(Mungenast et al., 2021). While many deep learning models have
achieved relatively high metrics in detecting tumors within
histopathology images of metastatic lymph node samples (Chuang
et al., 2021;Wen et al., 2021; Huang et al., 2022), the difficult problem of

predicting DM from primary samples remains a challenge, and most of
the past attempts on this and similar tasks have struggled with relatively
average model performance (Zhao, 2020; Brinker et al., 2021; Kiehl
et al., 2021; Schiele et al., 2021).

Recent trends of use of multimodal data for prediction of diagnosis
and outcomes in cancer patients have reported mostly improved
metrics compared to use of singular modes of data (Mobadersany
et al., 2018; Chen et al., 2022). In the case of metastasis prediction, past
works have used singular or multimodal data combining clinical (Ali,
2020), genomic (Yuan et al., 2019), radiological (Liu et al., 2020), and
histopathology (Zhao, 2020) data, however, to the best of our
knowledge, at the time of this writing, this is one of the first works
that combines transcriptomic data, clinical data, and histopathology
images from primary tumor samples to predict DM.

In this work, we attempt to predict DM using gene expression
data, clinical data, and histopathology images from primary tumors
of three carcinoma types - Pancreatic Adenocarcinoma (PAAD),
Bladder Carcinoma (BLCA), and Head and Neck Squamous cell
Carcinoma (HNSC). The contributions of this research include:

- We identify genomic markers of DM in three different
carcinoma types using a novel combination of the random
forest algorithm with an optimized feature selection approach
described in (Mori et al., 2021). Genes selected via this method
performed better in prediction of DM than differentially
expressed genes (DEGs) derived from DESeq2 analysis in
our study, as well as in comparison to methods from other
similar studies. These biomarkers could be further investigated
for development of new diagnostics and therapies against DM.

- Using various machine learning techniques, we investigate and
substantiate claims that genes involved in DM tend to be more
cancer type specific rather than general across all cancer types,
and that there are no specific cancer metastasis genes.

- We built separate models to predict DM from gene expression
data, clinical data, or histopathology images, as well as multimodal
combinations of the three data types. Models metrics show that
multimodal data provides an edge for prediction of DM over
genomic, clinical or histopathology data. However, the genomic
data has the highest contribution by a wide margin.

- Unlike with genomic data in which features tend to be more
cancer type specific, models built from histopathology image
dataset of all three cancer types in total had better metrics than
those built from a single cancer type image dataset,
emphasizing the importance of sufficient data to build a
robust model when a weakly supervised technique is used.

Methods

Dataset

Barcode of patients with DM in the TCGA-HNSC, TCGA-BLCA,
and TCGA-PAAD projects were retrieved from Genomic Data
Commons (GDC) Data Portal, and gene expression data, clinical data,
and histopathology images of these patients were downloaded. The few
number of available cases of DM is a common challenge in most studies
on metastasis. BLCA, and PAAD were selected based on the number of
cases of DM in these cancer types that are available on The Cancer
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Genome Atlas (TCGA), and the number of cases with available
corresponding genomic, image, and clinical data. A few cancer types
were dropped during this selection process due to the absence of some
variables in their records. For example, Skin Cell Carcinoma (SKCM)was
eliminated due to missing “number_of_lymph_nodes_positive_by_HE”
variable which is present in BLCA, PAAD, and HNSC datasets. HNSC
was added based on the interest of one of the authors. See Supplementary
Material S1 for file ID and barcode of samples. BLCA (N = 80) records
had 59 male, and 21 female patients. Average age in PAAD (N = 58;
Male = 32; Female = 26), and HNSC(N = 24; Male = 21; Female = 3)
records is 63, and 61 respectively. The race of patients in the BLCA cohort
are (White = 66; Black orAfricanAmerican = 6; Asian = 5), and (White =
47; Black or African American = 3; Asian = 5) for PAAD, while HNSC
had (White = 19; Black or African American = 4; Asian = 1). The T, and
N staging, and Number of lymph nodes positive by hematoxylin and
eosin (HE) staining in each cancer type is shown in Table 1.

Machine learning for identification of
transcriptomic biomarkers and prediction of
distant metastasis

We designed a study that utilized machine learning techniques
to simultaneously identify biomarkers of DM in each of BLCA,

PAAD, and HNSC, and investigate if genes involved in DM are
similar across the three cancer types. Each cancer type dataset was
pre-processed separately. Equal numbers of complementary gene
expression data of samples without DM (BLCA = 80; PAAD = 58;
HNSC = 24) were downloaded for each of the cancer types, and we
ensured that there were no overlapping samples between the groups
with DM, and those without DM. After extracting Transcript Per
Million (TPM)) normalized values of protein-coding genes from the
individual records, all samples in a group were merged to create a
table, and NaN values were replaced with zero. Other initial
preprocessing steps include log to base ten transformation of
data to adjust for the wide and non-linear values, removal of
genes with a value of zero in greater than 80% of the samples,
and selection of only top 10000 genes with highest variance across all
samples.

To identify important genes that are involved in DM, we
utilized the Random Forest (RF) algorithm with an optimization
technique described in (Mori Y. et al., 2021). RF is a supervised
ML algorithm that creates multiple decision trees from
bootstrapped samples data and randomly selected features to
output a result, that is, based on a voting system. It works well
with high dimensional data, and is a commonly utilized
technique in gene expression data analysis. The optimization
technique we employed consists of running the RF algorithm

TABLE 1 Information about metastatic datasets.

Information Bladder Carcinoma Pancreatic adenocarcinoma Head and Neck Cancer

Number of samples 80 58 24

Patient age range Min: 47 Min: 41 Min: 49

Max: 90 Max: 81 Max: 79

Gender Male: 59 Male: 32 Male: 21

Female: 21 Female: 26 Female: 3

Race White: 66 White: 47 White: 19

Black or African American: 6 Black or African American: 3 Black or African American: 4

Asian: 5 Asian: 5 Asian: 1

T staging T1: 0 T1: 2 T1: 2

T2: 26 T2: 7 T2: 4

T3: 41 T3: 48 T3: 6

T4: 13 T4: 1 T4: 12

N staging 0: 42 0: 17 0: 4

1: 16 1: 41 1: 2

2: 19 2: 0 2: 18

3: 3 3: 0 3: 0

Number of lymph nodes positive by HE 0: 21 0: 16 0: 3

1: 12 1: 5 1: 2

2–6: 13 2–6: 28 2–6: 11

>6: 8 >6: 8 >6: 3

NA/Invalid: 26 NA/Invalid: 1 NA/Invalid: 5
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over (N = 1000) iterations to classify samples as DM positive or
DM negative, and selecting the top (K = 100) most important
genes at each of the N instances. This is followed by ranking the
important genes overall based on how many times each gene
appears (i.e., frequency) in K over the N iterations. The
algorithm was used to classify samples in each of the groups
based on the presence or absence of DM (Figure 1). We selected
the top 50 overall highest ranked genes for BLCA, PAAD, and
HNSC. Also, the three cancer types datasets were combined to
derive the “ALL3” group, and the above steps were repeated to
select the top 50 highest ranked genes in this group as well
(Figure 1).

To assess the strength of the selected biomarkers for
prediction of DM, and to investigate if genes involved in DM
are similar across the three cancer types, first, we used only the
selected genes in each of the groups as features to train multiple
ML models for the task of DM prediction. Support Vector
Machine (SVM), K-Nearest Neighbor (KNN) and RF models
were trained on datasets from each of the four (BLCA, PAAD,
HNSC ALL3) groups (Figure 1), and the metrics were evaluated.
Next, we looked for overlaps between different combinations of
the selected genes in the four groups. Furthermore, we trained
new ML (SVM, RF, and KNN) models on BLCA, PAAD, and
HNSC datasets, but with genes selected from the combined
dataset of the three cancer types (i.e., ALL3 group) (Figure 1).
Lastly, we created a list of union of selected genes from each of the
three cancer types (i.e., BLCA + PAAD + HNSC), and these were
used as variables to predict presence or absence of DM in each of
the three cancer dataset.

Differential Gene Expression with DESeq2

To further assess the strength of genes selected by the proposed
method for predicting DM, under the same study design, we carried
out an analysis to identify Differentially Expressed Genes (DEGs)
between samples with DM and those without DM in each of the four
groups. Instead of the TPM normalized values, raw counts of
unstranded RNASeq were extracted from the TCGA RNASeq
records. A sample information table was also generated.
Differential Gene Expression (DGE) analysis was performed in R
using the DESeq2 Bioconductor package. DESeq2 detects DEGs by
normalizing raw count values of genes in the experimental groups,
fitting negative binomial generalized linear models for each gene,
and detecting significance byWald test (Love et al., 2014). Threshold
was set at p-adjusted value of 0.05, after initial set threshold of log
fold-change of 1 and p-adjusted value of 0.05 yielded only five, one
and seven DEGs in BLCA, PAAD and HNSC respectively.
Thereafter, top DEGs were used as features to classify DM
samples in each of the study groups (Figure 1). DEGs from this
analysis and metrics of models trained on them are compared to
those of genes selected via the (RF + Optimization) method.

Convolutional neural network for
histopathology images analysis and
prediction of distant metastasis

We downloaded diagnostic pathology Whole Slide
Histopathology Images (WSIs) of patients with DM in the TCGA

FIGURE 1
Workflow for analysis of genomic data. On the right, gene expression datasets of HNSC, PAAD, and BLCA are separately passed through the (RF +
Optimization) gene selection algorithm, and a parallel DGE Analysis. Separate ML models are trained on highest ranked selected genes, and DEGs to
predict DM samples. On the top left, the same processes carried out on ALL3 (combined dataset of HNSC, PAAD, and BLCA) dataset. On the lower left,
genes selected from ALL3 dataset are used as features to train new models on each of the cancer types (i.e., other groups- HNSC, PAAD, BLCA)
dataset. Cancer images source: National Cancer Institute.
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projects of BLCA, HNSC, and PAAD from GDC Data Portal. The
number of samples in each group reduced slightly after collating a
list of only patients with available histopathology images, and
RNASeq data, and clinical data. Number of samples with DM in
BLCA, PAAD, and HNSC groups are 50, 44, and 18 respectively.
Again, we downloaded random complementary WSIs (BLCA = 55;
PAAD = 51; HNSA = 22) of patients without DM for each of the
cancer types, and ensured no overlap between samples
(Supplementary Material S1). Total number of samples in each
group was split in an 80:20 ratio for models training and testing.

WSIs preprocessing

One WSI was preprocessed per patient. Due to the typical large
size of WSIs which hovers around 100000 pixels in both horizontal
and vertical axis, we isolated representative regions within each WSI
for analysis. First, a maximum of 500 random non-overlapping
patches of size 512 * 512 pixels were extracted from each image at
20 × magnification. These were reduced to a maximum of
200 patches after checking for a tissue area of at least 80% in
each patch. To ensure selection of tumor representative regions
we imitated the concept of high cellularity described in (Riasatian,
2021) which assumes that high grade tumors contain more cellular
areas than normal tissues. Hence, we used a pretrained U-Net nuclei
segmentation model which was trained on breast cancer
histopathology images to rank the patches based on cellular
content. The top 60 highest ranked patches were selected for
each patient. Further random manual inspection led to the
exclusion of a few more patches before Macenko normalization.
At the end of initial preprocessing steps, BLCA, PAAD, HNSC, and
ALL3 groups had a total of 4936, 4348, 1856, and 11154 training
patches respectively, of which 25% were for validation.

CNN training and multimodal fusion of
genomic and imaging data

A DenseNet121 model, pretrained on Imagenet data, and
KimiaNet (Riasatian, 2021) were chosen for this study. This
allows us to evaluate the effect of keeping weights of lower layers
of a model fine-tuned on domain histopathology images
(i.e., KimiaNet) on performance. DenseNet is a CNN architecture
that attempts to solve the problem of varnishing gradient associated
with deep neural networks by cumulatively concatenating features
output of a layer within the architecture to input of subsequent
upper layers, (Huang et al., 2016; 2017). In total,
DenseNet121 contains 1 7 × 7 convolution, 58 3 ×
3 convolution, 61 1 × 1 convolution, 4 average pooling, and
1 fully connected layers. KimiaNet is a DenseNet121 architecture
Imagenet-pretrained CNN model fine-tuned on about
250,000 histopathology images. We replaced the classification
layers in the models with 1 GlobalAveragePooling2D, 3 Dropout
(0.1, 0.2, and 0.05), and 3 Dense (512, 32, and 1) layers, to train a new
classifier head on top of the base convolutional layers, using a weakly
supervised technique. The last hidden layer of the new classifier
heads has 32 nodes which is subsequently used as features extractor.
The modified DenseNet121 was separately trained on data from

each of the four study groups (HNSC, BLCA, PAAD, ALL3) for a
binary classification task of DM prediction (Figure 2). Loss function
was binary cross-entropy, and optimizer, Adam with a learning rate
of 0.0001. Training epoch was set at 40.

For prediction on the test sets, patient level features were derived
by passing all patches for each patient through the trained feature
extractor models, and averaging all patch features from a slide. We
trained traditional machine learning algorithm- SVM and a single
layer MLP on the patient level features to classify samples as DM
positive or DM negative (Figure 2). Considering this approach we
have taken, HNSC group was dropped here based on small
sample size.

Multimodal concatenation of patient level features derived from
the CNN models to log transformed values of TPM normalized
RNASeq data of selected DM associated genes from above was
carried out. For BLCA, and PAAD groups, the 50 genes selected
using the (RF + Optimization) technique were combined with
32 features derived from histopathology images of each patient to
train classifiers, and predict presence or absence of DM (Figure 2).
150 genes, consisting of 50 each selected from BLCA, PAAD, and
HNSC were combined with 32 image features to predict DM in the
ALL3 group (Figure 2).

Likely due to the effect of a larger training dataset given the weakly
supervised training technique that was employed, it was observed from
early results that image only models trained on data from the
ALL3 group generally performed better in their predictions on the
test sets than other groups. Similarly, multimodal models of genomic
and histopathology imagewere generally better than unimodalmodel of
either data type in the ALL3 dataset, while metrics of multimodal
models are generally lower than either genomic or image onlymodels in
other individual cancer dataset (i.e., BLCA, or PAAD). Therefore
further experiments were carried out on the ALL3 dataset. We
trained fully connected layers on KimiaNet, a
DenseNet121 architecture model finetuned on about
250,000 histopathology images to extract features from the images in
the ALL3 dataset. Metrics of multimodal models built from these
features, and genomic data were compared to those fromDenseNet121.

Four variables—Age, T stage, N stage, and Number of lymph
nodes positive by HE—were selected from the clinical data, and
concatenated with genomic, and histopathology features to predict
presence or absence of DM in the ALL3 dataset (Figure 2). As part of
the clinical data preprocessing, invalid/NaN values in the age
variable were replaced by the rounded mean age of the cancer
type while invalid/NaN T staging, N staging and number of positive
lymph node values were replaced with 0. Min-max normalization
was applied to age, and number of positive lymph node variables.

Results

ML identified gene expression biomarkers of
distant metastasis

In each cancer type, samples with DM were combined with the
same size of samples without DM. Also, datasets from the three
cancer types were combined to derive the “ALL3” group. Following
pre-processing, the optimized RF algorithm, as described in the
methods section was used for binary classification of the samples
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(i.e., DM vs. non-DM), and simultaneous gene selection (top 50) in
each of the groups (Supplementary Material S2). While RF is a
popular ML based gene selection technique (Díaz-Uriarte and
Alvarez de Andrés, 2006; Wenric and Ruhollah, 2018; Nivedhitha
et al., 2020), to the best of our knowledge, at the time of this writing,
this is the first time RF is combined with this optimization method
for the task of gene selection. The top 5 genes associated with
metastasis in BLCA are FKBP6, ASIC5, MAPK8IP1, F11R, and
PABPC5, while CTSV, BIRC5, SERPINA7, CST2, KLHL3 are the
highest ranked genes in PAAD. In HNSC, TM4SF1, C19orf18,
EXPH5, FKBP2, PTPRZ1 are the highest ranked genes, and
ALL3 group had CHRNG, CPT1B, CGREF1, GPR31, SPTBN5.
Past publications have confirmed the activities of some of these
genes in the metastasis of various cancers, either as oncogene or as
tumor suppressors (Table 2). There are others whose roles in cancer
metastasis are yet to be explored. A functional annotation search for
the selected 50 genes on pantherdb.org revealed very similar
classification patterns in all of the three cancer types.
Approximately 50%–60% of the genes had no known category,
and the most common functional classification of those with known

categories in all the cancers are protein binding, and catalytic activity
(Figure 3).

Dataset in each group was randomly split into train and test set
in a 75:25 ratio, and SVM with linear kernel, KNN, and RF models
were trained on the highest ranked 30, 25, 20, 15, 10, 5, 3, 2, and
1 gene from list of selected top 50 genes. Outcomes of single instance
predictions, and five-fold cross-validation on the test sets were
recorded (Supplementary Material S3).

To test the strength of genes selected based on the (RF +
Optimization) method as predictors of DM, a DGE analysis was
carried out with the DESeq2 software package to identify DEGs
between the DM and non-DM samples. With a threshold adjusted
p-value of 0.05, the number of DEGs in BLCA, PAAD, HNSC, and
ALL3 are 229, 2142, 1100, and 658 respectively. Of these 5, 39, 19,
and 13 overlap with the 50 genes selected using the ML method in
each of the respective groups. Presence or absence of DM was
predicted in the four groups using DEGs with the lowest 30, 25, 20,
15, 10, 5, 3, 2, and 1 adjusted p-value as variables. In almost all cases,
genes selected using the ML (RF + optimization) techniques had
higher evaluation metrics (Accuracy, F1-score, AUROC) than those

FIGURE 2
Binary classifiers trained on the same patients’ records but with different data types for comparisons between unimodal, and multimodal data
models. (A) Additional Dense layers trained on DenseNet121, and KimiaNet CNN for features extraction from histopathology images. Classifiers are
trained on image features to predict presence or absence of DM. (B)Classifiers are trained on only clinical variables to predict presence or absence of DM.
(C)Classifiers are trained on genes selected by the (RF + Optimization) algorithm to predict presence or absence of DM (D) Image features are fused
with selected genes, and clinical features to train multimodal models for prediction of DM.
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TABLE 2 Top 10 genes selected by the ML (RF + Optimization) technique in BLCA, PAAD, HNSC, and various types of malignancies in which their involvement in
metastasis have been reported in past literatures.

Gene
Ranking #

Highest
Ranked DM
Genes in
BLCA

Cancer types with
Publications of Gene
metastatic activities

Highest
Ranked DM
Genes in
PAAD

Cancer types with
Publications of Gene
metastatic activities

Highest
Ranked DM
Genes in
HNSC

Cancer types with
Publications of Gene
metastatic activities

1 FKBP6 CTSV Breast Cancer
Sereesongsaeng et al. (2020)

TM4SF1 Ovarian Cancer Gaoet al.
(2019)

Colorectal Cancer Wang
et al. (2020)

Esophageal Cancer Xue
et al. (2017)

Lung Cancer Wang et al.
(2021); Yang et al. (2022)

Pancreatic Cancer Cao et al.
(2016)

Liver Cancer Huang et al.
(2016)

Colorectal Cancer Park et al.
(2016); Tang et al. (2020)

2 ASIC5 BIRC5 Colorectal Cancer Kreig
et al. (2013)

C19orf18

Prostate Cancer Hennigs
et al. (2020)

Breast Cancer Dai JB et al.
(2020); Oparina et al. (2021)

3 MAPK8IP1 Gastric Cancer Lu et al.
(2017)

SERPINA7 EXPH5

4 F11R Breast Cancer Bednarek et al.
(2020)

CST2 Prostate Cancer Song et al.
(2021)

FKBP2

Prostate Cancer Guo et al.
(2023)

Triple-Negative Breast
Cancer Johnstone et al.
(2018)

Pancreatic Cancer Zhang
et al. (2022)

Gastric Cancer Zhang et al.
(2020)

Multiple Cancers
Czubak-Prowizor et al.
(2022)

5 PABPC5 Non-Small Cell Lung Cancer
Wu et al. (2021)

KLHL3 Breast Cancer Mamoor.
(2021)

PTPRZ1 Triple Negative Breast
Cancer Fu et al. (2016)

Glioma Jing et al. (2020) Lung Cancer Chai et al.
(2022)

6 SLC5A1 Glioblastoma Brosch et al.
(2022)

TK1 Lung Cancer Malvin et al.
(2019)

MUC12 Colorectal Cancer
Maksuyama et al. (2010)

Breast Cancer (Fanelli et al.
(2021); He et al. (2006),
Bitter et al. (2022)

Renal Cell Carcinoma Gao
et al. (2020)

Multiple Cancers Liu et al.
(2017)

7 CCDC33 E2F1 Prostate Cancer Liang et al.
(2016)

RPS10

Melanoma Alla et al. (2010)

Breast Cancer Hollern DP
et al. (2019)

Multiple Cancers Goody
et al. (2019)

(Continued on following page)
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selected via DESeq2 DGE analysis in the task of DM prediction
(Figure 4). Highest mean AUROC score achieved over a five-fold
cross validation was 0.87, 0.92, 0.97, 0.79 in BLCA, PAAD, HNSC,

and ALL3 groups respectively, compared to 0.65, 0.80, 0.92,
0.62 with DESeq2 DGE analysis, when models were trained on
top 15 selected genes (Figure 4; Supplementary Material S3).

TABLE 2 (Continued) Top 10 genes selected by the ML (RF + Optimization) technique in BLCA, PAAD, HNSC, and various types of malignancies in which their
involvement in metastasis have been reported in past literatures.

Gene
Ranking #

Highest
Ranked DM
Genes in
BLCA

Cancer types with
Publications of Gene
metastatic activities

Highest
Ranked DM
Genes in
PAAD

Cancer types with
Publications of Gene
metastatic activities

Highest
Ranked DM
Genes in
HNSC

Cancer types with
Publications of Gene
metastatic activities

8 ONECUT1 Hepatocellular Carcinoma
Liu et al. (2022)

GGH Gastric Cancer Terashima
et al. (2017), Maezawa et al.
(2020)

RAB3D Osteosarcoma (Jiashi et al.
(2018); Cao et al. (2019)

Colorectal Cancer Luo et al.
(2016)

Melanoma Yang et al.
(2015)

Breast Cancer Yang et al.
(2015)

Glioma Jin et al. (2021), Tao
et al. (2020)

Non-small Cell Lung
Cancer (Ma et al. (2022)

Hepatocellular Cancer Li
et al. (2020)

9 CLC Gastric Cancer Gu et al.
(2018); Peng a et al. (2018)

MAGED4 Hepatocellular Carcinoma
Kanda et al. (2017)

SH2D4A

Colorectal Cancer Mu et al.
(2020)

Non Small Cell Lung Cancer
Ma et al. (2012)

Multiple cancers Xu et al.
(2014)

10 ZNF467 Prostate Cancer Zhang et al.
(2022)

CST6 Breast Cancer Li et al.
(2021); Jin L et al. (2012),
Rivenbark et al. (2007)

RGS16 Chondrosarcoma Sun et al.
(2015)

Melanoma Riker AI et al.
(2008)

Glioma Wang et al. (2022)

Multiple Cancers Xu et al.
(2021)

Pancreatic Cancer Kim et al.
(2010); Carper MB et al.
(2014)

TABLE 3 Number of overlapping genes between combinations of the different groups of genes selected by (RF + Optimization) method, and DGE analysis by
DESeq2.

Compared Groups of Selected Genes
(RF + Optimization) method

No of Overlaps Between Groups
DGE analysis (DESeq2)

No of Overlaps Between Groups

BLCA | PAAD 0 32

BLCA | HNSC 0 16

PAAD | HNSC 0 160

BLCA | ALL3 7 66

PAAD | ALL3 6 305

HNSC | ALL3 0 105

BLCA | PAAD | HNSC 0 4 (PHF21B, CALY, FGF19, and KRT81)

BLCA | PAAD | HNSC | ALL3 0 0
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Expression profile of genes associated with
DM in primary tumors differ across cancer
types

To investigate if primary tumors of different cancer types share
similar gene expression profiles in metastasis, first, we looked for
overlap between various combinations of the selected 50 genes in
each group. There was no overlap between the different
combinations of BLCA, PAAD or HNC. However, in the
ALL3 group, 7 genes (CGREF1, SPTBN5, TAS1R3, FAM241B,

EL5, CSPG5, and MAPK8IP1), and 6 genes (CFAP45, CST2,
BIRC5, MAGED4, CST6, and FAIM2) overlap with those selected
in BLCA, and PAAD respectively (Figure 5; Table 3). Also, it was
observed that there was at least one member of the ZNF and FKBP
gene family present within the list of selected genes in BLCA, and
HNSC. Jen and Wang (2016) extensively reviewed multiple studies
on the role of ZNF (Zinc Finger) gene family proteins in cancer
progression, and metastasis, acting both as oncogenes, and tumor
suppressors. Various studies (Fong et al., 2003; Sun et al., 2021) have
also implicated members of the FKBP family in cancer metastasis.

FIGURE 3
Functional classification of selected genes in (A) BLCA, (B) PAAD, and (C) HNSC.

TABLE 4 Accuracy, F1, and AUROC scores derived from combinations of clinical, genomic and image data in the ALL3 dataset with a SVM classifier.

Data Type(s) Mean
accuracy

Accuracy Standard
Deviation

Mean
F1 Score

F1 Score Standard
Deviation

Mean
AUROC

AUROC Standard
Deviation

Clinical 0.59 0.061 0.52 0.070 0.64 0.085

Image 0.56 0.073 0.55 0.106 0.58 0.075

Genomic 0.68 0.071 0.69 0.080 0.74 0.080

Genomic + Image 0.67 0.078 0.67 0.079 0.77 0.092

Clinical + Genomic 0.68 0.096 0.69 0.121 0.75 0.085

Genomic + Image +
Clinical

0.71 0.063 0.71 0.055 0.79 0.087
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FIGURE 4
(A, E, I, M) Five-fold cross validation ROC curves, and mean ROC curve when 15 highest ranked genes selected by (RF + Optimization) method from
each of the groups are used to predict presence or absence of DM. These are higher than other predictions within the same study group. (B, F, J, N) Five-
fold cross validation ROC curves, andmean ROC curve when 15 highest rankedDEGs (p adjusted value = 0.05) are used to predict presence or absence of
DM. (C, G, K) Five-fold cross validation ROC curves, and mean ROC curve when 15 highest ranked genes selected by (RF + Optimization) method
from ALL3 group are used to predict presence or absence of DM in other (BLCA, PAAD, HNSC) study groups. (D, H, L) Five-fold cross validation ROC
curves, andmean ROC curve when a union of the 15 highest ranked genes selected by (RF + Optimization) method from each of BLCA, PAAD, and HNSC
groups (total = 45) are used to predict presence or absence of DM in each cancer type.

FIGURE 5
There was no overlap between genes selected using the (RF +Optimization) method in either of the three cancer types- BLCA, PAAD, and HNSC. Six
genes selected in PAAD, and seven genes in BLCA were also present in the list of genes selected from the ALL3 group.
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Furthermore, we trained new ML (SVM, RF, and KNN)
models on BLCA, PAAD, and HNSC datasets, but with genes
selected from the combined dataset of the three cancer types (i.e.,
ALL3 group) (Figure 1). These models performed lesser than in
cases of predictions of DM using genes selected in individual
cancer types. Highest mean AUROC score of 0.76, 0.82 and
0.64 was achieved in BLCA, PAAD, and HNSC datasets
respectively against 0.87, 0.92, and 0.97 of models trained on
selected genes derived from individual cancer types (Figure 4;

Supplementary Material S3). To further confirm this specificity of
genes in each cancer type, a union list of selected top 15 genes in
the three cancer types - BLCA, PAAD, and HNSC was created.
Results show a drop in mean AUROC scores from 0.87, 0.92, and
0.97 in BLCA, PAAD, and HNSC datasets respectively when
15 genes generated from each cancer type were used as variables
to 0.83, 0.88, and 0.77 when the total of 45 genes in the list of
unified genes were used as variables to predict DM (Figure 4;
Supplementary Material S3).

FIGURE 6
(A) SVM classifier clearly shows superiority of the multimodal (Clinical + Genomic + Image) model in the ALL3 dataset. (B) The performance of the
(Clinical + Genomic + Image) model appears to be on par with the bimodal models when a MLP classifier is used. Comparing prediction metrics of the
best performing bimodal (Image + Genomic) model in each group to those of unimodal models. Results from the bimodal model from the (C)
ALL3 dataset are clearly better than those from unimodal (D) BLCA dataset, and (E) PAAD dataset.

TABLE 5 Accuracy, F1, and AUROC scores derived from combinations of clinical, genomic and image data in the ALL3 dataset with a MLP classifier.

Data Type(s) Mean
accuracy

Accuracy Standard
Deviation

Mean
F1 Score

F1 Score Standard
Deviation

Mean
AUROC

AUROC Standard
Deviation

Clinical 0.51 0.039 0.26 0.077 0.59 0.044

Image 0.55 0.084 0.51 0.111 0.59 0.092

Genomic 0.72 0.058 0.72 0.060 0.80 0.079

Genomic + Image 0.72 0.070 0.73 0.078 0.81 0.074

Clinical + Genomic 0.72 0.065 0.72 0.080 0.79 0.065

Genomic + Image +
Clinical

0.72 0.082 0.73 0.090 0.80 0.090
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Histopathology images and clinical and
genomic data for multimodal prediction
of DM

DenseNet121 was trained on histopathology images from
BLCA, PAAD, and ALL3 groups, after the HNSC group was
dropped due to small sample size. One WSI was preprocessed
per patient as described in the methods section. For each group,
classification models—SVM, and MLP were trained on patient level
features extracted by the trained CNN models, and prediction was
carried out on the test set features (Figure 2). The image features
were also combined with genomic features from the same patient to
build multimodal (Image + Genomic) models.

Early results showed that metrics of multimodal (Image +
Genomic) models built from the ALL3 dataset generally improved
on image, or genomic unimodal models by 1–3 percent margin, with
genomic data contributing more to the multimodal metrics by a large
margin. Following a five-fold Monte Carlo cross-validation, a
multimodal (Image + Genomic) SVM classifier produced a mean
AUROC score of 0.77, while the corresponding image and genomic
unimodal models produced a score of 0.58, and 0.74 respectively. The
mean AUROC scores from MLP classifiers are (Image + Genomic =
0.81; Image = 0.59; Genomic = 0.80). In either BLCA or PAAD dataset,
results of multimodal (Image + Genomic) models mostly improved on
those of the image only models, however they were generally below that
of genomic only models. The highest mean AUROC derived from a
BLCA dataset multimodal (Image + Genomic) model is 0.62, and the
corresponding values from image only, and genomic only model are
0.57, and 0.80 respectively. Similar pattern was seen in the PAAD
dataset [Image + Genomic = 0.85; Image = 0.51; Genomic = 0.90)
(Figure 6; SupplementaryMaterial S4)]. These outcomes emphasize the
importance of a large dataset for building a more robust image model
when a weakly supervised training technique is employed.

Based on these early results, we carried out further experiments with
the ALL3 dataset. To evaluate the effect of using a CNN model with
lower layers pre-finetuned on histopathology domain images as features
extractor, fully connected layers were trained on KimiaNet with the
ALL3 dataset histopathology images, and features derived from the
model were combined with genomic data to predict DM in the test set.
There was generally no additional advantage observed in the results of
KimiaNet over those from DenseNet121. Highest mean AUROC from
the MLP multimodal model (KimiaNet Image + genomic data) is 0.77.
Unimodal image and genomic models from the same dataset produced
AUROC scores of 0.55, and 0.80 respectively. The same pattern was
seen with the SVM classifier (Image + Genomic = 0.73; Image = 0.56;
Genomic = 0.74) (Supplementary Material S4).

Lastly, four clinical variables—Age, T stage, N stage, and
Number of lymph nodes positive by HE were concatenated with
genomic, and histopathology features to train SVM, and MLP
classifiers. This led to an improvement of the mean AUROC
score of the Image + Genomic SVM model from 0.77 to a score
of 0.79. Mean accuracy, and F1 scores also improved from 0.67 and
0.67 to 0.71 and 0.71 respectively. MLP classifier however produced
a mean AUROC score of 0.80 against the score of 0.81 achieved with
Genomic + Histopathology data (Figure 6). Combining clinical with
genomic data improved the metrics of the clinical only models,
however there was no marked improvement from metrics of the
genomic only models (Figure 6; Tables 4, 5).

Discussion

Given that there was barely any overlap between genes selected
from the different cancer types considered and that prediction of
metastasis in each of the cancer types with a union of genes selected
from the three cancer types or the ALL3 group produced inferior
results, we have been able to substantiate the claim that metastatic
genes are more cancer type specific, rather than general, across
carcinomas. As only three carcinoma types are considered in this
study, studies including a larger number of carcinoma types will be
needed to further solidify our findings. As shown on (Table 3), some
of the selected genes have however been identified to be involved in
the metastasis of multiple cancers. These further confirm the theory
that even though metastatic genes tend to be specific to each
carcinoma type, this specificity is based more on group of genes
rather than individual genes, and that there is no single metastatic
gene as have been reported in (Nguyen et al., 2022). The AUROC
scores, and other metrics reported from our study, and other similar
studies call for future works and development of diagnostics and
therapeutics against DM to perhaps be more focused on the
carcinoma type, rather than a general one size fits all approach.
The ZNF and FBKP family of genes which is present in the list of
selected genes in the BLCA, and HNSC datasets have been severally
associated with cancer progression, and metastasis in multiple
cancers (Fong et al., 2003; Jen and Wang, 2016; Sun et al., 2021),
and should be investigated more for their roles in cancer metastasis.

Furthermore, with our novel combination of the RF algorithm
and the described optimization technique, we have identified
separate gene expression biomarkers of DM in the individual
cancer types. Metrics of models built with these genes (AUC:
BLCA = 0.87; PAAD = 0.92; HNSC = 0.97) outperform those
built from genes selected by DESeq2 DGE analysis (AUC:
BLCA = 0.65; PAAD = 0.82; HNSC = 0.92). While it is
important to note that the datasets in our study are focused
specifically on DM, similar studies on related tasks have been
reported. Using just RF algorithm for gene selection in a breast
cancer study (Yao et al., 2022), achieved an AUC of 0.52 in a
metastasis and recurrence prediction task. (Wu et al., 2017), and
(Qiao et al., 2020) achieved AUC scores of 0.71 and 0.84 respectively
when genes derived from DESeq2 DGE analysis, and Boruta
algorithm in the latter were combined with clinical data for
prediction of lymph node metastasis in HNSC. In predicting
metastasis status in pancreatic cancer samples (Xue et al., 2021),
achieved a highest AUC score of 0.72 using DEG identified by the
edgeR package. A 51 gene signature produced an AUC score of
0.82 in prediction of lymph node metastasis in bladder cancer as
reported by (Seiler et al., 2016).

The reported AUC scores from our study were derived from the
highest ranked 15 genes out of the initially selected 50. Perhaps a
protein-protein interaction analysis including the initial 50 genes
could lead to selection of fewer genes with higher relevance than the
ranking we have employed here, whichmay in turn lead to improved
prediction metrics. The biomarkers discovered in each cancer type
using the strict ML approach we have employed should be further
investigated for their potential as diagnostic indicators, and as basis
for development of new therapies against cancer metastasis.

Our results indicate that multimodal data (Genomic + Clinical +
Histopathology) provides a predictive advantage over either of the
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unimodal data types in the task of DM detection, however the
contribution of only gene expression data is highest by a wide
margin. Similar studies have acknowledged the superiority of
multimodal data for prediction of medical diagnosis and various
outcomes in cancer patients (Mobadersany et al., 2018; Keihl et al.,
2021; Chen et al., 2022), however some studies have shown that this is not
always the case (Brinker et al., 2021; Vale-Silva and Rohr, 2021). Past
multimodal studies on prediction of metastasis from histopathology
images have mostly combined clinical data with histopathology
images. This combination used in prediction of nodal metastasis led
to an improved AUC score of 74% in a study by (Keihl et al., 2021). In
contrast, there was a 0.2% decrease from the only image AUC score of
61.8% reported by (Brinker et al., 2021) when clinical, and cellular data
were included. Results from our study also suggest the importance of a
larger dataset of images when a weakly supervised technique is employed
as noted with the superior metrics of the multimodal models including
histopathology images in the ALL3 dataset compared to BLCA, and
PAAD dataset. A recent study by (Yao et al., 2022) reported a higher
accuracy in model built from only genomic data compared to that built
on combined genomic, and histopathology data for prediction of
metastasis and recurrence in breast cancer. However, an AUC score
of 0.75 was achieved when gene expression, histopathology images and
clinical data were combined.

The highest mean AUC score of 0.79 derived from the SVM
classifier in our study was from multimodal combination of gene
expression, clinical, histopathology data, while the score of
0.81 derived from the MLP classifier was obtained from a
genomic + histopathology image model. Overall, our results
indicate that combining clinical, genomic, and histopathology
image data increases the prediction metrics for DM, however
genomic data alone is a strong contributor.
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