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There exist several databases that provide virus-host protein interactions. While
most provide curated records of interacting virus-host protein pairs, information
on the strain-specific virulence factors or protein domains involved, is lacking.
Some databases offer incomplete coverage of influenza strains because of the
need to sift through vast amounts of literature (including those of major viruses
including HIV and Dengue, besides others). None have offered complete, strain
specific protein-protein interaction records for the influenza A group of viruses. In
this paper, we present a comprehensive network of predicted domain-domain
interaction(s) (DDI) between influenza A virus (IAV) and mouse host proteins, that
will allow the systematic study of disease factors by taking the virulence
information (lethal dose) into account. From a previously published dataset of
lethal dose studies of IAV infection in mice, we constructed an interacting domain
network of mouse and viral protein domains as nodes with weighted edges. The
edges were scored with the Domain Interaction Statistical Potential (DISPOT) to
indicate putative DDI. The virulence network can be easily navigated via a web
browser, with the associated virulence information (LD50 values) prominently
displayed. The network will aid influenza A disease modeling by providing
strain-specific virulence levels with interacting protein domains. It can possibly
contribute to computational methods for uncovering influenza infection
mechanisms mediated through protein domain interactions between viral and
host proteins. It is available at https://iav-ppi.onrender.com/home.
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1 Introduction

Influenza A virus (IAV) is a single stranded, positive ribonucleic acid (RNA) virus that is
a respiratory pathogen across many species such as humans, swine, and wild waterfowl. It
consists of eight genomic segments which encode at least 11 proteins. The structure and
organization of the virus particle is shown in Figure 1, which is reproduced here from the
work of Jung and Lee (Jung and Lee, 2020).

Hemagglutinin (HA) and neuraminidase (NA) on the viral particle surface, are the
proteins responsible for mediating entry into and cleavage from the host cell, respectively.
Matrix protein 1 (M1) is a component of the viral envelop while matrix protein 2 (M2) is
found below the lipid bilayer of the viral membrane, strengthening it. Together with the
nucleoprotein (NP), they form the ribonucleoprotein complex (indicated as vRNP in
Figure 1). The final three proteins are the polymerase basic 1 frame 2 (PB1-F2), and
non-structural proteins 1 and 2 (NS1 and NS2), respectively.
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IAV can be highly pathogenic in humans and several highly
virulent strains have already caused millions of deaths worldwide in
multiple pandemic events. Estimated death tolls for the 1918
(H1N1), 1957 (H2N2) and 1968 (H3N2) pandemics are
50 million (Johnson and Mueller, 2002), 1.1 million (Viboud
et al., 2016) and 1-4 million (Rogers, 1968), respectively. Further,
IAV triggers various respiratory illnesses seasonally, making it
endemic in human populations. The yearly number of deaths
due to influenza associated respiratory illness from seasonal
influenza has been estimated to vary between nearly 300,000 to
646,000 (Iuliano et al., 2018). Since it is endemic in populations,
hosts harboring seasonal influenza strains can act as a reservoir for
reassortment events, leading to cross-infection with other
circulating pathogens such as SARS-CoV-2 to form potentially
harmful recombinant strains (Swets et al., 2022). These attributes
highlight the complexity of disease factors of respiratory pathogens
and indicate the need of wide-scale influenza studies. They also
make the continual monitoring of public health outcomes necessary.

Infectious studies of mouse models can help to elucidate host
factors responsible for virulence, since they are cost effective,
reproducible and allow mechanistic analyses that may not be
directly conducted on humans due to ethical reasons (Sarkar and
Heise, 2019). One way to measure the pathogenicity of IAV is by
obtaining the lethal dose at which 50% of the inoculated animal test
population is infected or perishes (abbreviated here as LD50)
(Eugene, 2001). By comparing outcomes of influenza infections
in different strains of mice, differences due to allelic variations in
mice strains could be possibly be established (Lu et al., 1999).

On one hand, databases such as HPIDB (Ammari et al., 2016)
and STRING Viruses (Cook et al., 2018) besides several others have
already covered the interactions between influenza A and human
proteins in an extensive manner. In comparison, the interactions in
mouse hosts are lacking. There exist very few database records of
IAV-mouse interactions (for both experimental and computational
methods).

On the other hand, it is challenging to directly study the effect of
influenza A virulence in human hosts owing to ethical
considerations. Mice have been used to infer disease pathology of
IAV in humans (Lu et al., 1999). While mice contain significant
differences in body size and distribution that affect tissue tropism in
pathogenesis (Masemann et al., 2020; Perlman, 2016), at present
they are widely accepted pre-clinical models for linking virulence
levels with IAV-host interactions (Masemann et al., 2020).
Collecting IAV-mouse protein interactions provides a practical
approach to identifying virulence factors. As an example, after
identifying influential mouse host factors from a network of
predicted interactions with IAV proteins, the corresponding set
of human homologues (target proteins) can be determined from a
combination of homology mapping, associated virulence levels and
literature evidence. In-vitro interactions found to be occurring
amongst target proteins and IAV (via biochemistry assays or cell
cultures) could assist in designing knock-out factors or drug targets
that will allow in-vivo validation of the interaction in mouse models.

Data records of mouse model infectious studies had been
previously collected in an earlier work by F.X. Ivan and C.K.
Kwoh (Ivan and Kwoh, 2019). Their study highlighted the role of
protein sites of PB2 in influenza virulence by a systematic meta-
analysis using rule-based models to predict the virulence. Therefore,
a link between macroscopic virulence labels (such as LD50

categories) and protein-protein interactions could prove
beneficial in understanding the factors contributing to IAV
virulence. Domain-domain interaction(s) DDI can be particularly
useful because a protein domain is often a discrete functional unit
that is modular, and protein-protein interactions rely on
combinations of DDI (Itzhaki et al., 2006; Alborzi et al., 2021).
Hence here, the network was constructed with domains representing
nodes. While ‘domain-domain’ interactions are by definition a
subset of ‘protein-protein’ interactions, here the quoted terms are
used interchangeably, unless specified otherwise.

FIGURE 1
IAV particle and its fully assembled constituent proteins.
Genomic RNA segments are shown in green, wrapped around
nucleoproteins. The hetero-trimeric RNA-dependent RNA
polymerase complex comprising of PB1, PB2, and PA is shown in
orange, light and dark blue circles. This figure is by Jung and Lee (Jung
and Lee, 2020).

FIGURE 2
Implementation procedure.
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To systematically identify potential interactions between IAV
and mouse host-proteins, a protein network consisting of putative
DDI between IAV and mouse proteins, scored by the Domain
Interaction Statistical Potential (DISPOT) (Narykov et al., 2019)
was developed in this work.

The protein network is presented in a clear graphical user
interface (GUI) that easily shows the LD50 values and interacting
protein domains from the C57BL/6J mouse strain as identified by
DISPOT. The virulence network of interacting protein domains will
assist studies of IAV disease modeling by providing data of putative
interacting protein domains that are associated with their LD50

values.
The rest of this manuscript is organized as follows. Section 2

details the contents and design and describes the data presented
in this database and the data curation procedure. Section 3 details
the web server implementation, describing the tools used,
graphical user interface layout and functionality. Section 4
details discussion of this data. Section 5 outlines the proposed
future work. Section 6 summarizes and concludes this paper.

2 Contents and design

Figure 2 outlines the steps taken to implement the IAV-
Mouse protein-protein interaction (PPI) database. The IAV-
Mouse PPI web server can be accessed at: https://iav-ppi.
onrender.com/home.

Table 1 provides an overview of the data collected. Five out of the
eight RNA segments of IAV genome, namely PB1, HA, NA,M1, and
NS1 were found to contain the interacting pathogen protein
domains. In summary, 31 unique pairs of DDIs were found
between seven IAV protein domains and 29mouse protein domains.

This work built on initial data records of mouse model infectious
studies collected in the previous work by F.X. Ivan andC.K. Kwoh (Ivan
and Kwoh, 2019). Their same process of assigning virulence levels was
followed here. LD50 value was the key information needed to identify
the virulence class of a specific IAV strain. Virulence was classified as
two-class (avirulent/virulent) and three-class (low/intermediate/high)
(shown in Figure 3). Essentially, the total infection records classified as
“virulent” under the two-class problem is the sum of records classified
as “intermediate” and “high” under the three-class problem. Likewise,
the total infection records classified as “avirulent” is equivalent to the
number of records classified as “low”. For the three-class virulence
classification, LD50 thresholds of 10

3.0 and 106.0 were applied (shown in
Table 2), referencing thresholds that are used by World Health
Organization (WHO), for classification of influenza virulence in
mice (EID50 infection unit) (WHO, 2003). LD50 infection units
include Plaque-forming Unit (PFU), Focus-forming Unit (FFU),
50% Egg Infective Dose (EID50), 50% Tissue Culture Infectious
Dose (TCID50) and 50% Cell Culture Infectious Dose (CCID50),
where the equality across all units was assumed.

SUPERFAMILY 2.0 sequence search (https://supfam.org/
sequence/search) (Pandurangan et al., 2019) was used to map
regions of an amino acid sequence to at least one Structural
Classification of Proteins (SCOP) superfamily using the
SUPERFAMILY hidden Markov models. SCOP is a

TABLE 1 Summary statistics of data collected.

# journal publications 57

# IAV subtypes 14

# IAV strains 109

# mouse proteins 2419

# DDIs 1936

FIGURE 3
Cross-tabulation of IAV subtypes and mouse strains, colored according to three-class virulence classification problem. ‘Others’ refers to the
aggregation of infection records from IAV subtypes—H1N2, H3N8, H5N2, H5N5, H5N6, H5N8, H7N2, H7N3, H7N7, and H7N9.

TABLE 2 Three-class virulence classification.

Low Intermediate High

LD50 > 106.0 LD50 ≤ 106.0 LD50 ≤ 103.0

and LD50 > 103.0
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representation of structure-based hierarchical classification of
relationships between protein domains, with “family” being the
first level and “superfamily” being the second level. Protein
domains from the same SCOP family are strongly related and
frequently share the same function (Andreeva et al., 2004).

DISPOT (http://dispot.korkinlab.org/home/pairs) (Narykov
et al., 2019) served as the web tool to determine presence of
DDIs between pairs of IAV and mouse SCOP superfamily
domains. DISPOT uses exclusively DDIs from DOMMINO
(Kuang et al., 2012), an in-depth database of structurally resolved
macromolecular interactions, where data about DDIs is the amplest,
as its source of data. For a given domain pair, DISPOT returns a
statistical potential, denoted as the probability Pij. Statistical
potentials take values across the entire scale of real numbers.
Negative and positive values can be respectively interpreted as
having more or less than average number of DDIs in the
DOMMINO database. Neutral values are corresponding to the
number of DDIs close to the average number. “No information”
will be returned instead of a numeric value if the DOMMINO
database does not have an entry for the particular domain pair.

The DISPOT calculation of statistical potential formula is given
in the equation as follows (Narykov et al., 2019):

Pij � 1
Z2

ln
Mpij

Mmean

whereZ2 � ∑∑ ln
Mpkl

Mmean

Z2 is the natural logarithm of observed frequencies of interactions
between domains in the DOMMINO database. Mmean is the average
number of interactions for a pair of domain families, calculated from
the non-redundant DOMMINO dataset. Non-redundant refers to
two corresponding pairs of domains that do not share 95% or more
sequence identity (Narykov et al., 2019).

2.1 Dataset

All 57 journal publications reviewed in this work were retrieved
fromNational Centre for Biotechnology (NCBI) PubMed (Lindberg,
2000), where LD50 values were explicitly stated in them.
55 publications referenced the supplementary information given
in F.X. Ivan and C.K. Kwoh’s publication (“Additional file 5:
Supplementary Table S1”) (Ivan and Kwoh, 2019), where LD50

values were stated as “values given”. LD50 values reflected in their
dataset were checked against the original publications and some
missing records were added. Additionally, seven new records from
two other papers (Shi et al., 2017) and (Shi et al., 2018) were
documented.

2.1.1 Data cleaning
The preliminary dataset presented in this work (https://github.

com/tengann/IAV-Host-PPI-Database/blob/main/RawData_2022.
xlsm) holds 488 infection records involving wild-type, laboratory,
mouse-adapted, recombinant or mutant IAV strains. IAV genomes
of wild-type strains are in their natural and non-mutated form while
laboratory strains were prepared by means of reverse genetics.
Mouse-adapted strains were derived from serial lung-to-lung
passages of virus in mice. Genetic amino acid sequences of

mutant virus were changed through point mutations via single
amino acid substitutions. Recombinant strains were formed by
the combination of protein segments from at least two different
IAV strains.

The initial dataset was manually curated to only include records
involving wild-type or laboratory IAV strains, thereby reducing the
number of infections to 190 (Supplementary Figure S1).
Subsequently, infection records comprising wild-type or
laboratory strains where their Taxonomy identification (ID)
number (otherwise known as accession number) (Schoch et al.,
2020) could not be found were dropped, further reducing the
records to 166 (shown in Figure 4). In these cases, it was not
possible to retrieve the complete protein sequences of IAV gene
segments for SCOP domain assignment via SUPERFAMILY 2.0.

Lastly, multiple records concerning the same combination of
IAV strain and mouse genome were condensed into a single record,
adopting the approach from F.X. Ivan and C.K. Kwoh’s publication
(Ivan and Kwoh, 2019). From this process, the tally of infection
records was reduced to 139 (shown in Figure 4). Whenever possible,
the majority class of the three-class virulence assignment scheme
was selected. Otherwise, the class that is more or most virulent was
considered. Next, if only the lower bound of the LD50 value was
presented, the record with the highest lower bound was selected. For
cases where the lowest exact or upper bound of LD50 value was
provided, the record was selected. The final cleaned dataset
containing 109 unique IAV strains was used to derive the
network of interacting protein domains.

2.2 Data annotation

Firstly, to distinguish between all journal publications
referenced, the NCBI PubMed (https://pubmed.ncbi.nlm.nih.gov/)
(Lindberg, 2000) ID number uniquely assigned to each publication
record was noted. Information collected in F.X. Ivan and C.K.
Kwoh’s dataset consists of IAV strain, mouse strain, LD50 value
and infection unit. Then, in this paper, to provide a deeper insight
into how the LD50 value was determined in each separate
experiment, additional evidence, namely, the experimental
method, weight loss and/or survival remarks and LD50

calculation method were documented. Also, for each IAV strain,
the Taxonomy ID number, a unique ten-digit code that designates
classification and specialization was retrieved fromNCBI Taxonomy
database (https://www.ncbi.nlm.nih.gov/ taxonomy) (Schoch et al.,
2020).

Amino acid sequences of both IAV and mouse proteins were
retrieved from the UniProt (release 2021_03) protein knowledgebase
(UniProtKB) (https://www.uniprot.org/) (Bairoch et al., 2005). IAV
protein sequences were retrieved using strain names and/or matching
Taxonomy ID number where available. Mouse protein sequences were
retrieved using the Proteome ID number, UP000000589. This reference
proteome was derived from the genome sequence of mouse strain
C57BL/6J, with Taxonomy IDnumber, 10090. For this work, among 55,
315 protein records that were available, 17, 120 Swiss-Prot gold star
reviewed entries (https://www.uniprot.org/uniprotkb?query=
UP000000589) were retrieved. Swiss-Prot reviewed refers to records
with information fully and manually extracted from literature or
curator-evaluated computational analysis (Bairoch and Apweiler,
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1997). It strives to provide high-quality annotations with a minimal
level of redundancy and high level of integration with other databases.

As an average protein consists of two or more domains, domain
start and end residue numbers, corresponding to regions of protein
sequences matching each assigned SCOP domain (by
SUPERFAMILY 2.0) were independently noted for every protein
sequence retrieved from UniProtKB. Since each domain has its

distinct structure and biological function, only a subset of domains
constituting each protein are involved in the interaction between a
pair of proteins. Thus, this enhances the complexity of host-
pathogen protein interaction analysis (Narykov et al., 2019).

Overall, IAV strains in the dataset were found to comprise
proteins domains belonging to 13 SCOP superfamilies (Table 3).
Then, these domains were paired up individually with 1102 unique

FIGURE 4
Proportion of all wild-type/laboratory IAV strains, separated into with and without taxonomy ID numbers, against remaining records (green bars) in
the cleaned dataset. Infection records involving wild-type IAV where taxonomy ID number could not be found (orange bars) were omitted, reducing the
number of infection records to 166 (blue bars). “Cleaned” refers to the final dataset of 139 infection records (green bars) available in IAV-Mouse PPI
database, where each record corresponds to a unique combination of IAV and mouse strain.

TABLE 3 IAV Domains identified by SCOP Superfamily. Red indicates domains identified as interacting with mouse proteins, while ‘-’ indicates no identified
domains.

IAV segment SCOP superfamily name/Accession number

PB2 PB2 C-terminal domain-like/160453

PB1 DNA/RNA polymerases/56672

PB1-F2 -

HA Viral protein domain/49818

Influenza hemagglutinin (stalk)/58064

NP Flu NP-like/161003

NA Sialidases/50939

M1 Influenza virus matrix protein M1/48145

Alpha-catenin/vinculin-like/47220

Methyl-accepting chemotaxis protein (MCP) signaling domain/58104

M2 -

NS1 NS1 effector domain-like/143021

S15/NS1 RNA-binding domain/47060

NS2 Nonstructural protein NS2, NEP, M1-binding domain/101156

Spectrin repeat/46966
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domains found among the mouse protein sequences, forming a total
of 14, 326 IAV-mouse protein domain pairs. Subsequently, domain
pairs were fed as input into DISPOT, for calculation of statistical
potential. Finally, seven domains in IAV proteins (indicated in red in
Table 3) and 29 domains in mouse proteins were found to be
involved in the host-pathogen PPI. Out of the 17, 120 mouse protein
sequences retrieved, 2419 unique proteins were found to contain to
at least one of the 29 interacting SCOP domains. In addition, the
mouse protein localization in vital organs (lungs, brain, liver, kidney,
spleen and heart) or blood was noted, whenever available. (available
in Supplementary Figure S2).

3 Web server implementation

IAV-Mouse PPI web server GUI has a comprehensible interface,
made up of two pages, with various features, including browsing via
subtype and strain to view information collected from literature
searches, an interactive network graph with accompanying
information on node and edge attributes as well as amino acid

sequences extracted from UniProt. Figure 5 illustrates navigation
and layout of the web server’s GUI.

3.1 Tools

Firstly, Microsoft Excel 2016 was used to store and organize
data collected from literature. Secondly, the web interface was
developed on the code editor Visual Studio Code V1.71.2, with
Python V3.7.4 as the programming language. Python libraries
used were Pandas V1.3.5, for transforming comma-separated
values (csv) from Excel files to dataframes. Dash V2.3.1 was
the framework for designing the application’s functionalities,
described as follows: Dash bootstrap components V0.3.0 for
building the application’s layout, graph visualization
component Dash Cytoscape V0.3.0 for constructing the
interactive network graph. Beautiful Soup V4.11.1 was the
HTML parser used for pulling protein sequences from the
UniProt database. Lastly, cloud hosting application, Render
(https://dashboard. render.com/) web service with Python web

FIGURE 5
(A) GUI functionality navigation. (B) Screenshot of GUI layout.
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server gateway interface HTTP server, Gunicorn V20.1.0 was
utilized to build and run the web interface entirely in the cloud.

3.2 Graphical user interface (GUI)

3.2.1 Home page
The home page features a dependent dropdown component to

firstly allow the user to search for a specific IAV subtype and
subsequently, browse and select the pathogen(s) belonging to the
selected subtype group.

3.2.2 Main page
The main page features three main sections—header, body and

footer (shown in Figure 5B).

3.2.2.1 Header
The header section consists of two components—pathogen

header text component and infection records information table.

3.2.2.1.1 Pathogen header. This text component displays the
IAV subtype, pathogen name and Taxonomy ID, based on selections
made by the user in the home page.

3.2.2.1.2 Infection records information. This section presents
infection records information collected directly from literature and
additional information collected from web tools, NCBI Taxonomy
and UniProt databases in the form of a table. Information is filtered
to present only those relevant to the user’s selections in the
home page.

3.2.2.2 Body
The body section consists of two panels, where the left panel

displays the network graph and edge properties. The right panel is
divided into two subsections and displays the virus and mouse node
properties, respectively.

3.2.2.2.1 Network graph. The network graph was designed such
that the user can clearly differentiate between IAV and mouse nodes
by colors, where pink was assigned to IAV nodes and blue to mouse
nodes. User can differentiate interaction statistical potentials by edge
weights, where a thicker edge line represents a higher possibility of
interaction. Also, the edge color will change to blue upon clicking, to
highlight the edge selection.

3.2.2.2.2 Node and edge properties. Node properties include
either the IAV protein segment or name of mouse protein, UniProt
ID, SCOP superfamily ID, superfamily name and SCOP start/end
residue(s). Edge properties comprise IAV and mouse SCOP
superfamily ID and name with the matching DISPOT statistical
potential score. All IAV node properties will be populated upon
clicking of any pink IAV node while only the mouse SCOP
superfamily ID field will be populated upon clicking of any blue
mouse node in the network graph. Similarly, the former, together
with its respective edge property will be presented upon click on any
edge. To display all mouse node properties, a mouse protein first
needs to be selected from the “Browse Proteins” dropdown under
the mouse node properties subsection.

3.2.2.3 Footer
The footer provides the user with the following supplementary

information—protein sequence, non-interacting viral segments and
abbreviations.

3.2.2.3.1 Protein sequences. Web scraping was applied to
extract amino acid sequences of IAV and mouse proteins from
the UniProt database.

3.2.2.3.2 Non-interacting viral segments. Non-interacting IAV
protein segments consist of the following cases: 1) The UniProt ID
could not be found. Therefore, the protein sequence for input to
SUPERFAMILY 2.0 is unknown and no domain information could
be retrieved. In this case, the UniProt ID field was indicated with
“Not Found” and remaining information was labelled as “N/A”. 2)
Some protein sequences retrieved were not mapped to any SCOP
superfamily based on the SUPERFAMILY 2.0 database. As such,
there was no protein domain information for input to DISPOT. 3)
IAV domain information was available but the DOMMINO
database did not have any entry between the IAV domain and all
of 17, 120 retrieved mouse proteins, hence no interaction
information was returned by DISPOT.

3.2.2.3.2 Abbreviations. This section conveys extra information
to the user; specifically, the definitions and expansions of
abbreviations used as well as notes targeted to help the user
better comprehend the network graph.

4 Discussion

This section lists domain pairs identified with high scoring
interaction potentials. In section 4.1 the interacting domain pairs
are verified against actual protein-protein interactions identified in
biochemistry or proteomics literature. It is organized as a series of
discussions on the functional role of interacting domains pairs, per
paragraph.

4.1 Interacting protein domains

According to DISPOT scores obtained, the top 10 domain pairs
with strongest statistical interaction potentials are as listed in
Table 4.

Of 109 unique IAV strains presented in this database, the PB1 gene
segment of three strains (Table 5) were assigned the DNA/RNA
polymerases domain. However, despite the strong interactions, it
was not possible to ascertain if the presence of the DNA/RNA
polymerases domain has an impact on the pathogenicity, due to
variation in virulence levels across the different IAV strains.

The M1 gene segment of eight IAV strains were assigned a
Methyl-accepting chemotaxis protein (MCP) signaling domain
instead of alpha-catenin/vinculin-like. No interaction was found
between the MCP signaling domain with all domains present in
mouse proteins. Comparing results from experiments carried out in
H3N2 IAV strains (Tables 6, 7), especially on mice strains BALB/c
and DBA/2, it is evident that presence of the alpha-catenin/vinculin-
like domain is a virulence factor responsible for IAV infection.
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Alpha-catenins are members of the vinculin family of proteins.
Vinculin is an actin-binding protein. Protease treatment revealed
that actin present in the interior of influenza virions presumably
participates in moving viral components to the assembly site and
cytoskeletal reorganization that occurs during bud formation (Peng
et al., 2012). Actin is a family of globular multi-functional proteins
that form microfilaments in the cytoskeleton. The host cytoskeletal
network takes part in transport of viral components in the cell,
predominantly during the stages of virus entry and exit (Shaw et al.,
2008).

Pleckstrin homology (PH) domain-like is a short peptide
module often found in cytoskeletal proteins (Yao et al., 1999).
Although cytoskeletal elements are known to be associated with
M1, the underlying mechanisms are not clear (Zhao et al., 2017).
Ezrin, [EZRI_MOUSE (UniProt accession number: P26040)] has a
PH-like domain. Based on meta-analysis of IAV interactome studies
on the M1 gene segment conducted by (Chua et al., 2022), Ezrin was
discovered to be a common interactor and is a positive regulator of
virus replication.

Information fromUniProtKB indicates that majority of proteins
that contain a nucleotidylyl transferase domain possess the tRNA
ligase enzyme, otherwise known as aminoacyl-tRNA synthetase
(ARSs). ARSs play a crucial role in protein synthesis by attaching
amino acids to their cognate transfer RNAs (tRNAs) (Nie et al.,
2019). Specifically, Cysteine-tRNA ligase [SYCC_MOUSE (UniProt
accession number: Q9ER72)], an interactor of NS1, catalyzes the
ATP-dependent ligation of cysteine to tRNA (Cys) and plays a role

in translation (de Chassey et al., 2013). Furthermore, ARSs plays a
vital role in the development of immune cells because of their
involvement in maturation, transcription, activation, and
recruitment of immune cells. More significantly, ARSs regulate
various biological processes and act as signaling molecules in
infectious disease (Nie et al., 2019), which supports the high
DISPOT score (≈−4.302) predicted for the S15/NS1 RNA-
binding domain in NS1 segments.

Ubiquitin-40S ribosomal protein S27a, [RS27A_MOUSE
(UniProt accession number: P62983)], is a protein with the Zn-
binding ribosomal protein domain. It is an NS1-interacting host
protein node, classified as belonging to the apoptosis pathway
(Thulasi Raman and Zhou, 2016). Although not required for
ribosome function, it plays an important role in the life cycle of
IAV through regulating viral nucleic acid replication and gene
transcription. When interrupted in host cells, the replication and
infectivity of IAV is stopped (Li, 2019).

CCCH zinc finger present in mouse proteins is the sole domain that
interacts with NS1 effector domain-like instead of the S15/NS1 RNA-
binding domain in the NS1 segment of IAV. This domain pair has a
DISPOT statistical potential score of -2.916 (rounded to 3 d.p.). Mouse
protein, cleavage and polyadenylation specificity factor subunit 4 (CPSF4)
[CPSF4_MOUSE (UniProt accession number: Q8BQZ5)] contains the
CCCH zinc finger domain. The interaction between NS1 and
CPSF4 controls the alternative splicing of tumor protein p53 (TP53)
transcripts, and alters the expression of TP53 isoforms in parallel. As a
result, cellular innate response, particularly via type I interferon secretion
is regulated, leading to efficient viral replication (Dubois et al., 2019).

The Immunoglobulin (Ig) domain, otherwise known as
antibodies is the sole SCOP protein domain that interacts with
three IAV domains, namely DNA/RNA polymerases, Viral protein
domain and Sialidases in the PB1, HA, and NA segments
respectively. Immunoglobulin is the most abundant domain
found among the 2419 unique mouse proteins containing
interacting SCOP domains (Supplementary Figure S2). During
natural infection with IAVs, immune response against both HA
and NA will be evoked (Creytens et al., 2021). IgM response is
dominant in primary infection, while IgG response is dominant in

TABLE 4 Top 10 Interactions according to statistical potentials returned by DISPOT. A more negative DISPOT score indicates a higher possibility of interaction.

IAV segment IAV SCOP domain Mouse SCOP domain DISPOT score

NS1 S15/NS1 RNA-binding
Nucleotidylyl transferase -4.301855801

L30e-like

PB1 DNA/RNA polymerases

DNA clamp

5′ to 3′ exonuclease, C-terminal subdomain

PIN domain-like

N-acetylmuramoyl-L-alanine amidase-like

NS1 S15/NS1 RNA-binding
Zn-binding ribosomal proteins −3.608708621

Ribosomal protein S6

M1 Alpha-catenin/vinculin-like
PH domain-like

I/LWEQ domain

TABLE 5 IAV strains with DNA/RNA polymerases domain assigned to PB1 gene
segment.

IAV strain Subtype Three-class virulence level

A/PuertoRico/8/1934 H1N1
High (BALB/c, DBA/2)

Intermediate (C57BL/6J)

rA/X-31 H3N2 Low (BALB/c)

A/HongKong/97/98 H5N1 Low (BALB/c)
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secondary infection, for Ig secretion. IgA present in nasal secretions
can neutralize HA and NA of IAVs (Chen et al., 2018).

4.2 Non-interacting protein domains

The non-interacting influenza hemagglutinin (stalk) SCOP
domain present in the HA is an example that not all domains
constituting a protein are involved in interaction between a pair of
proteins. The stalk evolves slower than the receptor binding head and
it is suggested that it has to remain structurally conserved owing to its
role in membrane fusion (Kirkpatrick et al., 2018). Studies have also
suggested that the stalk domain is not under immune pressure (Wu
andWilson, 2020; Petrova and Russell, 2018). Additionally, mutations
in the stalk domain do not drastically impact virus binding or aid in
avoiding neutralizing antibody responses from the host (Kirkpatrick
et al., 2018). Therefore a potential “true negative” interaction is also
identified in the protein domain network, in line with experimental
findings.

4.3 Limitations

Generally, DISPOT works as a tool to streamline the PPI
prediction problem through providing insight on the possibility

of specific DDIs in a given physical PPI. However, it is not a
classification method and statistical potentials returned are useful
for ranking DDIs but do not directly translate to the probability
score. DISPOT which solely uses information about interactions
between protein domain should not be used as a standalone PPI
prediction tool to identify virulence factors responsible for IAV
infections (Narykov et al., 2019). Based on results of this work, IAV
genomes across different strains comprise highly similar domains
due to their similar structure (i.e., eight segments, encoding at least
11 proteins) and biological function. Furthermore, interactions that
involve protein structures are facilitated not only by the protein
domains, but also by various non-structured regions, such as
interdomain linkers, N and C terminal structures or sequences,
protein peptides (Kuang et al., 2012). Therefore, utilizing DISPOT
exclusively may produce high number of false negative or false
positive PPI predictions.

Mitochondria play an imperative role in antiviral innate
immune response through the mitochondiral antiviral-
signaling protein (MAVS) [MAVS_MOUSE (UniProt accession
number: Q8VCF0)] protein, a component of the retinoic acid-
inducible gene I (RIG-I) antiviral pathway. This pathway along
with multiple others, is essential for combating and resolving
viral infection, repair of damaged tissues, and generating
adaptive immune response. It has been revealed that PB1-F2
inhibits antiviral cytokines and enhances expression of
inflammatory cytokines through direct interaction with MAVS
and other components of the RIG-I/MAVS system (Kamal et al.,
2017). However, as protein sequences of both PB1-F2 and MAVS
were not assigned any SCOP domain by SUPERFAMILY 2.0, it
was not possible to verify this interaction via DISPOT.

A homeodomain-like domain was identified by DISPOT to be
interacting with the viral protein domain present in the HA gene
segment of IAV, with a statistical potential score of −3.203
(rounded to 3 d.p.). However a study conducted by (Farooq
et al., 2020), which integrates both IAV-Mouse PPIs detected
using either small-scale or large-scale researches carried out
experimentally or computationally found no evidence for an
interaction with HA. In (Farooq et al., 2020), homeobox
protein MOX-2 (MEOX2) [MEOX2_MOUSE, (UniProt
accession number: P32443)], containing the homeodomain-like

TABLE 6 IAV strains with a Methyl-accepting chemotaxis protein (MCP) signaling domain assigned to M1 gene segment instead of alpha-catenin/vinculin-like.

IAV strain Subtype Three-class virulence level

A/Aichi/2/68

H3N2

Intermediate (BALB/c)

A/Brisbane/10/2007 Low (C75BL/6, DBA/2)

A/Memphis/8/1988 Low (BALB/c)

A/Panama/2007/1999 Low (C57BL/6, DBA/2)

A/Wisconsin/67/2005 Low (C57BL/6, DBA/2)

rA/X-31 Low (BALB/c)

A/duck/Guangxi/53/2002 H5N1 Low (BALB/c)

A/chicken/Shandong/lx1023/2007 H9N2 Low (BALB/c)

TABLE 7 H3N2 strains with alpha-catenin/vinculin-like domain assigned to
M1 gene segment.

IAV strain Three-class virulence level

A/Hong Kong/1/1968 Low (C57BL/6, DBA/2)

A/Philippines/2/1982 High (BALB/c)

A/swine/Spain/54008/2004
Low (C57BL/6)

Intermediate (DBA/2)

A/swine/Texas/4199-2/1998
Low (C57BL/6)

Intermediate (DBA/2)

A/Victoria/3/1975 Intermediate (BALB/c)
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domain, was identified to be interacting with IAV gene segments
PB1, PA, NA, and M2 but not HA. By comparison, for DISPOT
no interaction was detected between the homeodomain-like
domain and segments PB1 and NA. Likewise, as protein
sequences of segments PA and M2 were not assigned any
SCOP domain by SUPERFAMILY 2.0, DISPOT could not be
used to ascertain these interactions. Further, the cellular
localisation for proteins with homeodomain-like domains was
found to be in the nucleus according to UniProt, which indicates
its interaction with HA would be unlikely, given that HA,
mediates cell-surface recognition and viral entry.

Additionally, the reason for virulence levels to differ across
mouse strains infected with the same IAV strain has not been
uncovered as protein sequences of mouse strains retrieved from
UniProt were derived from referencing the C57BL/6J mouse strain
only. This limitation is because currently whole proteome sequences
of other mouse strains (i.e., BALB/c, DBA/2 and FVB/J) are not
available in any public database. Translation of strain specific
genomic sequences to whole proteomes is a challenging task
needing extensive experimental effort. In this work, obtaining
these proteomes by means of experimental protein sequencing
was not possible as the necessary materials and labor were not
available.

5 Future work

To bridge the gaps in this work, sequence-based PPI
prediction methods can be employed to substantiate DDIs
identified by DISPOT. An example is the Human-Virus
Protein-Protein Interactions (HVPPI) web server, developed
by X.Yang and colleagues (Yang et al., 2020a). HVPPI applied
an unsupervised sequence embedding technique (doc2vec) to
represent protein sequences as low-dimensional rich feature
vectors. Then, a random forest classifier was trained using a
training dataset that covers known PPIs between human and all
viruses to predict human-virus PPIs. Lastly, the HVPPI web
server automatically calculates the interaction probability of a
query protein pair. The data to be used as input to HVPPI can be
constructed as follows: Firstly, human protein sequences can be
obtained using mouse and human homologs. Next, all protein
sequences with SCOP domain(s) assigned to them can be
trimmed, following the collected start and end residue
numbers. Subsequently, trimmed protein sequences can be
paired corresponding to DDIs recognized by DISPOT.
Interaction probabilities provided as predicted outputs by
HVPPI for each IAV-human protein pair can then be used to
detect false positives. For protein sequences not assigned to any
SCOP domain, complete protein sequences can be used, which
will in turn aid with the detection of false negatives.

As an extension of this work from the raw dataset, instead of
ignoring non-standard strains, the protein sequences of
recombinant or mutant IAV strains can be reproduced via
manually changing the protein sequences of wild-type or
laboratory IAV strains that are available in UniProt. This
enriches the dataset further.

The DISPOT statistical potentials, HVPPI interaction
probabilities and LD50 values can be incorporated to represent

the PPI network as a weighted undirected graph. Later, graph
embedding methods can be applied to this weighted graph to
learn low-dimensional node representations (Yue et al., 2020).
Structural information of PPI, such as the degree, position and
neighbouring nodes in a graph has been recognized to be helpful in
PPI prediction (Yang et al., 2020b).

6 Conclusion

As IAV is a significant danger to global human health and life,
it is critical to have deeper, accurate as well as reliable insights
and knowledge on the virulence factors responsible for IAV
infections to counteract potential outbreaks (Ivan and Kwoh,
2019). This work built upon a previously curated dataset of lethal
dose studies of IAV infection in mice. Thereafter, superfamily
domains involved in DDIs between IAV and mice were
discovered, and ranked according to statistical interaction
potentials calculated by DISPOT. A one-stop web server
integrating information collated from literature and various
databases, namely, NCBI Taxonomy, UniProt and
SUPERFAMILY 2.0 with the DDI network was constructed.
Furthermore, the web server is scalable and can seamlessly
accommodate addition of new functions and data when future
research is carried out.
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