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Introduction: The fungal priority pathogen Cryptococcus neoformans causes
cryptococcal meningoencephalitis in immunocompromised individuals and leads
to hundreds of thousands of deaths per year. The undesirable side effects of existing
treatments, the need for long application times to prevent the disease from recurring,
the lack of resources for these treatment methods to spread over all continents
necessitate the search for new treatment methods.

Methods: Genome-scale models have been shown to be valuable in studying the
metabolism of many organisms. Here we present the first genome-scale metabolic
model for C. neoformans, iCryptococcus. This comprehensive model consists of
1,270 reactions, 1,143 metabolites, 649 genes, and eight compartments. The model
was validated, proving accurate when predicting the capability of utilizing different
carbon and nitrogen sources and growth rate in comparison to experimental data.

Results and Discussion: The compatibility of the in silico Cryptococcus metabolism
under infection conditions was assessed. The steroid and amino acid metabolisms
found in the essentiality analyses have the potential to be drug targets for the
therapeutic strategies to be developed against Cryptococcus species.
iCryptococcus model can be applied to explore new targets for antifungal drugs
alongwith essential gene, metabolite and reaction analyses and provides a promising
platform for elucidation of pathogen metabolism.
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1 Introduction

Human pathogens are organisms that cause disease in both healthy and
immunocompromised individuals. Cryptococcus neoformans is a fungal pathogen that
causes cryptococcosis in humans. In healthy people, C. neoformans is easily eliminated and
rarely causes disease. However, it brings about cryptococcal meningoencephalitis, which causes
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6,00,000 deaths annually in immunocompromised individuals
(Chayakulkeeree and Perfect., 2008; Park et al., 2009; Dambuza
et al., 2018). Cryptococcal meningoencephalitis has a major impact
on AIDS and immunocompromised individuals, and once the
infectious particles are inhaled, pulmonary infection occurs and
can spread causing fatal meningoenceophalitis. This infection leads
to death of about 20% of affected individuals. Because of this
characteristics, C. neoformans is known as an opportunistic
pathogen (Chayakulkeeree and Perfect., 2008; Dambuza et al.,
2018; Park et al., 2009; Wang et al., 2018). There are different
pathogenic C. neoformans isolates, of which serogroups A and D
cause the cryptococcal meningoencephalitis in immunocompromised
patients, whereas B and C affect the immunocompetent individuals. C.
neoformans is acquired by inhalation from the environment in the
form of spores or dry yeast, and in the early post-infection stage,
colonization begins in lung, where the immune system response is
provided by macrophages. However, if the infection is not cleared in
the lung, it disseminates to the bloodstream and can affect major
organs and systems. As a result of this dissemination of the pathogen
to the brain, fatal cryptococcal meningoencephalitis occurs (Price
et al., 2011; Rhome et al., 2011; Sabiiti and May., 2012; Waterman
et al., 2012).

C. neoformans is a unique organism among other fungal
pathogens with its cell wall and capsule structure, both are
essential structural elements of the cell but are also key in its
virulence. The composition of these structures changes
dynamically, depending on the infected tissue. In addition, the
fact that the synthesis stage of both the capsule and the cell wall,
which are mainly composed of glycoconjugates, has not been
determined in detail, constitutes an important obstacle for
treatment options. (Mukaremera et al., 2018; Wang et al., 2018).
There are three types of drugs that are widely used against C.
neoformans infection (McEvoy et al., 2020; Mota Fernandes and
Del Poeta., 2020). One of them, amphotericin B, is a drug in the
polyene group and targets steroid metabolism (Gray et al., 2012;
Anderson et al., 2014). Another antifungal compound that affects
steroid metabolism is fluconazole, which is in the azole
group. Caspofungin, on the other hand, is an echinocandin group
compound and aims to inhibit the cell wall (McEvoy et al., 2020).
However, current therapies have undesirable side effects and serious
toxicity problems; long application times are required to prevent
disease relapse, and due to a lack of resources these treatment
methods cannot be equally spread to all continents. The drug
Amphotericin B deoxycholate is nephrotoxic, resulting in the
rising of creatinine and potassium and the wasting of magnesium
within days of starting treatment. AmBd-induced anemia is another
significant and less well-recognized adverse effect, resulting in a drop
in hemoglobin from a baseline of 2–3 g/dL. The alternative
antifungal drug Flucytosine (known as 5 FC) is very expensive
and not licensed in most sub-Saharan African countries. It is also
toxic to the body and in renal impairment, its levels should be
monitored, and its dose should be adjusted as the drug accumulation
increases the risk of bone marrow toxicity. Due to these adverse and
side effects of all the existing treatment options, patients should have
regular monitoring of complete blood count, electrolytes, and renal
function (Perfect et al., 2010; Whitney and Bicanic, 2014; Denning,
2016). As a consequence, C. neoformans infections continue to be a
problem worldwide, especially in developing countries, due to the
high number of cases and deaths, healthcare and financial problems.

The development of novel therapeutics is complicated by many
metabolic features that are shared between fungi and their human
hosts. One of the major obstacles to the discovery of new drugs is the
lack of general knowledge about the metabolism of organisms,
especially during infection. This is exactly the case for C.
neoformans, for which many studies focus on the potential antigen
(Oliveira et al., 2021; Becerra-Álvarez et al., 2022; Nelson et al., 2022)
and its functions and pathogenesis mechanisms (Sabiiti and May.,
2012; Buchanan., 1998; Rhome et al., 2011; Waterman et al., 2012;
Price et al., 2011; Mota Fernandes and Del Poeta., 2020; Gray et al.,
2012; Anderson et al., 2014; Huang et al., 2016), and very few studies
are carried out on the organism’s primary metabolism (Shea et al.,
2006; Garcia-Santamarina et al., 2018; Berguson et al., 2022; Jezewski
et al., 2022; Kinskovski and Staats, 2022; Ma et al., 2022). Even with
genomic information, using genome-scale data to understand and
interpret the function of genes in terms of the general biology of the
pathogen remains challenging for systems-level understanding.
However, the results of the analysis of the genomic data allow the
reconstruction of the genome-scale metabolic reaction network.
Genome-scale metabolic models (GSMMs) have been curated and
converted to mathematical representation and studied to determine
metabolic capabilities by using constraint-based methods in the
computational systems biology approach (Kauffman et al., 2003;
Beste et al., 2007; Orth et al., 2010). Constraint-based methods
provide a useful framework for examining metabolism in different
environmental conditions from a systematic perspective and
understanding the responses of the complex biological network
(Sun et al., 2009; Haggart et al., 2011). With the genome-scale
metabolic models (GSMMs) created for pathogens, the basic
metabolic characteristics of the organism, its virulence and
interactions with the host can be elucidated (Dunphy and Papin.,
2018; Sertbas and Ulgen., 2020). Through analyses with constraint-
based simulation methods such as flux balance analysis on genome-
scale models, the key reactions, metabolites and genes that are essential
for maintaining the vital activities of the pathogen can be determined.

The need for developing new therapies by understanding the
metabolism of this pathogen led us to reconstruct the genome-scale
metabolic model specific to C. neoformans and to elucidate the
metabolic processes of this pathogen using a computational
systems biology approach. Potential drug targets were determined
by examining how pathogen growth is affected by gene, reaction and
metabolite inhibitions. This first metabolic model on C. neoformans
will shed light on a better understanding the other Cryptococcus
species, and may guide the fight against cryptococcus-caused
infections and pathogenesis.

2 Materials and methods

2.1 Reconstruction of a draft model

The reconstruction of the genome-scale model of Cryptococcus
neoformans var. neoformans JEC21 was performed in accordance with
the protocol of Thiele and Palsson (Thiele and Palsson., 2010). The
reactions in pathways were collected from the metabolic maps in the
KEGG database (Loftus et al., 2005). The metabolites, genes and
enzyme numbers for these reactions were collected from KEGG
and CHEBI. CHEBI database (Degtyarenko et al., 2007) was used
for the chemical formulas and charges of the metabolites. In order to
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determine the directions of the reactions collected from the KEGG
database and ModelSEED database (Seaver et al., 2020) was used. All
reactions collected in draft model reconstruction were written in BiGG
Model notation (King et al., 2015).

One of the important steps in the draft model reconstruction is the
determination of gene localization. This step is important for finding
the compartment where the reactions take place. Thus, the metabolites
to be produced and consumed in each compartment can be
determined. For reactions whose compartments could not be
determined based on these databases, the compartment in which
the same reaction occurred in the iMM904 model developed for S.
cerevisiae (Mo et al., 2009) and SpoMBEL1693 model developed for
Schizosaccharomyces pombe (Sohn et al., 2012) was taken into account.
Additionally, the localization of the genes collected from the KEGG
database was searched in five different databases: Uniprot (Apweiler,
2004), Predator (Small et al., 2004), Panther (Mi et al., 2019),
PredictProtein (Yachdav et al., 2014) and TargetP (Almagro
Armenteros et al., 2019). The results from these five databases were
compared and the compartments were determined. Gene–Protein-
Reaction (GPR) associations were found for each reaction to
determine the functions of genes and how they affect reactions.

The iCryptococcus model contains 8 compartments, 649 genes,
1,270 reactions, and 1,143 metabolites.

2.2 Refinement of the reconstructed model

2.2.1 Adding reactions using literature evidence
In addition to the reactions in the KEGG database, reactions based

on literature evidence were added to the model. Reactions for
sphingolipid metabolism (Singh et al., 2017), cell wall formation
(Wang et al., 2018) and capsule formation (Zaragoza et al., 2009;
Casadevall et al., 2018) were obtained from literature and included in
the model. Moreover, as the KEGG database does not have a metabolic
map suitable for collecting reactions for oxidative phosphorylation for
Cryptococcus neoformans var. neoformans JEC21, the oxidative
phosphorylation pathway was taken from the iMM904 model (Mo
et al., 2009) which is a manually curated model of the yeast
Saccharomyces cerevisiae, a similar organism according to
phylogenetic classification (Mo et al., 2009).

2.2.2 Adding spontaneous reactions
With the addition of spontaneous reactions in metabolic maps of

the KEGG database, it is possible to reduce the number of dead-end
metabolites and to ensure the connection of metabolites with the rest of
the model (Thiele and Palsson., 2010). Spontaneous reactions with at
least one metabolite linking to the rest of the remodeling were added to
avoid too many dead-end metabolites caused by spontaneous reactions.

2.2.3 Adding transport and exchange reactions
Since the model contains different compartments, metabolites must

be transported between compartments. At the same time, metabolite
exchange from/to the extracellular environment is important for the
growth and reproduction of the organism. This is also essential for the
prevention of metabolite accumulation in the cell. Therefore, transport
and exchange reactions were included in the model.

2.2.4 Manual gap-filing
There are several gaps in the metabolic network due to lack of

information in the KEGG database as well as in the literature. This
causes an increase in the number of dead-end metabolites in the
model. Either some reactions do not take place due to the absence of
reactants, or the produced metabolites cannot be consumed and
accumulate in the cell. For this reason, manual gap-filling was
applied to identify and fill gaps in the network.

In this process, dead-end metabolites in the in silico
Cryptococcus model were first detected. The dead-end
metabolite is the metabolite that is produced but not consumed
in the model or not present in the model although it is a reactant in
at least one reaction. In addition to dead-end metabolites, blocked
reactions are essential for the gap-filling process. These reactions do
not have flux due to the model topology and/or dead-end
metabolites. Therefore, the blocked reactions in the model were
detected after finding the dead-end metabolites. In the next step,
new demand and sink reactions were proposed by taking the
reactions in the literature, dead-end metabolites, and blocked
reactions into consideration.

2.2.5 Adding demand and sink reactions
In steady-state models, the demand reactions are reactions that

allow the compound to accumulate and not be used due to mass
balance requirements. For each metabolite, the sum of the inflow at
steady state must equal to the sum of the outflow for mass balance
requirements. Demand functions can only be added to the model for
components that are known to be produced by the organism. Sink
reactions are similar to demand reactions but are defined to be
reversible.

Demand and sink reactions were added in order to activate the
blocked reactions detected by the gap-filling process. In this way,
metabolites, which should be in the organism but are not available in
the genome data, have been added to the network.

2.2.6 Adding biomass reaction
Biomass biosynthesis was set as a linear combination of the

macromolecules protein, DNA, RNA, lipid, carbohydrate, cell wall
and capsule, which were considered to account for the overall biomass
structure (Baart et al., 2007). The biomass reaction for C. neoformans
was based on the iMM904 model developed for S. cerevisiae. Detailed
information on the cell wall and capsule structure of C. neoformans
was combined with the overall S. cerevisiae cell composition, and the
biomass reaction was modified to reflect the C. neoformans cell.
(Lesage and Bussey., 2006; Mukaremera et al., 2018). Glucose was
used as the carbon source to calculate flux of biomass reactions. The
glucose uptake flux was set to 4 mmol/gDW/h, the growth rate was
calculated and the doubling time was determined. Non-growth-
associated maintenance cost means the amount of energy required
for the vital activities of the organism except growth. This
maintenance cost could be taken as 5 mmol/gDW/h for pathogenic
organism models (Henson et al., 2019). In the iCryptococcus model,
the lower bound of ATP maintenance reaction (ATPM) was set to
5 mmol/gDW/h. If the amount of ATP produced by the carbon source
remains below this value, the iCryptococcus model will not produce
any solution.
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2.2.7 Quality control
Numerous tests have been carried out to check the key features

of the constructed genome-scale model and to see if it is capable of
predicting metabolic processes in the C. neoformans pathogen.
MEMOTE is an online platform developed for evaluating the
quality of reconstructed metabolic models (Lieven et al., 2020).
The MEMOTE test was first used to determine information such as
the consistency of the model, metabolites, reactions, GPR
associations, and biomass (Lieven et al., 2020). Additional basic
tests were then performed, including leakage, ATP demand, and
energy production from water and/or oxygen properties (Heirendt
et al., 2019).

Several properties of the reconstructed iCryptococcus
metabolic model were first tested in MEMOTE platform, and
the scores were assigned specifically to the tested features. The
iCryptococcus model reached a score of 97% in the consistency
section, including the categories of stoichiometric consistency,
mass/charge balance, and metabolite connectivity. According to
MEMOTE results, there were no duplicate reactions or
metabolites in the iCryptococcus model. The metabolic
coverage value of the iCryptococcus model was 1.96, as
estimated by MEMOTE. This value indicates the level of
modeling detail of the metabolic model. If the metabolic
coverage is greater than 1, the model has a high level of
modeling detail. The test on genes and reactions indicated that
193 reactions in the metabolic model did not contain GPR, and
most of them were transport and exchange reactions. There are
47 enzyme complexes in the iCryptococcus model.

The biomass consistency was calculated as 0.95. The biomass value
was 0.36/h for the default medium.

2.2.7.1 Checking basic properties
The iCryptococcus model was checked for its functionality

through the COBRA Toolbox (Becker et al., 2007), by following
the sanity checks tutorial prepared by Thiele and colleagues. Two
different leak checks were performed using the fastLeakTest function:
i) test whether any metabolite was excreted under the condition that
the uptake of any metabolite was not allowed; ii) check any leakage
after adding the demand reaction for each metabolite in the
iCryptococcus model. The result of both tests indicated no leakage
in the iCryptococcus model.

In order to test whether the model generates energy from water
and/or oxygen, the exchange reactions of all metabolites except
water and oxygen were stopped. There was no energy production
under these conditions, and the iCryptococcus model does not
produce energy from water or oxygen. Similarly, it was tested
whether there is any matter production when the lower bounds
of the uptake reactions of all metabolites are set to zero and the
ATP demand reaction is reversible. Fortunately, there was no
matter production under these conditions. The demand
reactions for h[c] and h[m] were added to control the proton
production in the iCryptococcus model. Except for these reactions,
the uptake of all exchange reactions was stopped. As a result of this
test, the iCryptococcus model does not produce any proton from
nothing.

ATP demand from the carbon source under aerobic conditions
was also tested, where no constraint was applied to the water and
oxygen exchange reactions. The ATP demand reaction was set as
the objective function of the model. After applying flux balance

analysis, the flux passing through the ATP demand reaction was
compared with the threshold value (31 mmol/gDW/h in this test).
The ATP demand from glucose was found not to exceed this
threshold value in the iCryptococcus model, indicating no other
reaction mechanism besides the oxidative phosphorylation is
involved in ATP production.

2.3 Flux balance analysis

Constraint-based modeling is a widely used strategy to interpret
the responses of organisms with complex metabolic networks under
different conditions. This method, which is applied in genome-scale
metabolic models and works under the assumption of a steady state,
contributes to the elucidation of the genotype-phenotype relationship
by using some features specific to the metabolic network of the
organism as constraints. Flux balance analysis (FBA) examines the
flow of metabolites in a metabolic network by means of network-
specific constraints, and enables to predict the growth of the organism
or the production of a particular metabolite according to the intended
use of the organism. In FBA, the mass balance equation for each
reaction and reaction reversibility are used as constraints. For the
mathematical representation of the reactions in the metabolic
network, a stoichiometric matrix (S) with the dimension (m x n)
containing the stoichiometric coefficients of the metabolites in each
reaction is used where m represents the metabolites and n represents
the reactions. The values corresponding to a reaction column give the
stoichiometric coefficients of the metabolites in that reaction. A
negative stoichiometric coefficient is used for each metabolite
consumed in a reaction, while a positive coefficient is used for
metabolites produced. Fluxes are further subjected to capacity
constraints, i.e., adding an upper bound and a lower bound for
each reaction. In this study, the lower bounds of irreversible
reactions were set to zero and the upper bound to +1,000. The
lower limit of reversible reactions (430 reactions) was set
to −1,000 and the upper limit to +1,000. These limits allow
reactions to carry positive or negative flows under steady-state
conditions in which there is no accumulation of intracellular
metabolites.

In the optimization step, an objective function that satisfies all the
constraints must be defined to find a single solution space. The
objective function may be the growth of the organism, or it may be
the flux through a reaction related to the production of a metabolite of
interest. Linear programming was used to determine maximal
theoretical flux with constraint (Kauffman et al., 2003; Orth et al.,
2010). Due to the optimization technique based on the linear
programming principle, a flux profile that maximizes the objective
function of biomass production was obtained with iCryptococcus
model.

2.4 Robustness analyses and shadow prices

Robustness analysis is applied to find the sensitivity of objective
function of the model to a specific reaction (Orth et al., 2010). In this
study, the effect of glucose uptake on the growth reaction was
investigated by increasing its uptake values from 0–20 for two
different conditions in which oxygen uptake was limited and
unlimited. The optimal flux value for the objective function was
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calculated as a function of the altered flux through the glucose uptake
reaction.

The shadow price of a metabolite in the model shows the
sensitivity of the biomass objective function to the change in the
amount of this metabolite (Orth et al., 2010). In other words, this value
reveals howmuch the presence or absence of a metabolite will increase
or decrease the target function, i.e., the objective function of biomass
formation. The shadow prices of glucose and oxygen were calculated
for each specific solution of the model. While determining the shadow
price set of glucose, the lower and upper bounds of the oxygen uptake
reaction were set to 4. Similarly, when calculating the shadow price set
of oxygen, the lower and upper bounds of the glucose uptake reaction
were set to 4.

2.5 Deletion analyses: Genes/reactions/
metabolites

Identifying the genes that are essential for the growth and
proliferation of a pathogen is important for drug strategies to be
developed against the pathogen. Thus, it is possible to disrupt the
metabolic activities of the pathogen and prevent its proliferation in the
host. The use of computational analysis methods in the identification
process of essential genes is significantly more time-saving than
experimental methods. Single and double deletion studies were
performed to find essential genes for C. neoformans var.
neoformans JEC21. For this purpose, singleGeneDeletion and
doubleGeneDeletion functions in the COBRA Toolbox (Becker
et al., 2007) were used. The growth medium contained glucose as
the carbon source.

In single-gene deletion analysis, the biomass production was
calculated for each deleted gene and compared with the biomass
production before the deletion. The genes were defined as essential
when the ratio of biomass production with gene deletion to that of
without the deletion was less than the threshold value of 1e−3.

The human orthologs of essential Cryptococcus genes were
searched in Panther (Mi et al., 2019) and Inparanoid
(Sonnhammer and Östlund, 2014) databases.

In the double-gene deletion analysis, the same procedure was
applied with the deletion of two separate genes together. If the biomass
production obtained as a result of deletion of these genes was less than
the threshold value (1e−3), these genes were determined as an essential
gene pair. The essential genes obtained in the single-gene deletion
analysis were not used in this analysis, since they significantly reduce
or stop the biomass production irrespective of the genes with which
they were paired.

Metabolite deletion analysis was applied to identify metabolites
essential for the metabolic activities of C. neoformans. For this
purpose, EMFilter approach was used to filter metabolites in the
iCryptococcus model (Kim et al., 2010). The metabolites involved
in at least three reactions were filtered and the analysis was performed
only for these filtered metabolites. It was aimed that the metabolite to
be determined as the drug target will affect multiple reactions. For each
of the metabolites involved in at least three reactions, the lower and
upper bounds for reactions involving these metabolites were set to
zero. Metabolites that make the biomass production zero due to the
inhibiton of their reactions were determined. Currency metabolites
(ATP, NAD, NADH, NADP, NADPH) were removed from these
determined reactions, and the remaining metabolites were considered

as essential metabolites. Similar to the gene deletion analysis,
determining whether essential metabolites are present in the
human model is important for the development of drug strategies
without causing any side effects in humans. Thus, the metabolites
identified as essential were compared with the metabolites in the
human model (Recon3D).

In Reaction deletion analysis, the reactions necessary for the
metabolic processes and growth were detected, similar to gene and
metabolite deletion analyses. Thus, the principle of calculating the
biomass production for each deleted reaction and comparing it with
the biomass production before the deletion was used in the same way
with the threshold value of 1e−3. For this purpose, the algorithm in the
protocol published by Thiele and Palsson was used (Thiele and
Palsson., 2010).

3 Results

3.1 Reconstruction of GEM for Cryptococcus
neoformans var. neoformans JEC21

In the KEGG database, each metabolic pathway is represented by a
metabolic map, which includes reaction and gene information
obtained from the genome of the organism. In this way,
911 enzymatic reactions were collected from 57 pathways of C.
neoformans, and the metabolites involved in these reactions, the
gene(s) that regulate(s) each reaction, and the related enzyme
numbers (EC number) were determined. There were
8 compartments in the model: cytosol, mitochondria, peroxisome,
nucleus, endoplasmic reticulum, vacuole, extracellular space and golgi
apparatus. Most of the reactions found in the model take place in the
cytosol (660) and mitochondria (196). This is followed by peroxisome
(28), nucleus (12), endoplasmic reticulum (6) vacuole (4), extracellular
space (3) and Golgi apparatus (2), respectively.

The capsule and the cell wall are the important components of
the organism observed in both in vitro and in vivo experiments.
Therefore, in addition to the KEGG database, reactions for
capsule, cell wall formation and sphingolipid metabolism were
added to the model by using the evidence in the literature.
Although the downstream steps of capsule synthesis have been
elucidated in detail, the reactions involved in the final production
phase from monomers have not yet been elucidated. Since the
capsule is an important target component in drug studies, these
reactions (without the catalyzing enzymes in the final synthesis
step and the encoding genes) were included into the
iCryptococcus model to complete the pathway as also done in
many literature studies (Garcia et al., 2008; Singh et al., 2017;
Wang et al., 2018).

Transport reactions between compartments were added to ensure
the transfer of metabolites required for reactions taking place in
different compartments in the cell. In this way, problems of
accumulation of the metabolites or absence of reactants were
eliminated. The metabolites to be taken into the cell or sent out of
the cell were determined by literature search, the exchange reactions
for these metabolites were added to the GSMM model. As a result,
239 transport reactions and 110 exchange reactions were added to the
iCryptococcus model. In the manual gap-filling process,
11 spontaneous reactions in six pathways were added to reduce the
number of dead-ends and five demand reactions were added to
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activate the blocked reactions in iCryptococcus model. The model also
included one sink reaction.

C. neoformans is a pathogen that is capable of growing in a host
cell and also in vitro. Biomass composition data are available for
in vitro grown yeast such as S. cerevisiae and these data were used as
the basis for developing the biomass reaction for theC. neoformans cell
in silico model. C. neoformans has a dynamic capsule and cell wall,
unlike the yeast S. cerevisiae. In addition, many of the outer cell wall
components of C. neoformans, although produced in vitro, are not
essential for in vitro growth, but are required for pathogenesis (Wang
et al., 2018). Structural analyses performed on samples grown under
in vitro conditions revealed that the capsule was found as a thin layer
surrounding the cell, and the cell wall was mainly composed of glucan.
Ultrastructural studies ofC. neoformans showed that the glucans in the
cell wall are arranged in two layers. Compositional and imaging
studies suggested that the inner layer consists of an alkali-insoluble
meshwork of ß-glucan and chitin, while the less organized outer layer
corresponds to an alkali-soluble fraction containing mainly a- and ß-
glucans. Chitin and chitosan structures, which play an important role
in pathogenicity, are present as minor components. Contrary to the
results obtained from in vitro samples, it was concluded in the analyses
made with in vivo samples that a thick capsular layer was formed, the
main component of which was mannose, and that the chitin-chitosan
structures in the cell wall increased proportionally (Mukaremera et al.,
2018; Grossman and Casadevall, 2016; Zhou and Ballou, 2018;
O’Meara and Alspaugh, 2012; Baker et al., 2007; Jang et al., 2022).
In our study, to make the model applicable to C. neoformans grown
both in vitro and in vivo, two biomass reactions based on
experimentally derived values for macromolecular composition
were defined. The first biomass reaction reflected the in vivo
macromolecular composition of C. neoformans, and contained
capsule structures such as mannose, xylose, and galactose essential
for pathogenesis. The second biomass composition included only
essential components for in vitro growth. Thus, the first biomass
was employed in drug targeting studies and elucidation of gene and
reaction pairs essential for virulence. The second biomass was used to
make predictions regarding gene essentiality in vitro. With the
completion of the gap-filling and adding the biomass reaction, the
final model (iCryptococcus) was obtained (Figure 1A).

3.1.1 Information on metabolic reactions and their
compartments

In the iCryptococcus model obtained, all reactions in the
glycolysis/gluconeogenesis pathway took place in the cytosol with
the product pyruvate which was then transported to the mitochondria
where it was converted to acetyl-CoA. In the KEGG pathway map, this
reaction was represented by the sum of four different reactions,
R00014, R03270, R02569, and R07618. Instead of these four
reactions, pyruvate dehydrogenase (PDHm) catalyzed reaction in
the BiGG Model was taken as a single reaction during the
metabolic model reconstruction. Similarly, the conversion of 2-
oxoglutarate to succinyl-CoA in the TCA cycle was represented by
the reactions R00621, R03316, R02570, R07618 in the KEGG database.
Instead of these four reactions, 2-oxoglutarate dehydrogenase
(AKGDm) catalyzed reaction in the BiGG Model was taken during
the model reconstruction. In the starch and sucrose metabolic
pathway, the conversion reactions between sucrose (sucr),
D-fructose (fru), maltose (malt), D-glucose (glc D), D-glucose 6-
phosphate (g6p), D-fructose 6-phosphate (f6p), trehalose (tre) and

trehalose 6-phosphate (tre6p) take place. Glycogen (glycogen) and
1–3 beta D-glucan (13BDglcn) involved in the biomass reaction, were
also produced in this pathway, and all these reactions took place in the
cytosol.

In the pentose and glucuronate interconversion pathway,
D-glucose 1-phosphate (g1p) is converted to UDP-glucose (udpg).
In addition, some of the UDP-glucose is converted to UDP-
glucuronate. While UDP-glucose is an important donor component
for glucan in the cell wall structure, UDP-glucuronate acts as a donor
for capsule structure components. All reactions in this pathway were
included in the model and they took place in the cytosol. The amino
sugar and nucleotide sugar metabolism pathway is of great importance
as it enables crucial sugar donor production for capsule and cell wall
production. The cell wall is composed of mainly glucan, and the other
minor components are chitin and chitosan. UDP-glucose nucleotide
sugar donor is needed for the synthesis of alpha and beta glucan
structures. The sugar removed from the donor by various synthesis
enzymes is added to the glucan structure. Chitin and chitosan are
important components for growth and pathogenicity. Although chitin
and chitosan have a minor contribution to the cell wall structure, their
deficiency caused a decrease in virulence and a slowdown in the
growth of the organism (Wang et al., 2018). Therefore, both
components were involved in the biomass reaction. The capsule is
an important component for Cryptococcus neoformans infectivity.
Reduced virulence has been observed in non-encapsulated
organisms in several studies (Chang and Kwon-Chung, 1994).
Nucleotide sugars such as UDP-gal, UDP-glc, UDP-gala, UDP-xyl,
and GDP-man involved in capsule formation are produced by this
pathway.

The map of oxidative phosphorylation for Cryptococcus species
was not provided in literature, including the KEGG database.
Therefore, the oxidative phosphorylation pathway of the
iMM904 model (Mo et al., 2009) developed for S. cerevisiae was
used in the metabolic model reconstruction. The fatty acid
degradation pathway takes place in the peroxisome wherein the
fatty acids are broken down. Reactions starting from Palmitoyl-
CoA (pmtcoa) continue until Acetyl-CoA (accoa) production. A
lumped reaction (FAO80p in the BiGG Model) between octanoyl-
CoA (occoa) and acetyl-CoA (accoa) was used during the GSMM
model reconstruction.

Riboflavin (ribflv) is an important metabolite for cell growth as it is
involved in the biomass reaction of the Cryptococcus model. In the
riboflavin metabolic pathway, 3,4- dihydroxy-2-butanone 4-
phosphate (db4p) is produced from D-ribulose 5-phosphate (ru5p_
D). After the production of this metabolite, riboflavin (ribflv) is
produced in the presence of 4- (1-D-Ribitylamino)-5-aminouracil
(4r5au). Since there is no reaction for the production of 4- (1-D-
Ribitylamino)-5-aminouracil (4r5au) in the KEGG database, this
metabolite was added to the model as a demand reaction (DM
4r5au c).

The purine metabolic pathway is one of the pathways with the
highest number of reactions in the model. Several currency
metabolites are produced in this pathway and transported to
different pathways. In terms of the metabolites produced and/or
consumed, it is generally linked to the pyrimidine and thiamine
pathways. In addition to the reactions in the KEGG map, the sink
reaction for 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-
carboxylate (5aizc) and the demand reaction for (S)-2-[5-amino-1-
(5-phospho-D-ribosyl)imidazole-4-carboxamido] succinate (25aics)
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were added to the model. These reactions generally take place in the
cytosol.

In the terpenoid backbone biosynthetic pathway, metabolites
having isoprene units are produced. Depending on the presence of

(R)-5-phosphomevalonate (5pmev); (R)-5 diphosphomevalonate
(5dpmev), isopentenyl diphosphate (ipdp), dimethylallyl
diphosphate (dmpp), geranyl diphosphate (grdp) and farnesyl
diphosphate (frdp) are produced. Farnesyl diphosphate, produced

FIGURE 1
(A) Main metabolic reactions in iCryptococcus model including capsule formation, and (B) COG classification of iCryptococcus model.
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in this pathway, participates in the production of ergosterol in the
steroid metabolic pathway. Since there is no reaction for the
production of (R)-5-phosphomevalonate in the KEGG database,
this metabolite was added to the model as a demand reaction (DM
5pmev c). The reactions in steroid biosynthesis pathway generally take
place in the cytosol or endoplasmic reticulum. The organelles in which
the reactions took place were determined using gene localization and
the relevant transport reactions were added to the model. The steroid
biosynthesis pathway is very important because of the variety of
compounds produced, such as ergosterol. Besides being in the
biomass reaction, ergosterol is also critical for the regulation of
membrane fluidity (Farnoud et al., 2015; Rella et al., 2016).
R00702 and R02872 reactions with the same EC numbers and
genes in the pathway were combined in the model reconstruction
process and written as squalene synthase (SQLS) catalyzed reaction.

3.1.2 Clusters of orthologous groups of proteins
(COG) classifications

In order to identify the categories of proteins encoded in the C.
neoformans genome, the database of Clusters of Orthologous Groups
of proteins (COG) (Tatusov., 2000) providing phylogenetic
classification of proteins was used and the Gene IDs of the genes
in the iCryptococcus model was searched. It was found that 21.4% of
the genes of the iCryptococcus model were in the amino acid transport
and metabolism category, followed by the categories of energy
production and conversion, coenzyme transport and metabolism,
and carbohydrate transport and metabolism by 14.58%, 11.93%
and 11.74%, respectively (Figure 1B).

3.2 Validation studies of the iCryptococcus
model

Available information on Cryptococcus neoformans var.
neoformans JEC21 in the literature was used to simulate, evaluate
and validate the iCryptococcus model. First, the growth rate obtained
under MEMOTE default medium conditions was compared with
experimental observations to validate the model. The doubling time
of C. neoformans is between 80 min and 160 min, depending on the
nutrient medium (Chen et al., 1997; Orner et al., 2019). The biomass
production in the iCryptococcus model is 0.36/h in the default
medium in MEMOTE. Based on this biomass production, the
doubling time was calculated as 1.96 h (115 min), in line with the
literature.

Phenotypic growth data were collected from several published
literature to investigate in silico growth on different carbon and
nitrogen sources. C. neoformans can grow on a variety of carbon
sources (Barelle et al., 2006; Hu et al., 2008; Barkal et al., 2016). In the
first simulation, we sequentially switched on the exchange reactions
for the carbon sources and tested their performances for growth. This
model correctly predicted the usability of various carbon sources such
as glucose, fructose, acetate, fumarate, galactose, glycerol, sorbitol,
succinate, lactate, ethanol, sucrose, lactic acid. Next, using glucose as
the carbon source, the uptake fluxes of all nitrogen sources were
sequentially turned on and off. If the on status resulted in an increase
in biomass reaction flux, that nutrient was considered as growth-
supporting one. In the literature, C. neoformans was reported to use all
the amino acids, except for D-alanine and D-proline, as a nitrogen
source (Ngamskulrungroj et al., 2012). iCryptococcus model was able

to use some amino acids (glutamine, glutamate, aspartate, glycine,
proline, serine, alanine, threonine, arginine, isoleucine, valine,
phenylalanine, methionine, cysteine, leucine, and lysine) and urea
as nitrogen sources, in agreement with the literature information.
Although experimental studies revealed that C. neoformans is able to
consume creatinine and tryptophan as nitrogen sources, the pathogen
is not able to use these two compounds in the iCryptococcus model.

C. neoformans is a facultative intracellular pathogen in the early
stages of pulmonary infection. During the first 24 h after infection, the
number of these cells peaks in alveolar macrophages (Feldmesser et al.,
2001). The internal environment of macrophages is poor in nutrients
and rich in stressors. Alternative carbon sources are preferred because
the glucose used by the pathogen as a primary carbon source is limited
in the macrophage environment (Barelle et al., 2006; Barkal et al.,
2016). The environmental conditions in the early phase of the
infection were here simulated and the results obtained by the
iCryptococcus model were compared with those of experimental
studies in the literature. To imitate the internal environment of
macrophages in the lung, intracellular uptake of glucose was
blocked in the iCryptococcus model, and the uptake of alternative
carbon sources was turned on. Consistent with the results in the
literature (Hu et al., 2008), the fluxes passing through the isocitrate
lyase (ICL) and malate synthase (MALS) reactions catalyzed by
enzymes encoded by the CNH03280 and CNH02910 genes in the
glyoxylate cycle increased in the iCryptococcus model. Blocking the
MALS reaction in the model negatively affected the growth of the
organism on acetate, similar to the results of experimental studies (Hu
et al., 2008). Aconitase (ACONT) reactions were also elevated and
isocitrate dehydrogenase (ICDHxm) reactions were downregulated in
silico model, as well as in experimental studies (Chen et al., 1997;
Orner et al., 2019). In the iCryptococcus model, the gene CNI03590
encodes phosphoenolpyruvate carboxykinase. This enzyme catalyzes
the reaction responsible for phosphoenolpyruvate production in the
gluconeogenesis pathway when glucose is limited. It converts
oxaloacetate into phosphoenolpyruvate and carbon dioxide. In the
iCryptococcus model, phosphoenolpyruvate carboxykinase (PPCK)
catalyzed reaction had no flux when the carbon source was glucose.
However, the flux through PPCK catalyzed reaction increased when
infection conditions (e.g., zero glucose uptake rate, unlimited oxygen
supply, carbon source such as acetate) were simulated (Barelle et al.,
2006; Barkal et al., 2016). The fluxes through the glycolytic pathway,
including glucose 6-phosphate isomerase and enolase catalyzed
reactions, were also downregulated in the simulation by
iCryptococcus model, consistent with the results given in the
literature (Hu et al., 2008). Acetate utilization or production is
potentially relevant to the pathogenesis of C. neoformans because it
was one of the major metabolites present in infected tissue. Acetyl-CoA
can be produced in a variety of ways, and activating acetate directly by
acetyl-CoA synthase is one of them. The expression of the gene
encoding the enzyme for the production of acetyl-CoA from acetate
was elevated during pulmonary infection (Barelle et al., 2006). In the
iCryptococcus model, this enzyme is encoded by the CNA07740 gene
and the flux of Acetyl-Coa synthetase (ACS) reaction increases under
the condition of infection. The deletion of this reaction inhibits growth
on acetate, ethanol and glycerol, in agreement with experimental results.

3.2.1 Robustness analysis
The growth rate calculated by the iCryptococcus model was 0.36/h

when 4 mmol/gDW/h glucose was used as the carbon source (the
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amount of oxygen uptake was unlimited). As the amount of glucose
increased, the growth rate increased linearly since the oxygen uptake
was unlimited (Figure 2A). However, if the amount of oxygen in the
environment was limited (17 mmol/gDW/h), the growth rate did not
increase linearly, even if there was enough glucose (Figure 2B). Thus,
at this point oxygen limited growth rate. Excess glucose could not be
fully oxidized, thus the slope of the line decreased (Figure 2B). When
the glucose uptake rate reached 18.5 mmol/gDW/h, the growth rate
value remained around 0.9027 1/h.

3.2.2 Shadow prices
The sensitivity of biomass production to carbon source and

oxygen availability was also evaluated through shadow price
analysis, i.e., we determined how the addition of metabolites,

glucose and oxygen, affects the biomass objective function.
Figure 3 demonstrates that, as glucose uptake increased, the
iCryptococcus model produced more biomass. While glucose
uptake rate was in the range of 0–3 mmol/gDW/h, the shadow
price of glucose decreased. As glucose uptake rate further
increased, it remained constant. When glucose uptake was
3 mmol/gDW/h, the shadow price of glucose was 0.0280, and the
growth rate was equal to 0.1399 1/h, i.e., if 1 mmol/gDW/h glucose is
added, the biomass production will increase by 0.0280 (Figure 3A).
For the calculation of oxygen shadow prices, the glucose uptake rate
was fixed at 4 mmol/gDW/h. As the oxygen uptake rate increased in
the range of 1–13 mmol/gDW/h, the biomass increased (Figure 3B).
After the oxygen uptake rate of 12 mmol/gDW/h, the shadow price
of oxygen decreased drastically.

FIGURE 2
Glucose uptake rate (mmol/gDW/h)—growth rate (1/h) relationship without (A) and with (B) oxygen limitation, simulated by iCryptococcus model.

FIGURE 3
The calculated shadow prices of each solution based on glucose (A) and oxygen (B) uptake rates. The x-axis gives the flux of glucose uptake (EX glc D e)
and oxygen uptake (EX o2 e). The y-axis on the left side shows the biomass objective function calculated depending on the change in glucose uptake. The
y-axis on the right side gives the shadow prices of glucose and oxygen, respectively. During glucose uptake, the amount of oxygen was fixed at 4 mmol/gDW/
h and during oxygen uptake, the amount of glucose was fixed at 4 mmol/gDW/h, respectively.
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3.3 Effect of virulence factors on pathogen
metabolism

Growth ability at body temperature, phospholipase, urease,
melanin production and capsule formation are important factors in
the infectivity of C. neoformans (Buchanan., 1998; Hicks et al., 2004;

Sabiiti and May., 2012; Huang et al., 2016). When the pathogen first
infects humans through the respiratory tract, it is phagocytized by
macrophages in the lung at the early infection stage. The intracellular
structure of macrophages is poor in glucose, but there are alternative
carbon sources in human body. In studies performed on C.
neoformans samples isolated from macrophages, it was observed
that the gene expression levels in glycolysis and TCA pathways
decreased, whereas the gene expression levels in beta oxidation,
glyoxylate cycle and gluconeogenesis pathways increased.
Alternative pathways in the pathogen are possibly activated, which
is in agreement with our simulation results mentioned in Section 3.2.
Moreover, studies have also stated that the pathogen forms a thick
capsule structure to prevent its digestion by the macrophage, and
therefore the capsule and infectivity are related.

After the infection progresses through the circulation, C.
neoformans gains access to vital organs such as the brain within
the macrophages, and the capsule structure becomes almost non-
existent with the decrease in stress conditions as observed in samples
collected, probably due to the abundant glucose environment in the
brain. A dynamic regulation takes place in the pathogen. Abundant
glucose in the brain accelerates the proliferation and hence increases
the virulence as an indirect effect. Carbon utilization is vital in terms of
growth at body temperature. In order to elaborate on the effect of
different carbon sources on biomass formation and virulence ability in
later stages of infection, biomass production was calculated by
supplying various carbon sources into the iCryptococcus model
(Table 1). These results regarding growth and virulence are
consistent with the literature. In the absence of glucose in the
environment, the infectivity of the pathogen decreases, but stil
prevails (Price et al., 2011). More research needs to be done to
elaborate on the importance of different pathways and physical
structures at different stages of infection.

In iCryptococcus model, the gene CNC03080 encodes the enzyme
pyruvate kinase. In cases where this gene was deleted, the flux in the
biomass production reaction was reduced. Similarly, a decrease in viral
activity was reported in Cryptococcus strains deficient in pyruvate
kinase enzyme (Sabiiti and May., 2012). The genes CND04180 and
CNM00920 in the iCryptococcus model encode the phospholipase B
and lysophospholipase enzymes in the phospholipase class. These two
enzymes are responsible for lipid degradation and the production of
sn-glycero-3-phosphocholine. The simulations showed that, in the
presence of a carbon source (glucose), there was a flux through the
reaction responsible for sn-glycero-3-phosphocholine production,
implying active reaction rate. Phospholipases affect membrane
stabilization and lead to infection by suppressing the immune
system (Sabiiti and May., 2012). Urease is the other important
enzyme acting as a virulence factor (Cox et al., 2000). Urease
enzyme is encoded by CNH01900 in the iCryptococcus model.
Depending on the increase in this enzyme activity in the model,
the mitochondrial ATP production and the flux in the oxidative
phosphorylation pathway increased.

3.4 Essentiality analyses

Essential genes found by single and double gene deletion analyses
are important in terms of drug target potential, since biomass
production is significantly reduced or stopped when these genes
are at off status, and it is possible to stop the vital activities of the

TABLE 1 Biomass production on the carbon source.

Carbon source Growth rate (1/h)

Glucose 0.36

Fructose 0.33

Acetate 0.03

Fumarate 0.15

Galactose 0.33

Glycerol 0.10

Succinate 0.17

TABLE 2 The distribution of essential genes that do not have an ortholog in the
human model.

Genes Pathway

CNB03110, CNC04470, CNF03720, CND03020 Steroid Biosynthesis

CNG02210, CNK03240, CNL04470,
CNL05510, CNF01340

Oxidative Phosphorylation

CNA04370, CND03570, CNA06240 Arginine Biosynthesis

CNF01260 Purine Metabolism

CNA07120, CNG03730, CNL06550 Pyrimidine Metabolism

CNJ02910 Alanine, Aspartate and Glutamate
Metabolism

CNA06290, CNC07110, CNI02030, CNA02450,
CNJ02040, CNI02930, CNJ00410

Glycine, Serine and Threonine
Metabolism

CND03580 Amino Sugar and Nucleotide Sugar
Metabolism

CNA02570, CNN01460, CNF02480,
CNH01530 CNH01520, CNA02270,
CNH03010

Valine, Leucine and Isoleucine
Biosynthesis and Degradation

CND01200, CNK00580, CND03850,
CNG00170, CND06290

Lysine Biosynthesis

CNJ01640 Transport

CNM00100 Terpenoid Backbone Biosynthesis

CNB02610, CNH03390, CNN02320 Starch and Sucrose Metabolism

CNE00560, CNF02630, CNC06150 Riboflavin Metabolism

CND01510, CND06120, CNB01460,
CNA07220, CNH01620, CNB03030

Histidine Metabolism

CNA07990 Phenylalanine Metabolism

CNB01990, CNH02650, CNI00560, CNA07880,
CNF03410, CNM00820

Phenylalanine, Tyrosine and
Tryptophan Biosynthesis

CNG04250 Glycerophospholipid Metabolism
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pathogen. However, in order to find drug targets without causing any
side effects in humans, it is necessary to determine whether these genes
have any ortholog in the human model (Recon3D).

3.4.1 Single and double gene deletion phenotypes
All genes that contribute to the increase of the organism’s biomass

production can also be detected by gene deletion analysis. In the
iCryptococcus model, 153 of 649 genes were found as essential genes
by single gene deletion analysis. Moreover, 202 of 649 genes, including
153 essential genes, were also found to affect biomass production. Of
the 153 essential genes involved in various pathways, 58 of them do
not have orthologs in the human model (Table 2).

Further on this issue, the double-gene deletion analysis and
comparison with the human genes in the Recon3D model revealed
eight essential gene pairs for C. neoformans var. neoformans JEC21.
The essential gene pairs and reactions regulated by these genes are
shown in Table 3. The discussion on these essential genes are given
below along with metabolite and reaction deletion analyses, as these
genes also encode the enzymes catalyzing the reactions involving
essential metabolites.

3.4.2 Metabolite and reaction deletion phenotypes
The number of metabolites involved in at least three reactions

in the iCryptococcus model is 379. As a result of the metabolite
deletion analysis, 185 of 379 metabolites were found to be
essential by the iCryptococcus model. 69 of these essential
metabolites are currency metabolites. When the remaining
116 metabolites were compared with the human model
(Recon3D), thirteen of these metabolites were found to be
absent in the human model (Table 4).

The iCryptococcus model has 71 essentials (58 genes and
13 metabolites) not found in the human model. In DrugBank

database (Wishart., 2006), there are drugs targeting 16 of these
essentials. The results of DrugBank research for the potential drug
targets of the iCryptococcus model are given in Table 5. Some of these
drugs are used to treat several other kinds of diseases. Thus, a drug
repurposing process can be applied for approved or investigational
drugs. Compared to creating a whole novel medicine for a certain use,
this approach has a number of benefits.

In the reaction essentiality analysis, 198 reactions were found to be
essential out of a total of 1,270 reactions in the iCryptococcus model,
irrespective of their involvement in the production of essential
metabolites. Figure 4 shows the essential reaction distribution.

Metabolites and reactions essential for the vital activity of the
pathogen, but not found in humans, are very important as potential
drug targets. An inhibition in the production of essential metabolites
and reactions in the pathogen metabolism will inhibit its proliferation
and growth. Since these metabolites and reactions were not found in
humans, the risk of any side effects to humans is eliminated. In this
sense, 13 metabolites and 198 reactions (steroid metabolism, amino
acid metabolism etc.,) found in the essentiality analysis have the
potential to be drug targets for the therapeutic strategies to be
developed.

4 Discussion

Studies have shown that in silico genome-scale models provide
information about the complex processes occurring in metabolism
and are important tools for many metabolic engineering
methodologies. In this study, a genome-scale metabolic model
specific to C. neoformans, which is responsible for more than
hundreds of thousands of deaths annually worldwide was created
in order to conduct detailed research on the metabolic processes of the

TABLE 3 Essential gene pairs and reactions as a result of double gene deletion analysis.

Gene pair Gene ID Enzyme encoded Reaction

1 CNH03280 Isocitrate lyase ICL

CNC04680 Threonine aldolase THRA, THRA2

2 CNI03590 Phosphoenolpyruvate carboxykinase PPCK

CNK00280 Phosphoglycerate mutase PGM

3 CNN00260 Sugar transporter GLCt1, GALt2

CNG01480 Hexose transport-related protein GLCt2, FRUt2, MANt2

4 CNJ01880 Ammonium transporter NH4t

CNA02250 NH4t

5 CNF04620 Aminotran containing protein AATA3, PHETA1

CNB03180 AATA3, PHETA1

6 CNL06640 Phospho-2-dehydro-3-deoxyheptonate aldolase DDPA, DDPAm

CND05120 DDPA

7 CNG00040 Metabolite transporter G3PCT

CND01860 G3PCT

8 CNM00800 Amino acid transporter CYSt2r, TYRt2r, GLNt2r, GLUt2r, ORNt2r, ASPt2r, ARGt2r, GLYt2r,
ASNt2r, SERt2r, THRt2r, METt2r, LEUt2r, VALt2r, ILEt2r, LYSt2r,
PROt2rCNM00800
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pathogen by using computational systems biology approaches. The
iCryptococcus model created includes the biochemical reactions
involved in the synthesis of the main macromolecule components
of the organism, along with the known virulence factors. Genome-
scale metabolic models have a great advantage over traditional
methods, with their stoichiometric consistency and system-level
integration ability, discovering vital elements for the organism
under different environmental conditions (Haggart et al., 2011;
Sertbas and Ulgen 2020; Chen et al., 2022; Carey et al., 2022;
Wendering and Nikoloski, 2022).

In the reconstructed iCryptococcus model, the genes, reactions
and metabolites essential for growth were identified and the

potential drug targets were unraveled. The iCryptococcus model
contains 1,270 reactions in 57 pathways. Of these reactions,
239 are transport reactions and 110 are exchange reactions.
There are 1,143 metabolites and 649 genes in this model. In
addition, the model has two different objective functions, as the
pathogen probably does not maximize the growth rate during
infection. Moreover, virulence factors such as capsules are not
vital for the growth of the organism in vitro. For this reason, the
biomass reaction including the components for the synthesis of
virulence factors was used in potential drug target investigations.
Even if the growth rate of the pathogen does not reach the
maximum level in the model with the complete biomass
composition, for the purpose of the study it is important to
determine the essential genes and reactions required for in vivo
growth. The iCryptococcus model predicted that during the
infection, carbon metabolism was actively used, and the
utilization of carbon sources may affect the strength of
infection, in agreement with the literature.

In the deletion (essentiality) analysis, 58 genes and 8 gene pairs of
the 649 genes and 13 metabolites of the 1,143 total in the
iCryptococcus model were found to be essential, and they do not
have an ortholog in the human model. The pathways related to the
metabolisms of starch and sucrose, amino acid, steroid etc. Appear to
include these essential genes, metabolites and reactions, and can thus
be considered as potential drug targets.

Chorismate (chor) is one of the 13 essential metabolites in the
iCryptococcus model. It is an important biochemical intermediate
found in plants and microorganisms. It is at the center of the
biosynthesis of carboxylic aromatic compounds such as aromatic
amino acid, vitamins E and K, ubiquinone. It is synthesized by the
pathway called the shikimate pathway, which is involved in many

TABLE 4 The distribution of essential metabolites not found in the humanmodel.

Metabolite Pathway

13BDglcn[c] Starch and Sucrose Metabolism

2dda7p[c] Phenylalanine, Tyrosine, and Tryptophan Biosynthesis

3c3hmp[c], 3c4mop[c] Valine, Leucine, and Isoleucine Biosynthesis

4r5au[c] Riboflavin Metabolism

aspsa[c] Glycine, Serine, and Threonine Metabolism

chor[c] Phenyalanine, Tyrosine, and Tryptophan Biosynthesis

epist[c], ergst[c], fecost[c] Steroid Biosynthesis

pphn[c] Phenylalanine, Tyrosine, and Tryptophan Biosynthesis

oxag[m] Lysine Metabolism

chitin_[c] Amino Sugar, and Nucleotide Sugar Metabolism

TABLE 5 Drugbank result.

Target Drugs Organism

Ergosterol Candicidin, Nystatin, Butoconazole, Amphotericin B, Natamycin, Clotrimazole Candida albicans

Chorismate Flavin mononucleotide Streptococcus pneumoniae, Helicobacter pylori

1,3-β-glucan Ibrexafungerp, Anidulafungin, Caspofungin, Micafungin Aspergillus niger

CNA07880 5-O-phosphono-alpha-D-ribofuranosyl diphosphate Erwinia carotovora

CNF01260 Flavin adenine dinucleotide, Azelaic acid Escherichia coli, Staphylococcus aureus

CNN02320 Ibrexafungerp, Anidulafungin, Caspofungin, Micafungin Aspergillus niger

CNH01520 alpha-Ketoisovalerate Mycobacterium tuberculosis

CNA07120 Dihydroorotic Acid, Orotic acid, Lysine Nz-Carboxylic Acid,
N-Carbamoylaspartic acid

Escherichia coli

CNG03730 5-O-phosphono-alpha-D-ribofuranosyl diphosphate, Orotic acid Salmonella typhimurium

CNH02650 Flavin mononucleotide Streptococcus pneumoniae, Helicobacter pylori

CNL06550 6-hydroxyuridine-5′-phosphate, 6-oxouridine 5′-phosphate Bacillus subtilis, Escherichia coli

CNA02450 Nicotinamide adenine dinucleotide phosphate, (4s)-4-{[(2s)-2-Amino-3-
Oxopropyl] Sulfanyl}-L-Homoserinate

Haemophilus influenzae

CNA02570 Triethylene glycol, Cocarboxylase Klebsiella pneumoniae

CNA04310 3-Isopropylmalic Acid Thiobacillus ferrooxidans

CNA07970 8-Hydroxy-2-oxa-bicyclo[3.3.1] non-6-ene-3,5-dicarboxylic acid Escherichia coli

CNF02630 Dithioerythritol Mycobacterium tuberculosis
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bacteria and various fungal species. The presence of the pathway in
many parasites and pathogens, but not in metazoa, makes it a prime
drug target (Caspi et al., 2017). The genes (gene IDs: CNH02650,
CNF03410, CNI00560, and CNM00820) that regulate chorismate-
producing and consuming reactions in the iCryptococcus model
were also found to be essential genes in gene essentiality analysis.
Fortunately, these genes were not found in the human model. In this
sense, chorismate can be a potential drug target, consistent with the
study of Ziebart and colleagues (Ziebart et al., 2010) reporting that
enzymes that utilize chorismate are important antimicrobial drug
targets since they have a central role in survival and virulence.

2-dehydro-3-deoxy-D-arabino-heptonate 7-phosphate (2dda7p)
is an essential metabolite in the iCryptococcus model. The first
step of the biosynthesis of aromatic rings from carbohydrate
precursors in microorganisms and plants begins with 3-deoxy-
D-arabino-heptulosonate-7-phosphate. It is produced from
phosphoenolpyruvate and D-erythrose-4-phosphate by an enzyme
catalyzed by DAHP synthase. In the model, both this reaction and the
genes CND05120 and CNL06640 regulating the reaction were found as
a result of essentiality analysis. These results are consistent with those
of Ducati and colleagues (Ducati et al., 2007), reporting that 3-deoxy-
D-arabino-heptulosonate-7- phosphate synthase is an antimicrobial
drug target since it is important for controlling carbon flow into the
shikimate pathway.

L-aspartate 4-semialdehyde (aspsa) is a metabolite among the
13 essential metabolites. The reaction (reaction abbreviation: ASAD)
producing the L-aspartate 4-semialdehyde is an essential reaction, and
the gene (gene ID: CNA02450) that regulates this reaction is an
essential gene in the iCryptococcus model. L-Aspartic-4-
semialdehyde is an a-amino acid derivative of aspartate. It is an
important intermediate of the aspartate pathway found in bacteria
and plants in general. In this pathway, the biosynthesis of amino acids
such as lysine, methionine and threonine from aspartate takes place.
These results show that L-aspartate 4-semialdehyde can be a potential
drug target, consistent with the study of Dahal and colleagues (Dahal
et al., 2020) reporting that aspartate semialdehyde dehydrogenase is a
drug target for antifungal drug development.

Chitin is one of the 13 essential metabolites in the iCryptococcus
model. Along with glucan, chitin is an essential component of the
organism’s cell wall structure. In addition, as a result of the
deacetylation of chitin in the structure with the regulation of the
CND03580 gene, chitosan, another basic component of the cell wall
structure, is formed. The cell wall structure, which consists of these
three components, is necessary both for the growth of the organism
and for its infectivity. In the results of the essential analysis, there is the
CND03580 gene, which regulates the reaction that plays a role in the
consumption of chitin. These results show that chitin metabolites and
CND03580 gene can be a potential drug target, consistent with the

FIGURE 4
Essential reaction distribution: Among the 198 essential reactions, purine and pyrimidine metabolisms, amino acid metabolism, fatty acid biosynthesis
and steroid biosynthesis all stand out as potential pharmacological targets for the next therapeutic approaches.
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literature (Li et al., 2019), and hence chitin synthase can be a drug
target for antifungal drug development.

iCryptococcus model was able to find the targets of the main drug
groups (polyenes, azoles and echinocandins) used for C. neoformans
infections. In the iCryptococcus model, the essentialities of ergosterol
metabolite and ergosterol production-related gene CNC04470 are
consistent with the drug target of the polyenes group drugs (Gray
et al., 2012; Anderson et al., 2014). Ergosterol is a sterol found in fungi,
similar to cholesterol in mammalian cells, and plays an important role
in cell membrane integrity. The essentialities of fecosterol and
episterol metabolites and fecosterol production gene CNB03100 are
consistent with the drug target of the azole group drugs (Anderson
et al., 2014; Allen et al., 2015; Kathiravan et al., 2012). Fecosterol and
episterol are not present in cholesterol biosynthesis in mammals, but
are involved in the first step of fungal-specific biosynthesis. The
essentialities of 1,3-β-glucan metabolite and 1,3-β-glucan
production-related gene CNN02320 are consistent with the drug
target of the echinocandins group drugs (Feldmesser., 2001). Alpha
and beta-glucan structures constitute nearly 90% of the cell wall
biomass of C. neoformans. The cell wall structure has an important
effect on the survival of the organism. In addition, a deformation in the
structure of the cell wall causes a decrease in virulence.

Seventy one key components (58 genes and 13metabolites) unique
to the iCryptococcus model were also searched in DrugBank, and 16 of
these were found to be targeted by several drugs for different diseases.
Thus, a drug repurposing procedure can be used with authorized or
experimental drugs. This strategy has a lot of advantages over
developing an entire unique drug specifically for a given need.

We were able to confirm the expected virulence factors and
growth patterns as well as identify new drug targets in this fungal
pathogen using our high-quality model, iCryptococcus. This first-of-
its-kind genome-scale metabolic model of C. neoformans can be
improved upon using laboratory and biochemical studies, omics
data, and other sources of information. This model will open the
door to a better understanding of the metabolism of this human
pathogen, its interactions, and its prominence. In order to narrow the
range of viable flux phenotypes, the integration of omics data,
including transcriptomics and metabolomics, may be used as
additional constraints. One may also incorporate thermodynamic
limitations. Such a technique allows for modeling condition-specific

metabolism combining data from reaction thermodynamics and
transcriptomics/metabolomics, and provides a thermodynamically
feasible metabolic model. Despite some errors due to limited
coverage of the whole genome of an organism, genome-scale
metabolic reconstructions have shown to be quite effective at
identifying new drug targets, and if such a model is
reconstructed, drug targets can be forecast, that is followed by the
discovery of effective medications and the experimental validation of
these targets.
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