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One important characteristic of single-cell RNA sequencing (scRNA-seq) data is its
high sparsity, where the gene-cell count data matrix contains high proportion of
zeros. The sparsity has motivated widespread discussions on dropouts and
missing data, as well as imputation algorithms of scRNA-seq analysis. Here, we
aim to investigate whether there exist genes that are more prone to be under-
detected in scRNA-seq, and if yes, what commonalities those genes may share.
From public data sources, we gathered paired bulk RNA-seq and scRNA-seq data
from 53 human samples, which were generated in diverse biological contexts. We
derived pseudo-bulk gene expression by averaging the scRNA-seq data across
cells. Comparisons of the paired bulk and pseudo-bulk gene expression profiles
revealed that there indeed exists a collection of genes that are frequently under-
detected in scRNA-seq compared to bulk RNA-seq. This result was robust to
randomization when unpaired bulk and pseudo-bulk gene expression profiles
were compared. We performed motif search to the last 350 bp of the identified
genes, and observed an enrichment of poly(T) motif. The poly(T) motif toward the
tails of those genes may be able to form hairpin structures with the poly(A) tails of
their mRNA transcripts, making it difficult for their mRNA transcripts to be
captured during scRNA-seq library preparation, which is a mechanistic
conjecture of why certain genes may be more prone to be under-detected in
scRNA-seq.
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Introduction

Single-cell RNA-sequencing (scRNA-seq) allows the dissection of gene expression
heterogeneity at single-cell resolution (Chen et al., 2019a), which can give insights into
the existence and behavior of different cell types (Pennisi, 2018). In general, scRNA-seq
technologies can be categorized into two major types: droplet-based and plate-based (Baran-
Gale et al., 2018). Droplet-based scRNA-seq system includes Drop-seq (Macosko et al.,
2015), inDrop (Klein et al., 2015), and 10X Chromium (Kitzman, 2016), and plated-based
scRNA-seq system includes SMART-seq and SMART-seq2 (Picelli et al., 2013). Regardless
of the technology, scRNA-seq data is often highly sparse. In a typical gene-cell count matrix
in scRNA-seq analysis, >90% of the elements are zeros. Some of those zeros are biologically
meaningful signals, such as a cell type specific marker gene showing zero expression count in
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cells belonging to other cell types. Meanwhile, some of those zeros
represent technical issues, such as an expressed gene in a cell not
being captured and hence undetected due to technical limitations.
The fact that not all zeros in scRNA-seq data are problematic has
been supported by multiple published studies (Kim et al., 2020; Qiu,
2020; Svensson, 2020).

Many computational methods and pipelines for scRNA-seq
include components of gene selection and dimension reduction
to address the high sparsity of the data. Selection of highly variable
genes enables subsequent analysis to focus on genes whose zeros
counts are more enriched by biologically meaningful zeros and less
affected by the technical limitations (Qiu, 2020). In dimension
reduction techniques [e.g., PCA (Friedman et al., 2001), t-SNE
(Kobak and Berens, 2019) and UMAP (Becht et al., 2018)], the
reduced dimensions are derived by linear or non-linear
combinations of genes, which borrow strength across genes to
reduce the sparsity. Methods that adopted these approaches
include Seurat (Butler et al., 2018), TSCAN (Ji and Ji, 2016), and
STREAM (Chen et al., 2019b). In addition, many imputation
algorithms have been developed to generate improved versions of
the data with lower sparsity, such as scImpute (Li and Li, 2018),
MAGIC (van Dijk et al., 2018), RESCUE (Tracy et al., 2019), and
SAVER (Huang et al., 2018). Many of these imputation tools also
adopt gene selection and dimension reduction, so that they can
robustly identify gene-gene similarities or cell-cell similarities and
use these relationships to impute the data (Hou et al., 2020).
Furthermore, an opposite view of the sparsity has been presented
in two algorithms, co-occurrence clustering (Qiu, 2020) and HIPPO
(Kim et al., 2020), which demonstrated that the sparsity pattern of
scRNA-seq data can be an extremely useful signal to accurately
identify cell clusters and cell types. Therefore, the literature and
research community has not formed a consensus of best practice to
handle the sparsity of scRNA-seq data.

In the literature, the high sparsity in scRNA-seq is often referred
to as dropout. The term dropout was introduced to describe
technical failures that may cause a highly expressed gene to be
undetected (Kharchenko et al., 2014) However, in widespread
discussions, the use of this terminology has been inconsistent.
Dropout sometimes refers to zeros caused by technical issues so
that expressed genes are undetected, sometimes refers to all observed
zeros in the data, and sometimes refers to the fact that not all mRNA
molecules in the biological sample are captured which causes all
genes to be under-detected to some extent (Sarkar and Stephens,
2021). In this paper, our usage of the term dropout aligns with the
third meaning above, and we are interested in examining whether
there exist genes that are more prone to be under-detected in
scRNA-seq.

In order to develop methods to address dropouts or under-
detection in scRNA-seq, it is important to understand the factors
that contribute to the dropouts. Recent studies have suggested that
3′-UTR length, compartment, transcript count, and differential
expression levels (Andrews and Hemberg, 2019; Lipnitskaya
et al., 2022) may play roles in the dropouts of scRNA-seq. For
example, genes with shorter 3′-UTR length have larger quantitative
difference between gene expression in matched scRNA-seq and bulk
RNA-seq experiments (Lipnitskaya et al., 2022). In addition, choice
of technology platform can also affect dropouts. For example,
comparisons between SMART-seq2 and 10X Chromium showed

that 10X Chromium had more noise and a higher dropout rate
(Wang et al., 2021). However, these previous studies involved
relatively small numbers of samples, which led to conclusions
with limited scope and generality. In this study, we collected
paired bulk RNA-seq and scRNA-seq samples from diverse data
sources and diverse biological contexts, and used this data to
investigate whether there exist genes that are more prone to be
under-detected in scRNA-seq, and if yes, what commonalities those
genes may share.

Results

Paired bulk RNA-seq and scRNA-seq data

Through extensive literature search, we have identified eight
datasets with paired bulk RNA-seq data and scRNA-seq data
available for the same samples. A summary of these datasets is listed
in the Materials and Methods. In total, we have paired bulk RNA-seq
data and scRNA-seq data for 53 samples. The samples originated from
diverse biological contexts, including fibroblasts, trachea, women
reproductive system, breast cancer, and cancer cell lines.

For each GEO bulk RNA-seq dataset, median-of-ratios
normalization was performed followed by log transformation.
The scRNA-seq data for each sample was preprocessed
separately, with library size normalization followed by log
transformation. Then, a pseudo-bulk RNA-seq profile was
calculated for each sample, by averaging the scRNA-seq
expression data across all cells in the sample. Next, for each
sample pair, the normalized bulk RNA-seq and single-cell based
pseudo-bulk expression of overlapping genes among the two data
types were identified. With these preprocessing steps, for each of the
53 samples, we obtained one bulk RNA-seq profile and one pseudo-
bulk RNA-seq profile for the overlapping genes. Then quantile
normalization was performed for the bulk RNA-seq profiles.

The preprocessed paired bulk and pseudo-bulk data were
visualized using the scatter plots in Figure 1, where each dot
represents expression data of one gene in one sample. In
Figure 1A, we visualized the paired bulk and pseudo-bulk data
for all 53 samples (blue), and overlaid with the paired bulk and
pseudo-bulk data for one of the samples (red). In Figure 1B, the same
visualization was used to highlight another sample in the context of
all samples. Visualizations highlighting other samples (not shown)
looked similar to Figures 1A, B. Based on these scatter plots, we can
see the general correlation between bulk RNA-seq and scRNA-seq
data, which is expected. To justify the choice of quantile
normalization for processing the bulk expression data, we tried
to alter our analysis pipeline by removing quantile normalization for
bulk RNA-seq data, and we noticed that the alignment of
normalized bulk data across samples was poor. For example, as
shown in Supplementary Figure S1, without quantile normalization,
the range of normalized bulk RNA-seq data for the two highlighted
samples showed marked difference. Therefore, quantile normalized
is needed for the bulk RNA-seq data. Across the 53 paired samples,
the Pearson correlation between the two data types has mean and
standard deviation of 0.385 ± 0.063, while the Spearman correlation
has mean and standard deviation of 0.849 ± 0.049. The Pearson
correlation is lower than the Spearman correlation, which is

Frontiers in Bioinformatics frontiersin.org02

Li et al. 10.3389/fbinf.2023.1120290

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1120290


expected, because the relationship between the two data types is not
linear as shown in Figure 1. In addition, we can see that the
preprocessing steps were able to properly align the 53 bulk RNA-
seq expression profiles across different datasets, and also properly
align the 53 pseudo-bulk expression profiles, so that we can compare
across these samples to identify genes that tend to be under-detected
in scRNA-seq relative to bulk RNA-seq.

Genes that are consistently under-detected
in scRNA-seq

In order to identify genes that are more prone to dropout or
under-detection in scRNA-seq, we examined whether there exist

genes that repeatedly appeared in the upper-left corner of the scatter
plot in Figure 1, which compared bulk RNA-seq expression profiles
and pseudo-bulk expression profiles derived from scRNA-seq. We
visualized the scatter plot as a density plot in Figure 2A, and
manually drew a gate (region-of-interest) in its upper-left corner.
We positioned the gate to avoid high density regions, so that genes
falling into the gate represented outlier cases where expressions
detected by scRNA-seq were much lower than expressions detected
by bulk RNA-seq. If a gene appeared in the gate multiple times, this
gene was consistently under-detected in scRNA-seq experiments
compared to bulk RNA-seq experiments for multiple of the
53 samples.

The top 15 genes that most frequently appeared in the upper-
left gate are listed in Table 1, along with their numbers of

TABLE 1 List of top 15 genes that are most frequently under-detected in scRNA-seq and their frequencies.

Gene name Frequency of occurrence among 53 sample pairs

AHNAK 44

EIF4G2 43

XIST 39

CSDE1 35

DST 35

DDX17 34

FN1 34

SRRM2 31

FLNA 30

YWHAZ 28

COL3A1 27

ITGB1 27

PRRC2C 27

COL1A1 26

GNAS 26

FIGURE 1
Scatter plot visualization of paired bulk and pseudo-bulk data for 53 samples. Each dot is expression of one gene in one sample, so there are
36,362 genes *53 dots in one scatter plot. (A) Scatter plot of all genes in all 53 samples in blue, overlaid with scatter plot for all genes in one sample “N3” in
red. (B) Scatter plot of all genes in all 53 samples in blue, overlaid with all genes in another sample “P2” in red.
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appearances which ranged from 26 to 44. This suggests that out of
the 53 samples with paired bulk and single-cell data, these genes
were frequently under-detected by scRNA-seq in more than half
of the samples. Therefore, indeed, there seem to exist genes that
are consistently under-detected in scRNA-seq experiments for
many samples. The 15 genes include AHNAK, EIF4G2, XIST,
CSDE1, DST, DDX17, FN1, SRRM2, FLNA, YWHAZ, COL3A1,
ITGB1, PRRC2C, COL1A1, and GNAS. AHNAK encodes a
protein involved in diverse processes such as blood-brain
barrier formation, cell structure and migration, cardiac

calcium channel regulation, and tumor metastasis (Stelzer
et al., 2011). DDX17 encodes a DEAD box protein. DEAD box
proteins are implicated in a number of cellular processes
involving alteration of RNA secondary structure, such as
translation initiation, nuclear and mitochondrial splicing, and
ribosome and spliceosome assembly (Stelzer et al., 2011).
EIF4G2 functions as a general repressor of translation by
forming translationally inactive complexes (Stelzer et al., 2011).

Given the diversity of biological contexts of the 53 samples and
the possibility that any given gene may only be expressed in a subset
of those contexts, we broadened our criterion for under-detected
genes in scRNA-seq and considered all genes that occurred more
than once in the upper-left gate in Figure 2A. The total number of
dots in the upper-left gate is 3,363, with each dot representing one
gene in one sample. There were 468 unique genes that appeared
more than once in the upper-left gate, which is roughly 3 times more
than expected according to the hypergeometric test. The fact that
hundreds of genes appeared more than once in the upper-left gate is
interesting. Gene set enrichment analysis showed that those genes
were involved in multiple KEGG pathways related to cancer. For
example, several significantly enriched KEGG pathways include
proteoglycans in cancer (FDR = 1.24E-13), pathways in cancer
(FDR = 0.02), and microRNAs in cancer (FDR = 0.036). This is
expected because 29 out of the 53 sample were generated from
cancer patients or cancer cell lines.

To examine sequence-based commonalities among the genes
that appeared more than once in the upper-left gate in Figure 2A, we
searched for enriched motifs in the last 350 bp of those genes using
the MEME Suite (Bailey et al., 2009), and observed two motifs that
were significantly enriched with small E-value and large number of
sites (Figure. 2B). For the enriched poly(T) motif, the position-
weight visualization showed that the bit score for most of the
positions were high. For many positions, the bit score was over
50%, and for some of the positions the score reached 80%. This
indicated that there was relatively high certainty about the
enrichment of T at most of the positions within the motif,
forming a consecutive block of T’s. In contrast, for the enriched
poly(G) motif, the bit score for most of the positions were low,
indicating that the certainty of having G at the positions was low. In
addition, the G’s do not form long consecutive blocks. Therefore,
even though the number of sites of the poly(G) motif was large and
its E-value was significant, the poly(G) motif was not as strong as the
poly(T) motif. Since there is no obvious mechanism associated to the
poly(G) enrichment, we conjectured that the poly(T) motif toward
the tails of genes under-detected in scRNA-seq may be able to form
hairpin structures with the poly(A) tails of their mRNA transcripts,
making it difficult for their mRNA transcripts to be captured during
the capturing step of scRNA-seq library preparation, which is a
mechanistic conjecture of why those genes may be more prone to be
under-detected in scRNA-seq.

FIGURE 2
Density plot of scatterplot of 53 paired samples with gates
indicating candidate genes in three aspects. The gates were selected
based on data distribution of 53 paired sample such that the gate in the
upper-left corner represents the genes that are under-detected
in scRNA-seq experiments compared to bulk RNA-seq experiments,
the gate in the upper-right corner represents the genes that are highly
expressed in both bulk RNA-seq and scRNA-seq experiments, and the
gate in the bottomcorner represents the genes that are over-detected
in scRNA-seq experiments compared to bulk RNA-seq experiments
(A). Significantly enriched motifs in last 350bp of the longest
transcripts of genes that occurred more than once in each gate are
shown for upper-left gate (B), upper-right gate (C), and bottom
gate (D).

TABLE 2 Percentage of genes that frequently appeared (≥20 times) in the three gates in the analysis of paired data, and the percentage of frequently appearing
genes in the three gates in the analysis of randomly paired data.

Percentage of unique genes that occurred≥20 times Upper-left gate Upper-right gate Bottom gate

Paired data 4.3% 23.2% 0.8%

Randomly paired data (100 iterations) 5.0% (±0.7%) 21.5% (±2.7%) 0.6% (±0.3%)
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Genes consistently highly expressed in both
bulk RNA-seq and scRNA-seq

As a comparison, we manually drew another gate in the
upper-right corner of the density plot in Figure 2A, and
examined whether there exist genes that were consistently
highly expressed in both bulk RNA-seq and scRNA-seq. The
manually drawn gate was positioned such that the number of
genes within the gate was comparable to the number of genes
within the gate in the upper-left corner. In addition, we
positioned the gate to avoid high density regions, so that
genes falling into the gate represented outlier cases in
Figure 2A where expression detected in both bulk RNA-seq
and scRNA-seq are high. If a gene appeared in the upper-right
gate multiple times, this gene consistently showed high
expression in both bulk RNA-seq and scRNA-seq for multiple
of the 53 samples. The total number of dots in the upper-right
gate is 1,451, among which 96 unique genes appeared more
than once.

For the top 15 genes with highest frequency of occurrences
in the upper-right gate, their numbers of occurrences ranged
from 29 to 50, which were more than half of the 53 samples.
Given the diverse biological contexts of the 53 samples under
consideration, such consistency of highly expressed genes was
interesting. Meanwhile, since many housekeeping genes are
known to be involved in diverse fundamental biological
processes, such consistency of highly expressed genes was
also expected. The top 15 genes with highest frequency in the
upper-right gate included MALAT1, RPLP1, EEF1A1, RPL10,
RPL13, RPS18, FTH1, B2M, TMSB4X, RPS4X, RPL13A, RPL32,
RPS12, RPS27A, and RPL11. B2M encodes a protein which is
associated with MHC class I heavy chain on the surface of nearly
all nucleated cells (Stelzer et al., 2011). TMSB4X encodes a
protein which is involved in cell proliferation, migration, and
differentiation and it is a major cellular constituent in many
tissues (Stelzer et al., 2011). EEF1A1 is expressed in brain,
placenta, lung, liver, kidney, and pancreas, and it is
responsible for the enzymatic delivery of aminoacyl tRNAs to
the ribosome (Stelzer et al., 2011). In addition to the top 15 most
frequently appeared genes, we also considered genes that
appeared more than once in the upper-right gate in
Figure 2A. Gene set enrichment analysis showed that those
genes were involved in multiple GO terms including ribosome
(FDR = 3.89E-69), cytosol (FDR = 2.55E-25), RNA binding
(FDR = 1.53E-44), and protein binding (FDR = 4.01E-4), which
supported our intuition that the upper-right gate is enriched for
housekeeping genes required for diverse fundamental cellular
processes.

Using the MEME Suite, we searched for enriched motifs
among the 96 genes that appeared more than once in the
upper-right gate in Figure 2A, and observed two enriched
motifs with moderate number of sites, a poly(A) motif and a
poly(G) motif (Figure. 2C). For both of these enriched motifs in
Figure 2C, the bit scores were relatively low and did not form long
consecutive blocks, suggesting that they were not as strong as the
poly(T) motif enriched in the upper-left gate. It was encouraging
to see that the poly(T) motif enriched in the upper-left gate was
not observed in the upper-right gate, which strengthened our

mechanistic conjecture of the poly(T) motif and hairpin
structures may play a role in under-detection of gene
expression in scRNA-seq experiments.

Genes that appear to be over-detected in
scRNA-seq

For completeness, we also attempted to identify genes that
are frequently over-detected in scRNA-seq compared to bulk
RNA-seq. We manually drew a third gate in Figure 2A, to
define the outlier cases in the bottom-right region with low
density. The gate was positioned such that the numbers of
genes within each of the three gates were comparable. If a gene
appeared in the bottom gate multiple times, this gene is
consistently over-detected in scRNA-seq compared to bulk
RNA-seq. The total number of dots in the bottom gate is 1,079,
which contained 174 unique genes that appeared more than
once. Comparing to the total number of dots and number of
unique genes in the upper-left and upper-right gates, the
average occurrence of unique genes in the bottom gate was
much smaller than genes in the other two gates, indicating that
much fewer genes were consistently over-detected in
scRNA-seq.

For genes that appeared more than once in the bottom gate in
Figure 2A, we performed motif search using the MEME Suite, and
observed two highly enriched motifs (Figure. 2D). For the enriched
poly(A) motif, the bit scores for various positions were moderate.
For enriched poly(C) motif, the bit scores were relatively low at most
of the positions, and the C’s do not form a long consecutive block.
Therefore, neither of the enriched motifs in the bottom gate was as
strong as the poly(T) motif enriched in the upper-left gate.
Therefore, among genes that tended to be over-detected in
scRNA-seq, the absence of the poly(T) motif further
strengthened our conjecture that sequence-based feature may be
predictive of capturing efficiency during scRNA-seq library
preparation.

Robustness of enriched sequence motifs to
choices of normalization procedure

To demonstrate the robustness of the enriched sequence
motifs for the genes that are under-detected in scRNA-seq, we
repeated the analysis of the 53 paired samples with four choices
of scRNA-seq normalization algorithms, including DESeq2
(Love et al., 2014), SCTransform (Hafemeister and Satija,
2019), Linnorm (Yip et al., 2017), and scran (Lun et al.,
2016). For each choice of normalization algorithm, we
generated pseudo-bulk data based on the normalized
scRNA-seq data, and compared with the normalized bulk
RNA-seq data using the same analysis as in Figure 2. Results
of these four analyses based on different scRNA-seq
normalization algorithms are shown in Supplementary
Figures S2–S5. In these supplementary figures, we
consistently observed that poly(T) motif was significantly
enriched in upper-left gate of genes under-detected in
scRNA-seq, and poly(A) motif was enriched in upper-right
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and bottom gates. These results suggested that our observation
of motif enrichment is robust to the choice of the
normalization procedure.

Randomly paired bulk RNA-seq and scRNA-
seq expression profiles

To examine the robustness of our comparison between paired
bulk RNA-seq and scRNA-seq expression data, we randomly
shuffled the gene expression profiles to create 53 random pairs,
where each pair of bulk RNA-seq profile and pseudo-bulk profile
from scRNA-seq were generated from different biological samples.
With the randomly paired data, we performed the same analysis as
above, and examined whether the randomly paired data would
produce similar results.

The randomly paired bulk and pseudo-bulk data were visualized
using the scatter plots where each dot represents expression data of
one gene in one randomly paired expression profiles (Figure 3). In
Figure 3, we visualized all 53 randomly paired bulk and pseudo-bulk
data (blue), and overlaid with one such random pair (red) in
Figure 3A and another random pair in Figure 3B. Visualizations
highlighting other random pairs (not shown) were similar to Figures
3A, 3B. Based on these scatter plots, we observed that the general
correlation between bulk RNA-seq and scRNA-seq data was robust
to random pairing of the data. Across the 53 randomly paired
samples, the Pearson correlation between the two data types has
mean and standard deviation of 0.350 ± 0.055, while the Spearman
correlation has mean and standard deviation of 0.786 ± 0.058. The
average correlation values were slightly lower for the randomly
paired data compared to the average correlation values for the
paired data.

Similar to the analysis above, we manually drew three gates in
Figure 4A to capture genes that tended to be under-detected in
scRNA-seq, over-detected in scRNA-seq, or highly expressed in
both bulk RNA-seq and scRNA-seq. The numbers of unique genes
appeared more than once in the upper-left, upper-right and bottom
gates in Figure 4A were 473, 97, and 507, respectively. Before
random pairing, the numbers of genes appearing more than once
in those three gates in Figure 2A were 468, 96 and 174. The
comparable numbers for the upper-left and upper-right gates
were encouraging, showing that the pattern of under-detection in
scRNA-seq and the pattern of high expression in both technologies
were robust to random pairing of the data. Interestingly, the number
of genes appearing more than once in the bottom gate became much

FIGURE 3
Scatter plot visualization of randomly paired bulk and pseudo-bulk data for 53 samples. Each dot is expression of one gene in one sample, so there
are 37,387 genes *53 dots in one scatter plot. (A) Scatter plot of all 53 samples in blue, overlaid with scatter plot for one sample pair “N3 (bulk RNA-seq) vs.
3_cell_line_mixture (scRNA-seq)” in red. (B) Scatter plot of all 53 samples in blue, overlaid with another sample pair “3_cell_line_mixure (bulk RNA-seq)
vs. 293T (scRNA-seq)” in red.

FIGURE 4
Density plot of scatter plot of 53 randomly paired samples with
gates indicating candidate genes in the three aspects for one of the
100 iterations. The coordinates of gates were the same as those of the
scatter plot of 53 paired sample (A). Enriched motifs of last
350 bp of the longest transcripts of genes that occurred more than
once in each gate are shown for upper-left gate (B), upper-right gate
(C), and bottom gate (D).
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larger after random pairing. This was likely because the random
pairing increased the variations in the scatter plot, so that more dots/
genes fell into the bottom gate. This observation indicated that the
pattern of over-detection in scRNA-seq was not as robust as the
other two patterns of under-detections in scRNA-seq and high
expression in both technologies. For each of the three gates in
Figure 4A, we performedmotif search to the last 350 bp of genes that
appeared more than once. Similar to the results before random
pairing, for genes that occurred in the upper-left gate in Figure 4A,
poly(T) motif was significantly enriched while poly(A)motif was not
observed. In contrast, for genes that appeared more than once in the
other two gates in Figure 4A, poly(T) motif was not enriched. It was
encouraging to see that the motif enrichment that led to our
mechanistic conjecture on detection in scRNA-seq was robust to
random pairing of the data.

Comparison of frequently appearing genes
in paired and randomly paired data

As a further comparison between the paired and randomly
paired RNA-seq and scRNA-seq data, we examined genes that
frequently appeared in the three gates, ≥20 times out of the
53 samples under consideration. For each gate in Figure 2A
based on the paired data, we computed the ratio between the
number of genes that appeared ≥20 times and the total number
of unique genes, and listed the ratios in the first row of Table 2. We
also calculated these ratios for the gates in Figure 4A based on the
randomly paired data, as shown in the second row of Table 2. In
addition, we performed 100 iterations of the random pairing, which

allowed us to quantify the variation of these ratios in the second row
of Table 2 when the bulk RNA-seq and scRNA-seq data were
randomly paired. Once again, in terms of number of genes
frequently appearing in the three gates, we observed that the
results were robust with respect to random pairing of the data.

The percentage for frequently appearing genes in the upper-
right gate was above 20%, indicating great consistency of highly
expressed genes across the 53 samples from diverse biological
context, which agreed with our observation that the upper-right
gate was enriched for housekeeping genes required for diverse
fundamental cellular processes. The percentage for frequently
appearing genes in the upper-left gate was around 4%–5%, which
was lower than the upper-right gate but much higher than the
bottom gate, indicating that the pattern of under-detection in
scRNA-seq is more consistent than over-detection in scRNA-seq.

In addition to comparing the number or percentage of
frequently appearing genes, we also examined whether those
frequently appearing genes were the same between paired and
randomly paired data. For each gate, we computed the average
intersection-over-union ratio between the sets of frequently
appearing genes in the paired and randomly paired analyses,
averaging across the 100 iterations of random pairing. The
average intersection-over-union ratios were 0.75 and 0.66 for the
upper-left and upper-right gate, indicating high overlap for those
two gates in the paired and randomly paired analyses. In contrast,
the average intersection-over-union ratio for the bottom gate was
only 0.17, showing that frequently appearing genes in the bottom
gate were quite different between the paired and randomly paired
analyses, which further indicated that the pattern of over-detection
in scRNA-seq is weak.

Discussion

In this study, we analyzed paired bulk RNA-seq and scRNA-seq
data from 53 samples from various biological contexts. Comparison
between bulk RNA-seq and scRNA-seq data revealed genes that
were consistently under-detected in scRNA-seq, and this result was
robust to random pairing of the data. In addition, we observed that
the frequently under-detected genes in scRNA-seq were significantly
enriched by the poly(T) motif. In contrast, enrichment Tof poly(T)
motif was not observed in genes consistently highly expressed in
both technologies or genes that appeared to be over-detected in
scRNA-seq. The motif-based observation led to our hypothesis that
the poly(T) motif in genes may be able to form hairpin structures
with the poly(A) tails of their mRNA transcripts, making it difficult
for their mRNA transcripts to be captured during the capturing step
of scRNA-seq library preparation, which is a mechanistic conjecture
of why those genes may be more prone to be under-detected in
scRNA-seq compared to bulk RNA-seq.

The datasets analyzed in the study not only reflected a variety of
biological contexts, but also contained technical variations in
experimental and computational analyses. These technical
variations include choices of alignment tools, choices of reference
genome, library preparations and other experimental factors. All
these factors could impact the data and subsequent analyes,
including the results presented in our study. An ideal situation
for our study is that all samples were processed using the same

TABLE 3 Summary of datasets.

Bulk RNA-seq and
scRNA-seq datasets

Source of samples Number of
samples

GSE151202 (Li et al., 2021) human vaginal wall from
women with severe anterior

vaginal prolapse

15

GSE161529 (Pal et al., 2021)
and GSE161892 (Pal et al.,

2021)

Breast cancer 3

GSE176078 (Wu et al., 2021) Breast cancer 24

GSE149694 (Liu et al., 2020)
and GSE150311 (Liu et al.,

2020)

human fibroblasts 4

GSE108382 (Ho et al., 2018)
and GSE108394 (Ho et al.,

2018)

Melanoma cell line 2

GSE136148 (Dong et al., 2021) A mixture of MDA-MB-438,
MCF7, and human dermal

fibroblast cell lines

1

GSE143705 (Carraro et al.,
2020) and GSE143706
(Carraro et al., 2020)

Human trachea 2

GSE129240 (Zaitsev et al.,
2019) and 10X website

Jurkat and 293T cell lines 2
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experimental protocol, the same reference genome, and the same
alignment software with identical version. However, this is infeasible
because almost all previous datasets involved some unique details in
their experimental protocols. In addition, since raw FASTQ files
were unavailable for many of the bulk RNA-seq and scRNA-seq
samples in this study, we were unable to obtain the raw reads to run a
standardized pre-processing pipeline to derived the gene expression
data for all the samples. One experimental factor in scRNA-seq, the
choice between 3′ vs. 5′ library preparation protocol, presents an
interesting discussion, because our motif observations and
mechanistic conjecture are both relevant to the 3′ end. Among
the 8 datasets included in this study, 7 were generated using 3′
protocol. The remaining dataset contained a mix of 3′ and 5′
scRNA-seq data, but did not provide information on which
samples were profiled by which protocols. Therefore, we did not
distinguish 3′ vs. 5’ in our analysis. Since the above-mentioned
factors were ignored in our analysis, we were effectively embracing
the variations caused by those factors. Even with such variations in
the data, we still observed a robust motif for the upper-left gate of
genes under-detected in scRNA-seq. Therefore, these technical
variations strengthened the robustness of our results.

Although the poly(T)motif was significantly enriched among genes
that were frequently under-detected in scRNA-seq, there were
consistently under-detected genes that lacked this motif. For
example, among the top 15 genes that were most frequently under-
detected in scRNA-seq as shown in Table 1, the poly(T) motif was not
present in CSDE1, FLNA, FN1, DST, EIF4G2, and YWHAZ, while the
remaining 9 genes contained the poly(T) motif. The mechanism of why
these 6 genes were consistently under-detected in scRNA-seq is still
unclear and needs further investigation.

For the genes that are repeatedly under-detected in scRNA-seq,
they are less likely to be considered as highly variable genes, and
thus, are less likely to drive clustering or trajectory analysis results in
downstream analyses. However, recognizing such genes is
important. If the goal of a research project is to investigate a
specific gene which happens to be more prone to be under-
detected in scRNA-seq, scRNA-seq may be a less reliable
experimental strategy compared to bulk RNA-seq. When
developing imputation analysis of scRNA-seq data, more
attention should be paid to genes with enriched poly(T) motif.
As another future direction, the bulk vs. single-cell comparison in
this study can be extended to other genomic data types, such as
paired ATAC-seq and scATAC-seq data for a common set of
samples.

Materials and methods

Summary of datasets

Expression data for 53 paired bulk RNA-seq and scRNA-seq
samples were obtained from 8 published GEO datasets. The
paired samples were from either the same individuals, the same
cell lines, or the same tissue sources. The scRNA-seq for
majority of the 53 samples were generated using 10X
Chromium single-cell 3’ v2 or v3 protocol. Some of the
samples in one GEO dataset (GSE176078) were processed
using 10X Chromium single-cell 5’ protocol, but the identity

of those samples was not available. A summary of the 8 GEO
datasets and their references is available in Table 3. More details
about accession of individual samples and how bulk RNA-seq
and scRNA-seq samples were paired for each dataset can be
found in Supplementary Table S1.

Data preprocessing of bulk RNA-seq

For each GEO bulk RNA-seq dataset, median-of-ratios
normalization was performed by DESeq2 which accounts for
factors including sequencing depth and RNA composition. Next,
log transformation was performed on the normalized data. Then the
overlapping genes among bulk RNA-seq and scRNA-seq of each
paired sample were identified for the 53 sample pairs from the GEO
datasets, and a matrix representing the normalized bulk RNA-seq
expression of all overlapping genes of the 53 paired samples was
created. Finally, quantile normalization was performed on this
matrix.

Data preprocessing of scRNA-seq

For scRNA-seq samples, library size normalization was
performed by Seurat followed by natural log transformation
and calculation of average expression of each gene across all
the cells to get pseudo-bulk RNA-seq data. Then, a matrix
representing the single-cell based pseudo-bulk expression of
the 53 samples was created.

Correlation analysis of bulk RNA-seq and
scRNA-seq

Pearson correlation and Spearman correlation were used to
calculate the relationship between normalized bulk RNA-seq and
pseudo-bulk RNA-seq expression profiles of the paired and
randomly paired data.

Motif enrichment analysis

MEME Suite was used to find significant enriched sequence
motifs of last 350bp of cDNA sequences of longest transcripts of
candidate genes. For motif site distribution, any number of
occurrences was selected for the analysis. MEME Suite reports
E-value which serves as an indicator of the statistical significance
of a motif. A motif with an E-value smaller than 0.05 is considered to
be significant.

Pathway analysis

DAVID (Database for Annotation, Visualization, and Integrated
Discovery) was used to identify the enriched KEGG pathways, and
biological process, cellular component, and molecular function GO
terms. FDR value was reported by DAVID for each significantly
enriched pathway.
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