
Bayesian logical neural networks
for human-centered applications
in medicine

Juan G. Diaz Ochoa1, Lukas Maier1 and Orsolya Csiszar2,3*
1Data Science & Machine Learning Division, PERMEDIQ GmbH, Wang, Germany, 2Faculty of Electrical
Engineering and Computer Science, Hochschule Aalen, Aalen, Germany, 3John von Neumann Faculty of
Informatics, Óbuda University, Budapest, Hungary

Background: Medicine is characterized by its inherent uncertainty, i.e., the difficulty of
identifying and obtaining exact outcomes from available data. Electronic Health Records
aim to improve the exactitude of healthmanagement, for instance using automatic data
recording techniques or the integration of structured as well as unstructured data.
However, this data is far from perfect and is usually noisy, implying that epistemic
uncertainty is almost always present in all biomedical research fields. This impairs the
correct use and interpretation of the data not only by health professionals but also in
modeling techniquesandAImodels incorporated inprofessional recommender systems.

Method: In this work, we report a novel modeling methodology combining
structural explainable models, defined on Logic Neural Networks which
replace conventional deep-learning methods with logical gates embedded in
neural networks, and Bayesian Networks to model data uncertainties. This means,
we do not account for the variability of the input data, but we train single models
according to the data and deliver different Logic-Operator neural networkmodels
that could adapt to the input data, for instance, medical procedures (Therapy Keys
depending on the inherent uncertainty of the observed data.

Result: Thus, our model does not only aim to assist physicians in their decisions by
providing accurate recommendations; it is above all a user-centered solution that
informs the physician when a given recommendation, in this case, a therapy, is
uncertain and must be carefully evaluated. As a result, the physician must be a
professional who does not solely rely on automatic recommendations. This novel
methodology was tested on a database for patients with heart insufficiency and
can be the basis for future applications of recommender systems in medicine.
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1 Introduction

In daily business, physicians are confronted with the constant integration and evaluation of
different parameters to assess the patient’s condition and in this way, establish correct diagnoses
as well as therapies, which are standardized and encoded as Therapy Keys (TKs). This assessment
is particularly difficult for health professionals due to the constant work overload in health
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centers. In addition, there is a cognitive impairment that represents
selecting an item, like a potential therapy, from a portfolio with several
options (Hall and Walton, 2004). To this end, support systems
represent the most effective option to assist the daily work of health
professionals; but these systems require mathematical models.

Traditionally, such support systems have been defined as expert
systems (Sandell and Bourne, 1985), (Zhou et al., 2021). But recently,
with the development of efficient computing methods, the use of deep
learning methods has found more acceptance, for instance for pattern
recognition not only of medical images but also of data contained in
EHRs for the development of, for instance, recommender systems in
medicine (Rajkomar et al., 2018). Any model used in medicine must,
however, be explainable, i.e., the customer must be able to understand
how the results can be obtained.

Conventional methods of machine learning, like decision trees, are
essentially explainable since the derivation of the final result can be
tracked throughout the entire computation process. However, these
methods are limited by their accuracy and scalability, i.e., their ability to
handle an ever-growing amount of information.Deep learningmethods
are an attractive option over other modeling alternatives. The methods
based on this method are unfortunately unexplainable, since the
computation of the network’s weights follows internal coupled
optimization processes that are difficult to explain and present to
customers with little technical background in the field. To this end,
significant effort has been made in order to establish and standardize
explainability in deep learning (Linardatos et al., 2020a).

Alternatively, deep-learning models can be explainable with a
change in the network’s structure, for instance by combining neural
networks with continuous logic and multi-criteria decision-making
tools (Csiszár et al., 2020) leading to the definition of Logical
Neuronal Networks (LONNs). Recently, this methodology has been
applied to recommender systems in medicine, providing the option to
define the logical combination of a hierarchy of parameters (Ochoa
et al., 2021). However, one limitation of this methodology is its inherent
inflexibility, which could be responsible for the low performance of this
modeling methodology (Wang, 2021). Medical customers desire
control over the logical combinations, and the smaller and better-
defined as well as more generalizable the network is, the easier it is to
make it understandable to them, perhaps at the expense of precision.

An explainable model must also manage uncertainties in the data.
The recording of health data is prone to uncertainties and errors,
coming from the inherent biological variability (considering that every
organism is exposed to an environment, implying the recording of data
in non-controlled experimental conditions), to errors in the recording
of diagnoses (which is about 63% in EHRs1), leading to a persistent
epistemic uncertainty in the recorded data in EHRs, which is present in
all biomedical research (Viale, 2021). This implies that models should
be essentially non-deterministic and that the model must be stochastic,
rather than flexible or “smart” in its architecture. Thus, an explainable
model must be able to tell the customer how high its precision is by
indicating the corresponding amount of uncertainty2. Explainable
models are not only concerned with transparency of the structure

and information flow, leading to a final prediction based on simple,
generalizable models (Occam’s razor), but also imply the possibility of
generating parallel models reflecting this uncertainty.

Now we combined LONNs with Bayesian Neural Networks
(BNNs) (Lampinen and Vehtari, 2001) to create a new modeling
methodology known as BaLONNs. To represent uncertainty
and imprecision in real data, previous efforts have combined
fuzzy logic with Bayesian Networks (Pan and Bester, 2018), but
no implementation has been made in the context of deep
learning.

We tested this novel approach for the prediction of the kind of
heart failure (HF) and the expected therapy time (TL) of patients
with diabetes, using a Pakistan Data Base from the UCI repository
(Chicco and Jurman, 2020). Based on these results, we now aimed to
develop not only an improved explainable model but also a human-
centered application that informs the customer when the model is
“unsure” about a given prediction.

This article is organized as follows. In the next section, we introduce
the methodology and modeling strategy. Thereafter, we report testing
the methodology and provide qualitative as well as validation results.
Finally, we discuss the implications of the introduced methodology and
provide an outlook on the next research steps.

2 Methodology

2.1 Data extraction, feature engineering and
data balancing methods

This analysis uses data from diabetic patients, some of whom have
heart failure (Pakistan Database, from the UCI repository3). The
corresponding attributes are listed in Table 1, where V1 to V10 are
the inputs, andO1, as well as O2, are themodel targets. Observe that the
parameter “Time” is a metric of the total time (in months) that the
patient has been treated. In the recorded data we are not dealing with
the variability of several measurements of a single parameter for one
patient (aleatoric uncertainty), or the complete uncertainty about the
internal processes of the system (ontological uncertainty), but with the
implicit variations between patients contained in the data (epistemic
uncertainty), which have different origins: from biological/physiological
variability to systematic errors in the recording of the data.

Since we required a large population, we synthesized additional
patients from the original database. Personal information, like
identification number (ID), age, and sex, was also
correspondingly modeled. For the simulation of the distribution
of diagnoses, we used the “synthpop” package4, basically using linear
regression models for each parameter (Nowok et al., 2016).

From this data we can extract two main features.

• the kind of heart failure HF as a binary value representing
patients with systolic heart failure (SHF, HF = 1) and heart
failure with preserved ejection fraction (HFNEF, HF = 0)

1 https://healthinfoservice.com/most-common-icd-10-error-codes/

2 https://www.heise.de/hintergrund/Wie-eingebautes-Misstrauen-KI-
Systeme-sicherer-machen-kann-6049154.html?wt_mc=rss.red.ho.ho.
atom.beitrag.beitrag

3 The data has been obtained from the UCI repository: https://archive.ics.
uci.edu/ml/datasets/Heart+failure+clinical+records

4 https://www.r-bloggers.com/generating-synthetic-data-sets-with-
synthpop-in-r/
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• the therapy length TL, representing the time the patients are
treated. In this last case, we transform the registered time τ,
which is a natural number τ ϵN (number of months), into a
discrete scale representing low (TL = 0, for 0–1 month),
medium (TL = {1,2}, for 2–4 months), and a large (TL = 3
for 5 and more months), expected therapy time.

While the first parameter HF is related to the kind of therapy a
patient becomes, the second one, TL, is related to the quality of this
therapy, such that a low-quality therapy corresponds to TL = 0, a
medium-quality therapy corresponds to TL = 1 or TL = 2, and a high-
quality therapy corresponds to TL = 3. Therefore, this one is a problem
with two different tasks (TL, HF) and can be defined as a Multitask
Learning (MLP) problem, where multiple tasks are simultaneously
learned by a shared model.

To solve this problem, we opted to implement the model as a
regression algorithm. This seems a natural strategy because
regression algorithms, by definition, have a notion of the relative
distance of target values (Crawshaw, 2020).

Since these classes are essentially imbalanced, we require
balancing methods to reduce bias in our modeling. To this end,
we implemented Synthetic Minority Oversampling TEchnique
(SMOTE) to both HF and TL to create an oversampling of less
frequent values. Despite its limitations, we selected this method
because, according to Blagus et al., it is beneficial for low-
dimensional data (Blagus and Lusa, 2013). In Figure 1, we
present the original data distribution of TL before and after data
balancing with SMOTE.

80% of the data is used exclusively for model training and
validation. The final 20% of the data is test data used to evaluate the
quality of the model. For bothmodel training and quality evaluation,
we normalized the input data.

2.2 Baseline models

Our baseline model is essentially a deep-learning model with dense
fully interconnected neuron layers implemented on TensorFlow.

TABLE 1 Principal input and output parameters extracted from the HER of diabetic patients with heart insufficiency.

Input/Output Variable Abbreviation Kind of parameter

- ID Character

V1 Sex Binary

V2 Age Real value

V3 Creatinine_phosphokinase CPh Real value

V4 Ejection_fraction EF Real value

V5 High blood pressure HBP Binary

V6 Platelets P Real value

V7 Serum_creatinine SC Real value

V8 Serum_sodium SS Real value

V9 Smoking Binary

V10 Anemia Binary

O1 Diagnose (kind of heart insufficiency) HF Binary

O2 Time (feedback period) TL Multiclass

FIGURE 1
Distribution therapy length in the population in the original population (A) and the SMOTE balanced population (B).
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The basic architecture of the baseline model is resumed in
Table 2, which has been selected to compare its performance
against the LONN architecture. Observe that in this model we
have implemented rectified linear layers, using MSE (Mean
Square Error) as a loss function. Recent investigations have
demonstrated that rectified linear functions are the most effective
in representing data processing in neural networks5, particularly for
networks with many layers (Urenda, 2020). Additionally, the ordinal
classification problem of the therapy length is, based on Kramer
et al., handled as a regression problem with an additional post-
processing step (Kramer et al., 2001).

2.3 Bayesian Neural Networks (BNN)

Often, errors occur in the way data is entered into EHRs.
This is in part because the information in EHRs is partially
manually curated, implying epistemic uncertainty in the stored
data6.

To correctly model this uncertainty, we implement models
that marginalize the distribution of parameters in order to make
prediction7 by implementing the weights in the neuronal network
as a distribution defined as a Gaussian process. In this way, a
trained model is not the result of the optimization of single
parameters, but the optimization of the statistical distribution of
these parameters. The same network with finitely many weights is
known as a Bayesian neural network8. To this end, we aim to
minimize the evidence lower bound of the network weights,
which is defined as9,10

L wlk( ) � H Q wlk
′( )( ) −H Q wlk( );P wlk, wlk

′( )( ), (1)

where H(Q(wlk
′)) is the cross entropy defined as

H(Q(wlk
′)) � −∑

Z

Q(wlk
′) · log (Q(wlk

′)), Q is a distribution over

unobserved variables wlk
′, in this case, the prior, and P(wlk, wlk

′) is
the posterior of the distribution of observed data wlk, defined as a
likelihood function. In this specific implementation, the observed
data wlk are the neural network’s weights of the layer l to the layer
k, and wlk is the estimated distribution for these weights. This
definition is equivalent to minimizing the Kullback-Leiber
divergence DKL(Q ‖ P) of the distributions Q and P.

Thus, the network will be trained such that DKL(Q ‖ P) → 0, as
well as maximize the probability of the data under the posterior
weights11: the model fit the actual achieve high log-likelihood, while
it stays close to the prior12. We define both Q(wlk

′ )[σpr] and
P(wlk, wlk

′ )[σpo] as Gaussian distributions, where σpr is the
corresponding standard deviation of the prior, and σpo is the
standard deviation of the posterior. Finally, in all the
probabilistic models, the last layer delivers the result as a
distribution, with its standard deviation; in all the experiments
we have fixed this standard deviation to 1.0. The implemented
loss function is the log-likelihood multiplied by negative one
(negloglik), which returns the value of the negative loglikelihood
function for the data used to fit the probability distribution13 (the
learning rate is listed in Table 3). The optimization process for the
model training was computed using the Adammethod (Kingma and
Ba, 2017).

The implementation has been performed on TensorFlow in R
using R-Studio. The final trained model is an object containing the
training functions for the distributions in the statistical layers. These
Bayes layers are then used to evaluate the effect of epistemic
uncertainty in two models.

• BNN: Bayesian Neural Networks (stochastic baseline model).
• BaLONN: Bayesian LONN.

TABLE 2 Model parameters of baseline model.

Layer # Units Activation function

Input Layer 10 Relu

#1 10 Relu

#2 4 Relu

#3 3 Relu

#4 2 Sigmoid

TABLE 3 Examples of logical operators and their corresponding
implementation.

Logical operation wij bi

AND 1 −1

OR 1 0

NOT (x) −1 1

NOT (y) −1 1

Not (x) and Not (x) −1 1

5 https://scholarworks.utep.edu/cgi/viewcontent.cgi?article=
2170&context=cs_techrep

6 In case of evaluation of time series, for instance in ECGs, we expect to find
aleatoric uncertainty

7 https://cedar.buffalo.edu/~srihari/CSE574/Chap5/Chap5.7-
BayesianNeuralNetworks.pdf

8 https://blogs.rstudio.com/ai/posts/2019-06-05-uncertainty-estimates-
tfprobability/

9 https://en.wikipedia.org/wiki/Evidence_lower_bound

10 https://xyang35.github.io/2017/04/14/variational-lower-bound/

11 https://blogs.rstudio.com/ai/posts/2019-11-07-tfp-cran/

12 https://blogs.rstudio.com/ai/posts/2019-06-05-uncertainty-estimates-
tfprobability/

13 https://www.mathworks.com/help/stats/prob.normaldistribution.
negloglik.html
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2.4 LONNs and bayesian layers

The application of LONNs for the evaluation of medical data has
been described by Ochoa et al. (Ochoa et al., 2021), whereby single
layers are replaced by frozen weights and bias representing logical
operations.Here, a single Perceptron in the NN network is activated
by so-called Squashing activation functions, a differentiable and
parametric family of functions that satisfy natural invariance
requirements and contain rectified linear units as a particular
case (Urenda, 2020). These activation functions are in this
framework defined as follows:

Sβ x( ) � 1
β
ln

1 + eβ·x

1 + eβ· x−1( )( ), (2)

where β is a real non-zero value that must be adjusted to let the
model be convergent. Thus, the Perceptron in the neural
networks’ hidden layers can model a threshold-based nilpotent
operator (Csiszár et al., 2020): a conjunction, a disjunction, or
even an aggregative operator. This means that the first (and last
layer) are non-frozen, i.e., only these two layers will be trained,
while the hidden layers of the pre-designed neural block, work as
logical operators with frozen weights and biases. An intuitive idea
of the combination of the Bayes Layers on the LONNs is
presented in Figure 2, where the first two layers perform a
weighting of the input parameters.

To visualize the model explainability, we exemplarily show the
way how the LONN model performs a computation with the
parameters listed in Table 1: Observe that the Creatine_
Phosphokinase (CPh) has a high statistical weight in the model;

thus, this parameter, combined with other parameters having also a
high weight in the first layers, are combined in the logical gates to
predict the two outcomes, HF and TL.

Thus, the baseline model is modified by freezing the weights and
biases in the layers that are modeled as logical switches (see the
parameters listed in Table 2). This definition implies that the

FIGURE 2
The implemented ProbLONNs contain distributed weights in the initial layer representing the weight distribution. The number of neurons in the
hidden layers is defined according to the parameters presented in Table 2. In a multiclass problem, the implemented model tries to predict between, for
instance, two classes based on the logical decision after combining parameters that have been identified by relevance depending on theweight estimated
in the first model layers.

FIGURE 3
The implemented model mimics cognitive processes under
uncertainty, where guesses are performed and finally sampled
considering different options (outputs) to take a final decision. While a
decision is made, other alternative answers are not fully
discarded.
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number of trainable parameters for weight estimation gets reduced,
also implying a reduction of the degrees of freedom of the model.

According to this, the following exemplary logical combination
is performed using a LONN to predict Heart Failure (HF) and
Therapy Length (TL) (abbreviations according to Figure 2; Table 1)
[Creatin Phosphokinase, High blood pressure, Serum Creatinine,
others] AND [Creatinine Phosphokinase, Ejection Fraction, others]
OR [Creatin Phosphokinase, Serum Creatinine, others] AND
[Creatinine Phosphokinase AND Ejection Fraction], where
“others” refer to other parameters with a lower weight. Using
logical notation, the logical combination of parameters can be
described in the following way:

CPh ⊕ HBP ⊕ SC ⊕ others( )[ ] ∧ EF ⊕ CPh ⊕ others( )[ ]( ) ∨
CPh ⊕ SC ⊕ others( )[ ] ∧ EF ⊕ CPh ⊕ others( )[ ]

(F − 1)
CPh ⊕ SC ⊕ others( )[ ] ∧ EF ⊕ CPh ⊕ others( )[ ]( ) ∨
CPh ⊕ SS ⊕ others( )[ ] ∧ CPh ⊕ SC ⊕ others( )[ ]( ) (F − 2)

Observe that all the above-documented logic operators are
fuzzy, i.e., logical operations are not exact but essentially fuzzy
due to the implemented continuous-valued operators. In
addition, because the logical layers are essentially frozen, there
is little chance that the model will be overfitted if multiple layers
are coupled into the model.

Our implemented Logic-Operator neural network (LONN) is
thus a method simulating the cognitive logical thinking process
(Figure 3).

We simulate human thinking by introducing probabilistic layers
(Sohn and Narain, 2021) which recognize not only Bayesian
inference but also their inherent uncertainty, as well as the
possibility of representing both uncertainty and inaccuracy (Pan
and Bester, 2018). Therefore, the results of the model are not
intended to present accurate solutions and results. Rather, these
results represent both a plausible prediction of an outcome and its
corresponding uncertainty.

By plotting this cognitive process, we are dealing not only with a
single model prediction but with the sample of results provided by
models with different weights provided by the Bayesian model (see
Figure 4). Accordingly, the mathematical implication of combining
LONNS with Bayesian networks is that the possible fuzzy logic
combinations are not unique but distributed. In terms of the
explainability of the model, this means that the fuzzy logic
combinations provided (e.g., Figure 1 and Figure 2) are the mean
of all averaged possible combinations identified by the model.

3 Results and model validation with
variability

For the model definition we performed a systematic evaluation
of the following parameters.

• Normalization, for instance treatment times and other
parameters.

• Meta parameter analysis.
o Dependency of the model on activation functions.

⁃ Dependency of model distributions on activations.
⁃ Dependence of model distributions on LONNs.

o Learning Rate—Adam.
o Number of neurons.
o Number of epochs.

• Architecture analysis—especially for LONNs.
• Statistics—distribution functions in the Bayesian
strata—possibly new definition of the model.

Furthermore, we performed a systematic analysis of the
influence of the parameters in the Bayesian layers on the model
precision (standard deviation in the prior and posterior standard
deviations). Based on the previous definitions, we performed
different computations using the meta-parameters for each model
listed in Table 4 considering Deep Neural networks (DNN) and
Bayes Neural Networks (BNN).

FIGURE 4
Intuitive meaning of the application of Bayes in the model
definition. For the computation of a single prediction, the computed
results are sampled.

TABLE 4 Main model parameters used in the current implementation.

DNN BNN BaLONN

Optimizer Adam Adam Adam

Learning Rate 0.08 0.008 0.008

Loss function MSE negloglik negloglik

Trainable Prior - True True

Epochs 400 300 300
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3.1 Evaluation metrics

The fact that we are dealing with uncertainties implies that the
result is non-deterministic, i.e., the outputs can consist of a sample of
several plausible outputs. For instance, for some patients, the
evaluation of the expected therapy time can be a range (for
instance, the expectation is that the patient will get a medium to
long therapy time TL), and not an exact outcome (either a medium
OR a long TL). In a real clinical environment, this ambivalent scenario
is much more realistic than a pure deterministic one. For this reason,
the validation must be performed using distributed outputs.

To compute the final validation and its corresponding statistics,
we define the true prediction for each patient i (Pri) for both HF and
TL as the statistical value that best matches the expected target value
(with M the total number of patients). For the computation of Pri,
we perform a micro statistic, where the average of the predicted
values fij is compared to the target value Oi, where j is the number
of times that the statistical model is run in order to obtain and
sample the different predictions, andN is the total number of times
the model is run to generate a sample of predictions (as has been
shown in Figure 4). In our implemented models, N � 1000.

In our validation, we opt to use micro averages14, i.e., averages
biased by class frequency. To this end, we must count the number of
true predictions obtained after sampling the outcomes from the
statistical model. If the distance between the average and the target
lies below a tolerance value, then this state will be considered as a true
prediction Prmi � 1 , where m refers to the class we want to predict: if
we compute HF, then m � 1, otherwise TL corresponds to m � 2.

Prmi � 1, ifϕm
i �

∑N

j�1fij

2
− Oi <Tr

0, otherwise

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (3)

Since we are simultaneously dealing with a binary (HF) and a
multiclass (TL)15 prediction, we require an adaption of the
prediction Prmi implemented in the model validation:

• For TrHF, we consider the prediction of a binary value
between 0 and 1, such that 0< ϕ< 1.0, such that TrHF � 0.7
is a reasonable definition to sample a majority of one of the
two binary values.

• For TrTL, we are evaluating the distance between different states
between 0 and 3. Contrary to the binary prediction (which can be
either 0 or 1) we can accept predictions with more than two values,
for instance 2 and 3 (expectative of amedium to large therapy time),
such that 0<ϕ< 2; according to this, TrTL � 1.2 is a reasonable
definition to sample at least two plausible model outputs.

In a nutshell, Tr is a parameter to decide how many
simultaneous states from the output fij can be accepted and is
the accepted degree of variability of the model. Based on these two
definitions, we can then compute the precision as

Pm � ∑M
i�1Pr

m
i

M
(4)

while the total error was estimated as:

E � 1 − ∑M
i�1ϕi

m

M
(5)

3.2 Model performance

To test the correct functionality of the models, we perform a first
inspection of the prediction’s distribution. For the baseline model
(NNs), we employ the predicted values, while for the BNN, we
compute the mean value from the sampled predictions. This first
general result indicates, first, that the model has variability and,
second, that it can reproduce the test data dynamics.

Furthermore, we analyze the predicted variability and check if it
is generated by both the model structure and the information
integration, and not by the stochastics. As a result of a first
inspection, we discovered that the mean value distribution of the
sampled predictions derived by BNNs is different from the target
distribution (Figure 5), which samples the absolute values. As a
result, the way in which the uncertainty of the outputs is modeled
can affect the overall distribution of the prediction.

Our next step was to analyze the model performance by sampling
different predictions for each patient. Before applying this concept to
BaLONNs, we explored the performance of BNNs to better
understand their behavior. It is necessary to carry out a detailed

FIGURE 5
Distribution of the therapy length (TL) of the target data (A), the prediction computed with the baseline model (B), and the BNNs (C).

14 https://stats.stackexchange.com/questions/156923/should-i-make-
decisions-based-on-micro-averaged-or-macro-averaged-
evaluation-mea

15 In this work we are dealing with both a multiclass and a multilabel model:
with the single model outputs, we are dealing with a multiclass
classification, while after sampling all the outputs we are dealing with
a multilabel classification.
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validation of the predictions, considering the possibility of ambiguous
results, as shown in Figure 3. It is possible to get a short or middle
expected TL for a single patient, but the distribution givesmore weight
to one of the prognoses, as shown in Figure 5. Therefore, the main
expectation is a short TL, with a low chance of a middle TL. A boxplot
can be used to represent the predicted outcomes of a patient
population, as opposed to just a single prediction.

In Figure 6, we deploy this boxplot for a small fraction of the
patient population and measure the distance to target values to
validate the model. The color keys represent the quality of the
validation. Green stands for a perfect validation, blue for a
prediction where the target value lies inside the distribution of
the predictions, and red for an incorrect prediction, where the
target lies outside the distribution of the computed predictions.

The computation of the error considers the fact that both
observables, therapy length and class of heart failure, are
distributed as well. Finally, the results can be either represented
using box plots or violin plots (Figure 7).

These kinds of visualizations are useful ways to qualitatively
understand how the implemented models are working.

• Green when a model is relatively confident,
• Blue when the model delivers a prognosis with high
uncertainty,

• And red, when the uncertainty is extremely large.

Of course, this has an implication for the final validation: with
this implementation, we were able to reduce the error to 24.48% and
21.24%, representing an improvement of about 3% with respect to
pure deterministic models (total error of baseline model was 37.7%).
But this error reduction has been obtained because we account
predictions “in blue”, i.e., we are accepting off-predictions, where the
targets lie inside the predicted distribution. Otherwise, the computed
predictions of the BNNs only considering the true positives/
negatives could deliver a much higher prediction error (see
Figure 7).

FIGURE 6
Precision of the prognosis of the therapy length for one patient with an ambiguous output (A), and for a patient cohort (20 patients) in the whole
population with validation results: green is a perfect prognosis, blue is a by-prognosis that is still fulfilled inside the uncertainty of the prediction, and red is
an off-prognosis. The black points are the targets.

FIGURE 7
Exemplary error of the predictions of HF (A) and TL (B) computed for a patient cohort (20 patients).
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3.3 Parameter analysis

To get a better insight into the performance of the model, we
assessed the model sensitivity to the standard deviation of the prior, σpr,
and of the posterior, σpo and in this way, we analyzed the role of the
distribution of the prior/posterior in the final result (Figure 8). This
iteration is also a test of the robustness of the model by changing

conditions or inputs, which is equivalent to performing adversarial tests
on trained networks. The computation of these results was
computationally intensive (about 2 h) on a normal desktop. If we are
dealing with large datasets, any parameter optimization considering this
variation will require a significant amount of computational power.

In this test, we observe for almost all the values a high model
sensitivity on the prior and posterior standard variations. Also, the

FIGURE 8
Precision and error of the predicted HF and TL using BNNs for different standard deviations; σpr (x-axis), and σpo (different shapes).

FIGURE 9
Computed precision of the BaLONNs for HF (A) and TL (B) and different standard deviations; σpr (x-axis), and σpo (different shapes).
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precision obtained for HF is smaller than the precision obtained for
TL, due thatHF is a binary output and has fewer degrees of freedom
than the multilabel output TL; we can understand the behavior of
this state as a physical binary state that gets polarized beyond a
critical value in the fluctuations of the system, represented by σpo.
Thus, we observe that around σpo � 1.5 (and σprϵ[0.5, 2.5]) the HF
states get unstable, and for σpo > 1.5 the overall precision by HF
dramatically decreases16 (see Figure 8).

Since the standard deviation influences the distribution of the
weights in the model, it is to assume that this definition must reflect
the distribution of the uncertainty in the training dataset. Otherwise,
the model follows its own dynamics, deteriorating its ability to fit
experimental targets.

From these results, we conclude that one plausible combination
is σpr � 1.5 and σpo � 1.0.

When we tested the model sensitivity for the BaLONNs, we
observed that there is a lower fluctuation of the precision/error
values for σprϵ[0.5, 2.5]) and σpo as the control parameter (Figure 9).
Like a physical system, by freezing the layers we are reducing the
degrees of freedom of the network. This reduces in this way the
stochasticity, and in general the instability of the trained network.
Also, in this case, we have observed that the HF precision is much
lower than TL. Different from the BNNs, BaLONNs do not accept
prior layers as trainable, which probably contributes to the
deterioration of the HF validation.

We obtain acceptable validations for σpr � 1.5 and σpo � 1.0. We
finally computed the final predictions in a single computation. For this
computation, we considered a HF tolerance of 0.6 (for the loop the HF
tolerancewas 0.6) andmade an average of over 1,000models (see Table 5).

The modeling of epistemic uncertainty increases the precision of
the modeling, simply because we are accepting ambiguous results as
true predictions inside the tolerance range. In contrast, the base
model is trying to make an exact and predictive prediction based on
the training data. This effect reflects the fact that the inherent
stochastics play a relevant role when a prediction is computed.

Furthermore, we observed that the validation of HF using
BaLONNs does not get the same quality as a fully trainable
model, despite the mean error lying below the mean error of
BNNs. Since the logic gates are frozen/non-trainable parameters,

the whole model has fewer degrees of freedom, limiting the
possibility that the model converges to the target values. In this
case, we face again the typical tradeoff problem: either to accept
dealing with interpretable models with less accuracy or to have an
accurate model with less interpretability.

We have also observed that while the precision of HF gets
increased by adjusting the model’s hyperparameters, the TL’s
precision decreases. The integration of these parameters in a
single model is to some degree problematic, firstly considering
that both parameters have a different number of states, and
secondly, because their coupling is weak, i.e., TL depends on HF
as well as additional parameters that are not integrated into the
model. This was in particular evident in the NN-baseline model.
Despite this, we could find a reasonable tradeoff in the parameter
selection to deliver acceptable accuracy for both parameters.

4 Discussion

The definition of explainability usually focuses onmethods tomake
the outcomes from black-box models, like DNNs, interpretable. Lime
and SHAP, for example, use local explainability to build surrogate
models for black box machine learning models to provide them with
interpretability17. In our approach, we have opted for a different strategy
by implementing nodes in theDNNmodel that can be defined as logical
operators, LONN, which are interpretable. By doing this, we set up a
hierarchy of parameters in the input layers that can then be logically
combined, without requiring additional surrogate models.

In a nutshell, the concept of explainability in AI requires a
particular taxonomy.

i. Computational Explainability: AI-explainability on a
computational level refers to the correlation between model
outputs and inputs, i.e., the evaluation of the plausibility of
model predictions in the context of the inputs (Linardatos
et al., 2020b).

Similarly, the Shapley index, a concept borrowed from the Game
Theory, evaluates how individual input features have a marginal
contribution (in game theory, how much individual features
“cooperate” to get a final output18) on the final mode output, a
concept frequently used in machine learning.

ii. Instances of Explainability: Additionally, Bayesian-NNs19 are
applied to analyze instances of explainability, i.e., to account
uncertainties in predictions.

iii. Structural Explainability: Finally, explainability can be also
understood in terms of what currently the model is computing,
i.e., by understating the internal processes in the model’s
architecture, and how the model automatically generates a

TABLE 5 Validation results for the baseline model, BNNs and BaLONNs. For the
stochastic models, we have averaged over 1,000 different models.

NN-baseline model BNN BaLONN

E (%) 60.9 43.5 43.59

4.73 15.13 12

Tot E (%) 32.81 29.31 27.79

Pr (%) 42.05 65.69 61.42

55.08 80.15 77.14

Tot. Pr (%) 48.56 72.92 69.28

16 This observation resembles a phase transition, where σpo has influence on
the HF states. Up to a σpo >2.5 all the states HF are frozen, i.e., the model
has no variability, and the outputs are fixed to a single state.

17 https://towardsdatascience.com/idea-behind-lime-and-shap-
b603d35d34eb

18 https://towardsdatascience.com/the-shapley-value-for-ml-models-
f1100bff78d1

19 https://towardsdatascience.com/bayesian-neural-network-
7041dd09f2cc
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hierarchy of input parameters, a concept that has been already
developed for deep neural networks (LoNNs—cite first article)

Clearly, our implementation belongs to the third class of
explainability, where we are trying to gain more insight into how
the computing process takes place.

However, the problem of structural explainability does not only
revolve around how information is integrated and how the
corresponding outputs are computed based on the
interconnectedness of the inputs. It also concerns the implicit
handling of uncertainty in the data. This factor is particularly
relevant in the medical field, where biological variability has an
influence on the development of a disease. Thus, while for one
patient a specific diagnosis or outcome can clearly be established
after therapy, for another patient there may be variability that
cannot simply be ignored and that affects both the diagnosis and
the assessment of the outcome of therapy. Therefore, interpretability
must consider not only the information flow and output computation
in a model but also the fact that in certain cases it is not possible to
estimate an exact value. As a result, models taking epistemic uncertainty
and explainability into consideration, such as our BaLONNs, aim to
continuously inform the customer when the model cannot behave
deterministically and when the prediction it makes is uncertain.

We believe that the inclusion of this kind of variability in
assistant systems, like recommender or expert systems in
medicine, is an important step, also in the design of human-
centered solutions. Several studies have shown that trusting
digital systems beyond their capacity and functionality can present
high actual costs, as well as more nuanced effects of compromising
organizational integrity and personal security (Hardré et al., 2016).
This is, in particular, relevant in the medical field, where the pressure
in daily business might lead to strongly relying on automatic systems
(Goddard et al., 2012), which, despite being well-validated, could
lead to wrong decisions when customers assume that the outputs are
precise when in reality are not.

Our novel approach is essentially an integration of LONNs with
probabilistic layers. Our preliminary results have demonstrated that
this approach can fulfill its goal: we are able to get acceptable validation
values as well as acceptable precision in the prediction of the two
parameters used in this study, namely, the prediction of the kind of
heart insufficiency (HF) and the expected therapy time of the patients
(TL). However, the precision of the model lies below a conventional
deep learning model (which can be much more precise if we increase
the number of layers). As we have found in a previous study,
explainability implies a tradeoff between model performance and
precision: while explainable models are often small and constrained
to few elements to keep them explainable, the expected precision is in
this case significantly lower than for classical black-box models20. The
customer must decide at the end how much precision she wants to
sacrifice in exchange for a simple model.

The potential next step in this work is to introduce a level of
stochasticity not only in the extreme layers but also in the logical
switches, as well as in the number of these switches. In this way, we
generate different explainable models, assuming that not only one but a

family of explainable models is able to model the data. An additional
analysis, not performed in this study, is the relation between stochasticity
and minority oversampling using SMOTE, i.e., if by implementing
SMOTE the underlying epistemic uncertainty of the training datasets
gets distorted. Finally, the handling of stochasticity could be
computationally intensive when large datasets are analyzed; perhaps
alternative methods, like quantum computing, could be helpful to
generate more efficient stochastic BaLONN models from large datasets.

5 Conclusion

In this work, we presented a novel modeling technique that
combines a structural explainable model architectures based on
logic neural networks (LONNs) and Bayesian methods in a single
BaLONN model. In this way, we improve user-centered solutions
that inform users when they are uncertain about a prediction, in
this case, the prediction of therapy based on physiological
parameters. Unlike other solutions, this approach does not
nudge customers to accept the model’s predictions. While this
solution does not present an answer to well-founded critics
against AI as technology, for instance as a surveillance tool
(Fulterer, 2022), it is at least a way to compensate for well-
known deficits in the implementation of this technology, making
it user-centered (in our case for physicians) by deploying results
that can be distrusted by the user. By doing so, we can avoid
blindly relying on models to deliver high-quality results21.

We demonstrated that our model reaches a precision of 69%,
considering that some of the true predictions are ambiguous but lie
in the tolerance range of acceptability. This precision lies below the
70% precision of Bayesian neural networks. However, we think that
the slight reduction in precision is an acceptable tradeoff considering
that the architecture of the NN is composed of a few neurons and
that some of these neurons are non-trainable.

This result is thus a relevant basis for the development of
assistant and expert methods, for instance, recommender
systems, in critical fields like medicine where the customer’s
work should not be fully automated, and his expertise is
continuously required.
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