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The invariant cell lineage of Caenorhabditis elegans allows unambiguous
assignment of the identity for each cell, which offers a unique opportunity to
study developmental dynamics such as the timing of cell division, dynamics of
gene expression, and cell fate decisions at single-cell resolution. However, little is
known about cell morphodynamics, including the extent to which they are
variable between individuals, mainly due to the lack of sufficient amount and
quality of quantified data. In this study, we systematically quantified the cell
morphodynamics in 52 C. elegans embryos from the two-cell stage to mid-
gastrulation at the high spatiotemporal resolution, 0.5 μm thickness of optical
sections, and 30-second intervals of recordings. Our data allowed systematic
analyses of the morphological features. We analyzed sphericity dynamics and
found a significant increase at the end of metaphase in every cell, indicating the
universality of the mitotic cell rounding. Concomitant with the rounding, the
volume also increased in most but not all cells, suggesting less universality of the
mitotic swelling. Combining all features showed that cell morphodynamics was
unique for each cell type. The cells before the onset of gastrulation could be
distinguished from all the other cell types. Quantification of reproducibility in cell-
cell contact revealed that variability in division timings and cell arrangements
produced variability in contacts between the embryos. However, the area of such
contacts occupied less than 5% of the total area, suggesting the high
reproducibility of spatial occupancies and adjacency relationships of the cells.
By comparing the morphodynamics of identical cells between the embryos, we
observed diversity in the variability between cells and found it was determined by
multiple factors, including cell lineage, cell generation, and cell-cell contact. We
compared the variabilities of cell morphodynamics and cell-cell contacts with
those in ascidian Phallusia mammillata embryos. The variabilities were larger in C.
elegans, despite smaller differences in embryo size and number of cells at each
developmental stage.
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1 Introduction

Caenorhabditis elegans is one of the best-characterized model organisms to study animal
development. Its development proceeds through an invariant cell lineage, namely, the
stereotypical pattern of cell divisions, and produces an adult hermaphrodite with just
959 somatic cells. The whole-cell lineage was first established by Sulston et al. by manually
tracking cells with differential interference contrast (DIC) microscopy (Sulston et al., 1983).
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Recent advances in bioimage informatics enabled automated tracing
of the cell lineage (Onami et al., 2001; Bao et al., 2006). Typical
studies perform 4D (3D time-lapse) imaging of embryos with
fluorescently labeled nuclei (typically histone) and
computationally identify and track the nuclei (Azuma and
Onami, 2013). In addition to the nuclear labeling, the use of
reporter genes enables the measurement of the reporter
expression dynamics at single-cell resolution. This method
provides reporter dynamics with lineage information. It allowed
systematic analysis of developmental dynamics, including variability
of cell division timings and cell cycle lengths measured in
20 embryos (Bao et al., 2008), reproducibility of cell cycle
lengths, division axes, and cell positions measured in 18 embryos
(Richards et al., 2013), gene expression dynamics in 127 cells
(Murray et al., 2012), high-dimensional phenotypic analysis of
204 essential genes in 1,368 perturbed embryos (Du et al., 2015),
and lineage-specificity of variability in cell positions (Li et al., 2019).

Cell morphology is also associated with a variety of biological
processes. Relationships have been found between cell volume and
cell cycle length (Arata et al., 2015), cell volume and strength of the
spindle assembly checkpoint (Galli and Morgan, 2016), asymmetric
divisions and the local inactivation of actomyosin cortical
contractility (Rose and Gönczy, 2013), and asymmetric divisions
and confinement of embryos (Fickentscher and Weiss, 2017). In
addition to nuclear labeling, membrane reporters enable systematic
analysis of cell morphodynamics. However, there have been few
such studies due to the difficulty in cell membrane segmentation,
which is more challenging than nuclei. This is because nuclei are
thick, well-separated spherical structures, whereas cell membranes
are thin planar structures that contact each other, forming
complicated networks. Despite these difficulties, we succeeded in
developing the membrane segmentation method called BCOMS
(Biologically Constrained Optimization-based cell Membrane
Segmentation). It automatically segments cell membranes and
extracts morphological features of each cell by solving an
objective function under biological constraints (Azuma and
Onami, 2017). It uses previously detected nuclei as markers after
manual curation, yielding cell segmentations with no missed cells.
The performance of BCOMS was evaluated by comparisons with
manually created ground truth and between two adjacent time
points and was the best among the available methods. In
addition, recent advances in deep learning brought image
restoration to a practical level (Weigert et al., 2018). In
combination with this technique, we may improve the
quantification accuracy because it is dependent on the membrane
image quality.

In this study, we developed an image processing pipeline to
quantify cell morphodynamics by combining previously and newly
developed computational methods, including nuclear detection and
tracking, image restoration, and membrane segmentation. We
applied the pipeline for 52 C. elegans embryos and systematically
extracted morphological features. At first, we show that we can
understand developmental dynamics quantitatively by systematic
analysis of the extracted features. Next, we show that our data can
reproduce and extend a previous study. Finally, we obtain biological
insights about cell morphodynamics by comparisons with the
studies of C. elegans and ascidian Phallusia mammillata embryos.

2 Results

2.1 Image processing

We investigated whether existing methods are available for this
study. At first, we evaluated whether an existing image restoration
method was effective for our images. There is an image restoration
method called CARE (Weigert et al., 2018). To apply CARE, we need
to prepare training data. We prepared registered pairs of low- and
high-quality images acquired by quickly changing laser power and
exposure time. The images were acquired in sparser spatial and
temporal resolutions than actual settings to prevent photobleaching
and for unbiased sampling throughout development and across
optical sections (Supplementary Figure S1). We acquired the images
of 10 embryos. CARE was trained using a part (90%) of the prepared
data and applied to the test data, the remaining prepared data. We
found artifacts were introduced in some images (Supplementary
Figure S2). Especially more artifacts were observed in deeper optical
sections, where images are more degraded than in shallow sections
by light scattering and absorption. To solve this problem, we
developed a model named restworm by modifying the U-Net
(Ronneberger et al., 2015) used in CARE (see Methods).
Restworm was trained on the same training data and applied to
the test data. We found that the artifacts were removed
(Supplementary Figure S2). We also confirmed that membrane
segmentation using the restored images did not derive any
artifacts compared to the original membrane images
(Supplementary Figure S3).

Next, we evaluated whether existing membrane segmentation
methods are available for our study. There are three such methods
developed after the BCOMS, namely, 3DMMS (Cao et al., 2019),
CShaper (Cao et al., 2020), and spheresDT/Mpacts-PiCS (Thiels
et al., 2021). We found that they all perform membrane
segmentation solely from membrane images and have no nucleus
information. Additional software is needed to obtain cell lineage
information. Moreover, these methods cannot control false
detections. Thus, some cells may be lost. In contrast, BCOMS
performs membrane segmentation using detected nuclei as
markers. It ensures no cells are missed if the nuclear detection
does not miss any nucleus. In the BCOMS pipeline, we created
errorless nucleus detections by curating output from the previously
developed software (Azuma and Onami, 2013) using in-house
curation software named Curater. Curater also has a function to
identify cell lineage and annotate the nuclei. The function uses
publicly available annotated data (Richards et al., 2013) as a
reference and annotates all cells detected (see Methods for
details). However, BCOMS had some missing functions. Hence,
we decided to use the BCOMS for this study after adding the
functions, which we call BCOMS2. One added function is the
collection of the time lag between nuclear divisions
(karyokinesis) and cell divisions (cytokinesis). In this period, the
cell is divided into two regions using the two divided nuclei as
markers, whereas the cell is before the division. The added function
prevents incorrect segmentation by collecting the time lag by a
machine learning-based method (see Methods). The other added
function is the extraction of cell-cell contacts. These are detected
from the cell membrane segmentation results as pairs of cells
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contacting their surfaces. For each pair, BCOMS2 extracts the
contact area and duration.

We combined the methods and developed an image processing
pipeline to quantify cell morphodynamics (Figure 1). In this
pipeline, the nucleus image is processed using a nucleus
detection method (Azuma and Onami, 2013). The result is
manually curated using Curater, providing errorless nucleus
detections. Each detected nucleus is also annotated using
Curater. In parallel, the membrane image is restored by
restworm. The restored membrane image and processed nucleus
detection results are input to BCOMS2. BCOMS2 performs
membrane segmentation using detected nuclei as markers and
extracts morphological features from the segmented cells
(Supplementary Table S1). Meanwhile, the annotations for the
nuclei are assigned for the identified cells, and the nuclear division
timings are used to provide the timings of anaphase onset. All the

software developed in this study can be available from https://
github.com/bioimage-informatics.

We performed 3D timelapse imaging of 52 embryos, in which
the nucleus and cell membrane were labeled with green fluorescent
protein (GFP) and mCherry, respectively, for 2 hours from the two-
cell stage. We applied the image processing pipeline (Figure 1) for
the 52 embryos (the results of ABp are shown in Supplementary
Figure S4, and a segmentation result in an embryo is shown in
Supplementary Video S1) and extracted morphological features
(Supplementary Table S1). All images and segmentation results
are available via SSBD:repository (Tohsato et al., 2016) (https://
doi.org/10.24631/ssbd.repos.2022.06.236). We evaluated the
performance by calculating the volume deviation between two
adjacent time points used in the previous study (Azuma and
Onami, 2017). Comparing with manual segmentation results at
multiple time points, we confirmed that systematic error was not

FIGURE 1
Schematic of the image processing pipeline and an exemplary segmentation result. The nucleus image is processed using a nucleus detection
method developed previously. The result is manually curated using Curater, providing errorless nucleus detections. Each nucleus is also annotated using
Curater. The membrane image is denoised using restworm. The restored membrane image and processed nucleus detection results are input to
BCOMS2. BCOMS2 performs membrane segmentation and extracts morphological features, providing feature dynamics of the identified cells. The
annotations for the nuclei are assigned for the cells, and the nuclear division timings are used to provide the timings of anaphase onset.
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introduced (Azuma and Onami, 2017). Thus, it can be used as an
indicator to evaluate the accuracy of the segmentation results,
especially for this data where the time interval is short (30 s)
enough to regard the volume as nearly stable between the
adjacent time points. The deviation was reduced by 8% (from 0.
065 in BCOMS to 0.060 in BCOMS2), demonstrating improved
quantification accuracy.

The developmental rates can vary even if the imaging conditions
are consistent (Schnabel et al., 1997; Bao et al., 2008). The final
developmental stages differed between the embryos for the same
duration of the recordings. Indeed, the ratio between the fastest and
slowest rates was 1.2 in our data. As a result, the number of cells at
the final time point varied from 51 to 96, and the number of cells that
completed their cell cycle varied from 49 to 119 (Supplementary
Figure S5). Of the 52 embryos, 32 exceeded the 85-cell stage and
contained at least 76 cell types (the same cell names) that completed
the cell cycle. We used the data from the 52 or 32 embryos for the
following analyses.

2.2 Quantitative analysis of cell
morphodynamics

We examined whether the extracted features are related to
specific biological processes and used for obtaining biological
insights. We focused on sphericity and volume. It is known that
animal cells round up to become spherical when dividing, which is
called mitotic cell rounding. It has been commonly observed in vivo
during development in many animals, including mouse (Luxenburg
et al., 2011), fly (Kondo and Hayashi, 2013; Rosa et al., 2015; Chanet
et al., 2017), and zebrafish (Hoijman et al., 2015). However, little is
known about C. elegans, including in which cells the rounding
occurs. The rounding begins at prophase and the rounded shape is
assumed during metaphase until the onset of anaphase (Ramkumar
and Baum, 2016; Taubenberger et al., 2020). Therefore, if the mitotic
rounding occurs in the cells of C. elegans embryos, the sphericity is
expected to be higher, at least at late metaphase. We registered the
sphericity dynamics at the end of metaphase and averaged them at
each time point over the 32 embryos for the 76 types of cells. We
observed rapid increases of the sphericity at late metaphase in most
cell types (Figure 2A). The increase was sharp without a plateau and
the peak was within 1.0 min before the end of metaphase in most cell
types (74/76, Supplementary Figure S6A). Since the time interval of
imaging was 0.5 min, the result suggests that the cells kept rounding
until the very end of metaphase. The 2 cell types, ABa and ABp, were
an exception and reached a plateau soon after beginning the mitotic
rounding, around −4.5 min (Supplementary Figure S6B). The peaks
were located several minutes earlier than the end of metaphase. We
averaged the dynamics over all cell types and found that the
sphericity monotonically increased from −7.0 min, when the
sphericity is minimum, to 0 min (Supplementary Figure S6C).
We defined this period as the duration of the mitotic rounding.
We compared sphericity between the beginning (−7.5 to −6.5 min)
and the end (−1.0 to 0 min) of this period in each cell. The sphericity
significantly increased in all the cell types from 2.0% to 33%
(average, 12%) during this period (paired t-test, p < 0.05). As the
increase was slight in some cells, detection by the human eye is
nearly impossible, highlighting the ability of the quantified cell
morphology resource.

As a similar event during cell division, mitotic swelling is known.
It had been controversial whether cells increased or decreased their
volume during mitosis. In 2015, two studies on the same issue
developed distinct methods to precisely measure the volume
dynamics of adherent or suspended cells and observed cell
volume increases (Son et al., 2015; Zlotek-Zlotkiewicz et al.,
2015). The increase was observed in cells from a variety of
tissues in human and mouse (Zlotek-Zlotkiewicz et al., 2015).
However, it is unclear whether the mitotic swelling occurs in
vivo, especially in confined environments, including the C.
elegans embryo enclosed in an eggshell. We registered the
volume dynamics at the end of metaphase like the sphericity
(Figure 2B, close-up in Supplementary Figure S7A; normalized
by dividing by the volume at t = 0). Interestingly, the volume
dynamics averaged for all cell types reached a minimum
at −7.0 min (Supplementary Figure S7B), consistent with the
sphericity dynamics (Supplementary Figure S6C). During this
period, most types of cells (71/76) significantly swelled from 1.9%

FIGURE 2
Mitotic rounding and swelling. Sphericity (A) and volume (B)
dynamics averaged for the 32 embryos registered at the end of
metaphase. The light purple rectangles indicate the initial and end of
the estimated duration of the mitotic rounding.
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to 36% (average, 9.6%; paired t-test, p < 0.05). In contrast to the
mitotic rounding observed in all cell types, the mitotic swelling was
not observed in some cell types, suggesting less universality.

Cells showing unique feature dynamics raise the possibility that
each cell can be distinguished from the other cells by its
morphodynamics. If morphodynamics is significantly similar in
the same cell types than in different cell types, the cell types can
be distinguished from the other cell types. To test this hypothesis, we
measured the root mean squared error (RMSE) between feature
dynamics of every pair of cells in the 32 embryos after normalizing
cell cycle lengths (Methods). We normalized each RMSE by dividing
it by the average of the feature dynamics and summed it across all
features. We compared the RMSEs and found that 97% of cell types
could be distinguished from 95% of the other cell types
(Supplementary Figure S8A). We visualized the similarity
relationships with the uniform manifold approximation and
projection (UMAP) (McInnes et al., 2018; Becht et al., 2019) by
using the RMSEs as the distance matrix (Figure 3). We observed
approximately one continuous trajectory where the cells were in
order of birth timing (Supplementary Figure S8B). The different cell
types were separated well in earlier generations and were
increasingly mixed along with the progression of embryogenesis.
We found that all cell types before the onset of gastrulation were
distinguishable from any other cell types except for P4. P4 was not
included in the analysis because it did not complete the cell cycle in
the 32 embryos.

Following the analysis of single-cell features, we analyzed inter-
cell features related to cell-cell contact. In C. elegans, cell-cell
interactions play essential roles in embryogenesis. Notch signaling
is such an interaction and plays a significant role in specifying cell fates
and tissue morphogenesis (Priess, 2005). It requires cell-cell contacts
to transmit the signal (Kopan and Ilagan, 2009). Similarly, Wnt
signaling requires cell-cell contacts for signal transmission
(Walston et al., 2004). We examined whether cell-cell contacts
mediating the cell-cell interactions were reproducible in all
embryos. We quantified the reproducibility of cell-cell contact as
the number of embryos where the contact is formed divided by the
total number of embryos. As five rounds ofNotch signaling and two of
Wnt signaling are known during our data, we computed the
reproducibility of these contacts (Supplementary Table S2). As
expected, the reproducibilities of these contacts were 100%,
meaning they were formed in all embryos. Note that the
reproducibility of 4th and 5th Notch signaling was measured in a
part of the embryos because the cell cycle was completed in only those
embryos (Supplementary Table S2).

This analysis raised the question of to what extent the contacts
were reproducible between the embryos. We measured the
reproducibility for the 47 types of cells completing the cell cycle
in the 52 embryos. We also measured the integral area by summing
the contact area across the cell cycle. We found a biphasic
relationship between the integral area and reproducibility
(Figure 4A). Above 1,000 μm2, most contacts were perfectly
reproducible. Only two contacts (ABplap and ABalpp; ABplap
and ABplpp) were variable (imperfectly reproducible). We
manually checked the images of these contacts and found that
they were lost in an embryo throughout their cell cycle due to
differences in cell arrangements (Supplementary Videos S2, S3).
Below 1,000 μm2, the relationship was correlative (r = 0.61), and
most (92%) of the contacts were variable. One expected source of
the variability is the variability in division timing. During C.
elegans embryogenesis, the division timing is approximately
synchronized in cells of each lineage (Sulston et al., 1983) and
slightly varies between embryos (Richards et al., 2013). This
variability can generate variability in contacts. We detected
such contacts by virtually shifting the division timings back and
forth. As a result, we found that 25% of the variable contacts
were caused by the variability in division timing. The remaining
variable contacts should be caused by false detections or variability
in cell arrangements. We randomly selected 10% (23 from 230)
of the contacts and manually checked them (Supplementary Table
S3). More than half (56.5%, 13/23) were caused by variability in
cell arrangements, and false detections caused the others. Based on
this result, we estimated the proportions of three categories of
contacts: variable contacts caused by variability in contact timing,
variable contacts caused by variability in cell arrangement, and
perfectly reproducible contacts (Figure 4B). The number of
perfectly reproducible contacts was not more than half of all
contacts. In contrast, the integral area of such contacts
accounted for over 95% of the total area. In contrast, the
number of variable contacts were more than half, whereas the
corresponding integral area was less than 5%. These results suggest
that the spatial occupancy of each cell is highly reproducible,
while slight variability in division timings and cell arrangements
produces brief variable contacts.

FIGURE 3
The uniqueness of cell morphodynamics. UMAP projection of the
76 types of cells in the 32 embryos by using the integral RMSDs as the
distance matrix. Colors indicate the cell types. Labels indicate the
generation names of the cells, represented by lineage names and
division times from the founder cell, such as AB2 for ABal, ABar, ABpa,
and ABpr.
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2.3 Reproduction and extension of a
previous study

Some morphological features have already been analyzed in C.
elegans embryos. We picked up one such study and examined
whether our data was consistent with their results and could
extend the study. The study measured volume asymmetry
between daughter cells in all cell divisions until the onset of
gastrulation (Fickentscher and Weiss, 2017). P lineage cells
showed markedly different volume ratios, and divisions of ABar,
EMS, MSa, MSp, Ca, and Cp were also significantly asymmetric. In
contrast, E, MS, and C underwent almost perfectly symmetrical
divisions. We applied the same scheme and criterion as the previous
study (Fickentscher and Weiss, 2017, see Methods) and evaluated
the asymmetry of the 27 cell divisions in 52 embryos (Figure 5). Cell
divisions were deemed significantly asymmetric if the volume ratios
of their daughters exceeded uncertainty levels, which is calculated as
the sum of voxels comprising a layer around each cell (see Methods
for details). A significant asymmetry was found in all P lineage cells,
ABar, MSa, MSp, and Cp, all of which were also detected in the
previous study. Especially, P lineage cells showed markedly different
volume ratios, and the order of degree of asymmetry was consistent
with the previous study. The divisions were almost equal in size in
MSa, MSp, and C, congruous with the previous findings. In contrast,
the asymmetry was not significant in EMS and Ca cells, which
divided asymmetrically in the previous study. The discrepancy may
be related to the definition of symmetry (see Discussion). A recent
study that performed quantitative analysis of cell volume showed
that divisions of EMS and Ca were symmetric (Guan et al., 2021),
which is consistent with our results. Altogether, our results showed
agreement with the previous study in 93% (25/27) of divisions.

While their analysis was limited to the divisions until the onset
of gastrulation, our data permits the analysis beyond gastrulation.
We applied the same analysis for 79 divisions, including the previous
27, in 35 embryos (Supplementary Figure S9). Surprisingly,
asymmetry was more significant in Caa than in any of the P
lineage cells. The median volume ratio was 2.9 in Caa. We
manually checked some original images and confirmed that the

segmentation results were correct. In addition, we found 12 new
asymmetric divisions. These results demonstrate that our data can
be used to reproduce the previous study and extend the study.

2.4 Variability of cell morphodynamics

A previous study showed that cell position variability was
lineage-specific (Li et al., 2019), raising the possibility that
variability of cell morphodynamics is also lineage-specific. We
normalized embryonic size and cell cycle length (Figure 6A) and
measured the variability of eleven single-cell features between all
pairwise combinations of the 32 embryos (Methods). The variability
was larger in AB, MS, and C lineages than in P, D, and E lineages in
every 11 features, indicating lineage specificity of the variability of
morphodynamics (volume in Figure 6B, sphericity in Figure 6C, and
all features in Supplementary Figure S10). The variabilities of AB,
MS, and C lineages were significantly larger than at least either of
those of P, D, and E (p < 0.01, Welch two-sample t-test). The
previous study also found that the position variability dynamics
showed a low-high-low pattern, where the variability increased with
time until the mid-embryogenesis and decreased thereafter (Li et al.,
2019). The increase was observed in the average dynamics of all cells
and each cell level. As our data range is up to the mid-
embryogenesis, corresponding to the increase phase, we
examined whether the morphological variability increased with
the development progression (volume in Figure 6D, all features
in Supplementary Figure S11). As expected, the variability increased
with cell generation. To check whether the increase was caused by an
artifact of classifying the cells into the generations, we quantified the
variability dynamics at single-cell resolution (volume in Figure 6E,
all features in Supplementary Figure S12). Again, we observed a
significant increase of the variability (between the initial and final
time points, p < 0.01, Welch two-sample t-test), demonstrating the
increase of morphological variability with the progression of
embryogenesis.

Since each lineage is composed of different generations of cells,
the lineage specificity may be caused by the mixture of different

FIGURE 4
Reproducibility of cell-cell contacts (A) Relationship between the reproducibility and the integral area of the contacts. The integral area is shown on a
logarithmic scale (B) Estimated proportions of the three categories of contacts. The number of contacts (left) and integral area (right) in each category are
given as a percentage of the total number and total area of all detected contacts, respectively.
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generations of cells. To check this, we compared the variability of the
lineages at each cell generation (volume in Figure 6F). In each
generation, we observed that specific lineages were more variable
than the others. For example, in the cell generation 3, C was larger
than AB, MS, and P in every feature (Supplementary Figures
S13–S16). Hence the variability is lineage-specific even if we take
the increase of variability with time into consideration.

The previous study also showed that position variability was
more correlated between contact cells than between mock contact
cells (Li et al., 2019). We examined whether the morphodynamics is
also dependent on the cell-cell contact.We compared the correlation
of morphodynamics variability between contact cells and mock
contact cells (volume in Figure 6G (contact cells), 6H (mock
cells), all features in Supplementary Figure S17). The correlation
coefficient of volume dynamics between contact cells was 0.44,
which is higher than that between mock contact cells (R = 0.11).
In the other features, the correlation coefficients were also higher
between contact cells than those between mock contact cells
(Supplementary Figure S17), suggesting that the variability of
morphodynamics is dependent on cell-cell contact.

These results show that the variability of morphodynamics is
determined by multiple factors, including cell lineage, cell
generation, and cell-cell contact.

2.5 Comparison with P. mammillata

A previous study systematically quantified cell morphodynamics
during ascidian P. mammillata embryogenesis, which displays a
stereotypical pattern of cell orientations and divisions like C. elegans
(Guignard et al., 2020). They compared cell position variability
between P. mammillata and C. elegans and found that the variability
was higher in C. elegans. The result raises the possibility of higher
volume variability inC. elegans. Contrary, they reported that embryo
size varied up to twofold, which is larger than C. elegans embryos [up
to 1.42 times in our data). In addition, while the number of cells is

invariant between embryos in C. elegans, it is not perfectly invariant
(2% variation (Guignard et al., 2020)]. The facts raise the opposite
possibility that volume variability is smaller in C. elegans embryos.
While they quantified the cell volume, they could not compare the
volume variability because there was no quantified volume data in C.
elegans. As our data enables the comparison, we tested the
controversial possibilities. We need to compare the variability at
the same developmental stage because the variability increases with
time in both animals (Figure 6D), [Li et al., 2019; Guignard et al.,
2020)]. Although our data contains cell generations from two to six
and the ascidian contains cell generations from seven to ten, the
generation six in C. elegans corresponds to the generation seven in P.
mammillata because the zygotic cell is the generation zero in C.
elegans and the generation one in P. mammillata. We quantified cell
volume variability determined in (Guignard et al., 2020) (Methods).
The median variability of cells at this generation was 5.1%
(Figure 7A), which is higher than P. mammillata (below 5%),
which is consistent with the higher variability in cell positions
(Guignard et al., 2020).

They also found high reproducibility of cell-cell contacts
between embryos. We quantified the variability of cell-cell
contact as defined in (Guignard et al., 2020) (see Methods for
details) and found that the reproducibility of cell-cell contact
decreased with cell generation (Figure 7B). At the cell generation
six, 88% of cells shared at least 80% of neighboring cells, which is
smaller than the reproducibility at the same generation in P.
mammillata embryos (nearly 100% of cells shared at least 80% of
neighboring cells). Similarly, 96% of cells shared at least 50% of
neighboring cells, which is still smaller than the reproducibility at
the same generation in P. mammillata embryos. Therefore, the
cell-cell contact is less reproducible in C. elegans, which is
consistent with the reproducibility of cell volume. In P.
mammillata, contact with the neighbors lasted throughout the
cell cycle (Guignard et al., 2020). Thus, stochastic cell neighbor
exchanges were rare. We tested whether the cell neighbor
exchanges were rare in C. elegans. The contact duration was
quantified as the fraction of contacting period to the shorter cell
cycle length of each contact pair (Figure 7C). More than half of
contacts lasted more than 90% of the cell cycle in common
neighbors shared across the embryos. Contrary, more than
half of contacts lasted less than 10% of the cell cycle in non-
common neighbors that were not shared by the embryos. Hence,
stochastic cell neighbor exchanges are rare in C. elegans.

3 Discussion

We quantified cell morphodynamics in 52 C. elegans embryos
from the two-cell stage to mid-gastrulation. We systematically
analyzed extracted morphological features to obtain biological
knowledge. The analysis of sphericity and volume dynamics
showed that mitotic cell rounding occurred in all cells, whereas
mitotic swelling occurred in most but not all cells. Among the
exceptional cells (Supplementary Figure S7C), ABa and ABp showed
characteristic sphericity dynamics (see Results). Ea and Ep are
known to ingress inside the embryo at the beginning of
gastrulation (Nance et al., 2005) and have significantly longer cell
cycles than the other cells due to the introduction of a Gap phase

FIGURE 5
The volume ratio of daughter cells emerging from the named
mother cell. The design of the graph follows (Fickentscher and Weiss,
2017). The medians of the 52 embryos are shown with error bars
indicating standard deviations. Colors indicate cell lineages. The
gray region indicates the volume-dependent level of uncertainty (see
Methods for details).
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(Edgar andMcGhee, 1988). These characteristics might be related to
the disappearance of mitotic swelling. In contrast, we could not find
a reasonable explanation for the ABprppp. Although the
segmentation accuracy of ABprppp, measured by the volume
deviation between the adjacent time points, was the least among
the 76 cell types, the same result was observed using only high-
accuracy data. Hence, we consider that mitotic swelling does not
occur in ABprppp. The sphericities at the end of metaphase varied
from 0.80 to 0.90 (average, 0.85). There was a weak correlation
between the sphericity at the initial and the final time points of the
mitotic rounding (correlation coefficient, 0.33). However, the
correlation was independent of the cell lineage, the

developmental stage, and the cell volume (Supplementary Figures
S6D–F). Therefore, the final sphericity may depend on other factors,
such as the stiffness of the surrounding environment. In contrast, we
found a correlation in the volume between the initial and final time
points of the mitotic swelling (the Pearson correlation coefficient
averaged for all cells was 0.73), which was more substantial than that
(0.33) in sphericity. A correlation was also reported in the study that
measured the volume change of cultured cells (Pearson correlation
coefficient = 0.53, Son et al., 2015), supporting our results. On the
other hand, we found that durations of mitotic rounding and
swelling were consistent (7 min). Despite different cell cycle
lengths, the duration is nearly equal for most of the cells. One

FIGURE 6
Reproducibility of morphodynamics (A) Spatiotemporally normalized single-cell feature dynamics in ABp cell. The dynamics of the 52 embryos are
shown in different colors (B and C) Violin and box plots of the variability of volume (B) and sphericity (C) dynamics in each cell lineage. On each box, the
central mark indicates the median, and the bottom and top edges indicate the 25th and 75th percentiles, respectively. The whiskers extend 1.5 times the
interquartile range (D) Violin and box plots of the variability of volume dynamics in each cell generation (E) Increase of volume variability with time at
single-cell resolution. Black line indicates the average of all cells at the time, and gray vertical lines indicate standard deviations (F) Violin and box plots of
the variability of volume dynamics in each cell lineage at the cell generation 3 (G and H) Correlation of variability of volume dynamics between contact
cells (G) and mock contact cells at the same cell generation (H).
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reason is that cell cycle duration is likely elongated by S phase
elongation at least before the 16-cell stage (Edgar and McGhee,
1988). Therefore, the duration of M phase is nearly equal between
cells, making the time ranges of mitotic events equal.

In evaluating the reproducibility of cell-cell contact, we
introduced the integral area of contact to minimize the influence
of false detections. A straightforwardway to remove false detection is a
threshold-based method. Thus, detections whose contact areas are
below the threshold are regarded as false positives. However, the
detections are highly dependent on the threshold, which is not easy to
decide reasonably. Indeed, a previous study that used thresholds for
contact area and duration to remove false positive detections suffered
from false negatives (Cao et al., 2020). In contrast, our integral area-
based approach removes no detections, including false positives. Thus,
no false negatives occur. False positives may be detected, but integral
areas are usually very small because false detection rarely continues
over multiple time points. The false positives can be manually
checked. Indeed, we performed manual verification when
classifying the contacts into three categories (Figure 4B). Hence,
manual effort based on a well-established systematic analysis is
one solution to manage imperfect systematic detections.

In the reproduction and extension of the previous study that
investigated whether the division is asymmetric for 27 divisions
during early embryogenesis s (Fickentscher and Weiss, 2017), our
data showed agreements with the study in 25 divisions. Only two
divisions were not significantly asymmetric in our data despite being
significantly asymmetric in the previous study. The definition of
uncertainty partially causes it. The uncertainty (see Methods and
Fickentscher and Weiss, 2017) depends on image resolutions. The
resolutions were larger in our data in both XY and Z. As a result, the
uncertainty in our data was roughly double to triple of the previous
study in each cell, which might reduce detection in this study. The
analysis beyond gastrulation found additional asymmetric divisions and
markedly different volume ratios between the daughters of Caa. The
larger daughter Caaa produces four hypodermal cells, whereas the
smaller daughter Caap produces one hypodermal cell, two neurons, and
1 cell death (Sulston et al., 1983). The high degree of asymmetry may
reflect the descendant’s cell death because most cells undergoing cell
death are generated as smaller daughters compared with their sisters by

asymmetric divisions of their mothers (Hatzold and Conradt, 2008;
Conradt et al., 2016). To check this hypothesis, we searched cells whose
daughters differed by more than 50% in volume and found seven cells.
We traced the lineages of their daughters and compared the numbers of
descendants undergoing cell death.We found that six of the seven cases
followed the hypothesis. Thus, smaller daughters hadmore descendants
undergoing cell death. In the exceptional case, the same number of
descendants underwent cell death. Therefore, cell death in descendants
may be reflected in the high degree of volume asymmetry. The
asymmetric division has been suggested to have a functional link to
apoptosis (Hatzold and Conradt, 2008). Our results show that smaller
daughters had more descendants undergoing cell death. This raises the
possibility that asymmetric divisions at several rounds of cell divisions
ahead have a functional link to apoptosis. However, the small number of
tested samples and an exception require additional investigations to
verify this hypothesis.

The variability of cell position was shown to be highly
deterministic and determined by cell lineage coupled to diverse
developmental properties of cells (Li et al., 2019). In addition, the
position variability was shown to increase with time until the mid-
embryogenesis and decreased thereafter. However, variability has not
been clarified for cell morphology because of a lack of data. We
showed that the variability of cell morphodynamics is also specific to
the cell lineage. The specificity was observed in every morphological
feature. The variability was also dependent on the cell-cell contact,
indicating that the intrinsic and extrinsic factors affect the variability.
We also found that morphological variability increasedwith time until
mid-embryogenesis. As our data traced the embryogenesis until this
stage, it is unclear whether the variability decreases thereafter, just as
the position variability was. In future work, it is important to elucidate
this question with more thorough data.

We compared the variabilities of morphodynamics and cell-cell
contact with those of ascidian P. mammillata, which displays a
stereotypical pattern of cell orientations and divisions during
embryogenesis like C. elegans. The cell position variability was
shown to be higher in C. elegans (Guignard et al., 2020). Consistent
with this, we found that variabilities of cell volume and cell-cell contact
were also higher in C. elegans. The results are intriguing when
considering the facts that the number of cells is perfectly invariant

FIGURE 7
Comparison with P.mammillata (A) Variability of themedian volume of the cell cycle across the embryos at the generation six (B) Percentage of cells
at each cell generation showing conservation in neighborhood larger than the indicated thresholds (C) Histogram showing the distribution of contact
duration of common neighbors (blue) and non-common neighbors (orange).
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inC. eleganswhereas quasi-invariant in P.mammillata, and the embryo
size difference was up to 1.4 times inC. eleganswhereas up to twofold in
P. mammillata. It may be related to the difference in the conservation of
embryo geometry between nematodes and ascidians. The geometry of
ascidians is essentially unchanged from the emergence of the group
around 400 million years ago (Lemaire, 2011; Delsuc et al., 2018),
whereas it has been changed in C. elegans (Goldstein, 2001). However,
we just compared the variability at 1 cell generation. A more thorough
comparison is needed.

4 Methods

4.1 Imaging

Sample preparation and imaging methods are described in
(Azuma and Onami, 2017), except that a time interval of 30 s
was used. The number of focal planes differed in each embryo.
We recorded 52 embryos for 2 hours from the two-cell stage. We
confirmed that all embryos hatched.

4.2 The network architecture of restworm

Restworm was developed by modifying the U-Net (Ronneberger
et al., 2015) model. We introduced batch normalization and Leaky
ReLU at each down- and up-sampling step. The convolution filter
size was changed to 3 from 5. The filter size of max-pooling was
changed to 2 from 4. The code and detailed network architecture are
available at https://github.com/bioimage-informatics/restworm.

4.3 Cell lineage assignment

The cell lineage assignment method uses publicly available
annotated data (Richards et al., 2013) as a reference and annotates
all detected nuclei. A target data that is a set of nuclear coordinates at the
final time point was taken. Reference data was selected from the
annotated data as a set of nuclear coordinates with the same
number of nuclei as the target data. If there were multiple such
data, all of them were selected one by one. Principal component
analysis (PCA) was applied to each target and reference embryo and
mapped to each PC coordinate system. Then, the target embryo was
rotated around the first PC axis at two-degree intervals and slightly
swung along the other PC axes. In each step, the target embryo was
scaled to fit in size to the reference embryo by multiplying a scaling
factor to equalize the variance of cell positions in each axis and was
applied the matching function, which measures the distance for every
cell pair between the target and reference, and the distance was used as
“cost” for matching them. The minimum cost matching was found
using the Hungarian algorithm (Munkres, 1957). The matching was
calculated for every step, and the cost was recorded. Finally, the
matching with the minimum cost was selected as the annotation for
the target data. By using the annotated cells at the final time point, the
cells at earlier time points can be successively annotated by tracing back
the lineage. If the annotation at the final time point is accurate, all cells
can be accurately annotated until the two-cell stage. If it fails on the way,
the annotation at the final time point is not accurate. In this case, a set of

nuclear coordinates at one time point earlier than the final time point
was used as the target data and annotation. The process was repeated
until the tracing was successful.

4.4 Collection of the time lag between
nucleus and cell divisions

We determined the end of cell divisions when the cell membrane
completely encloses the cell. We estimated the timing by a support
vector machine with eleven features, such as the intensity between
two divided nuclei in the membrane image (Supplementary Table
S4). The training data was manually created for 147 cell divisions in
six embryos. The error rate was 1.7% in the 5-fold cross-validation.

4.5 Normalization of embryonic size and cell
cycle length

We observed variations in absolute values of the features, especially
those that were size-related, such as volume and surface area
(Supplementary Figure S4). Embryo sizes are known to vary under
identical conditions (Moore et al., 2013; Richards et al., 2013; Insley and
Shaham, 2018). The ratio between the minimal and maximal volume
was 1.42 in our data. To minimize these variabilities, we scaled each
segmented embryo linearly to approximate its volume to the average of
all the embryos. Our membrane segmentation method (BCOMS2)
segments embryonic regions before membrane segmentation. Embryo
volume was calculated at each time point by summing all the pixels of
the embryonic region. Since the embryonic volume changes slightly
throughout development, themedian volumewas used as the volume of
the embryo. Then, an average embryonic volume was calculated from
all the embryos. Each embryo image and each segmentation result were
linearly expanded or shrunk to approximate its volume to the average
volume.

We also observed deviations in the feature dynamics in the
temporal direction. One possible source of the deviations is the
differences in developmental rates between the embryos. The
developmental rates vary even if the imaging conditions are
consistent (Schnabel et al., 1997; Bao et al., 2008). Indeed, the
ratio between the longest and shortest cell cycle length ranged
from 1.14 to 1.40, depending on the cell type. Cell cycle lengths
of a given cell vary between the embryos due to differences in
developmental rates and fluctuations of division timings. The
lengths ranged from 12 to 49.5 min for all the cells in the
embryos, and the average was 25.2 min. Therefore, we
normalized the temporal lengths of the feature dynamics by
spline interpolation to make their length 25 min (50 time points).

4.6 Volume ratios of sister cells

The evaluation of cell volume and the significance of asymmetry
was performed according to the method described previously
(Fickentscher and Weiss, 2017). The median volume across the
cell cycle was used as the volume. Cell divisions were deemed
significantly asymmetric if the volume ratios of their daughters
exceeded uncertainty levels, which arose solely from segmentation
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errors. In short, the uncertainty is calculated as the sum of voxels
comprising a layer around each cell.

4.7 Measurement of morphodynamics
variability

We used the metric used in a previous study (Guignard et al.,
2020) for themorphodynamics variability. As themetric was defined
for scalar values, we modified it for vectors. The variability v of two n
length feature dynamics fa(t) and fb(t) was given as:

v � ∑
n
t�1

fa t( )−fb t( )| |
fa t( )+fb t( )
n

(1)

The interval of v is [0, 1), which is 0 for perfectly consistent
feature dynamics and one for approaching very different dynamics.

4.8 Metrics for comparison with Phallusia
mammillata

The variabilityMv of cell A with a median volume VA across the
cell cycle and cell Bwith a median volumeVB across the cell cycle was
given as:

Mv � VA − VB| |
VA + VB

(2)

The interval of Mv is [0, 1), which is 0 for perfectly consistent
feature dynamics and one for approaching very different dynamics.

The metric for the variability of cell-cell contact is described in
detail in a previous study (Guignard et al., 2020). In short, For each
cell, contacts with a contact area less than 5% of the cell’s surface
area were removed as noise. Then, the reproducibility of neighbors
between two embryos was given by the high value across the cell
cycle of the shared neighbors in neighbors of two embryos. This
metric gives values in the interval [0, 1]. A value of one means the
2 cells have exactly the same neighbors at any time in the cell cycle.
A value of 0 means no common neighbors throughout the cell
cycle.
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