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Bacteriophages are gaining increasing interest as antimicrobial tools, largely due to the
emergence of multi-antibiotic–resistant bacteria. Although their huge diversity and
virulence make them particularly attractive for targeting a wide range of bacterial
pathogens, it is difficult to select suitable phages due to their high specificity which
limits their host range. In addition, other challenges remain such as structural fragility under
certain environmental conditions, immunogenicity of phage therapy, or development of
bacterial resistance. The use of genetically engineered phages may reduce characteristics
that hinder prophylactic and therapeutic applications of phages. Nowadays, there is no
systematic method to modify a given phage genome conferring its sought characteristics.
We explore the use of artificial intelligence for this purpose as it has the potential to both
guide and accelerate genome modification to generate phage variants with unique
properties that overcome the limitations of natural phages. We propose an original
architecture composed of two deep learning–driven components: a phage–bacterium
interaction predictor and a phage genome-sequence generator. The former is a multi-
branch 1-D convolutional neural network (1D-CNN) that analyses phage and bacterial
genomes to predict interactions. The latter is a recurrent neural network, more particularly a
long short-term memory (LSTM), that performs genomic modifications to a phage to offer
substantial host range improvement. For this component, we developed two different
architectures composed of one or two stacked LSTM layers with 256 neurons each. These
generators are used to modify, more precisely to rewrite, the genome sequence of
42 selected phages, while the predictor is used to estimate the host range of the
modified bacteriophages across 46 strains of Pseudomonas aeruginosa. The
proposed generators, trained with an average accuracy of 96.1%, are able to improve
the host range for an average of 18 phages among the 42 under study, increasing both
their average host range, by 73.0 and 103.7%, and the maximum host ranges from 21 to
24 and 29, respectively. These promising results showed that the use of deep learning
methodologies allows genetic modification of phages to extend, for instance, their host
range, confirming the potential of these approaches to guide bacteriophage engineering.
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1 INTRODUCTION

Phage therapy (PT) is a therapeutic approach to treat patients
with bacterial infections. It is based on the use of viruses, called
bacteriophages (or phages), to infect and kill pathogenic bacteria
throughout their lifecycle (Matsuzaki et al., 2005). Present in all
ecosystems, bacteriophages are viruses that naturally and
specifically infect bacteria and are, therefore, unable to infect
eukaryotic cells. This therapy was developed more than a century
ago with the discovery of phages by researchers Frederick Twort
(Twort, 1915) and Félix d’Herelle (1917) (D’Herelle, 2011). After
promising successes, it was abandoned in favor of antibiotic
therapy. However, in recent years, there has been a renewed
interest in PT due to the emergence of nosocomial infections with
antimicrobial-resistant (AMR) bacteria and the lack of new
effective antibiotics. AMR is now considered by the World
Health Organization as one of the greatest threats to global
health, food security, and development [antibiotic resistance
(WHO, 2021)]. This problem has been concretely measured
both by the Centers for Disease Control (CDC), which
reported more than 2.8 million antibiotic-resistant infections
each year in the United States, causing more than
35,000 deaths (CDC, 2019) and by the United Kingdom,
which commissioned a report on AMR in 2016 projecting to
cause 10 million deaths per year by 2050. The concept of PT is to
correctly match a bacterium with one or more phages capable of
infecting and killing it.

After adsorption of the phage onto the target bacterium, the
phage transfers its genome (viral nucleic acid, either DNA or
RNA) into the bacterial cytoplasm. During the lytic cycle, the
DNA is then transcribed, translated, and copied, to be assembled
into viral particles (hijacking the bacterial replication machinery).
In general, when a critical mass of viral particles is reached,
bacterial lysis is actively triggered via lytic proteins that disrupt
the bacterial wall, allowing the release of new viruses and leading
to the death of the bacterium (Delbrück, 1940; Weinbauer, 2004).
The advantages of PT are numerous and linked to the very nature
of phages. These viruses, used as therapeutic agents, are able to
regulate themselves, at sites of infection and once the bacteria are
killed, phages do not replicate and can be rapidly eliminated by
the immune system or other mechanisms.

It is estimated that there are about 1031 phages on Earth (Weitz
et al., 2013; Mann, 2005) and they are in constant co-evolution
with bacteria, which makes them a potentially inexhaustible
source in nature. It is therefore theoretically possible to isolate
new phages for most types of bacteria. This is important because
new variants of pathogenic bacteria are appearing, leading to
complicated therapeutic situations, especially with the emergence
of multi-antibiotic–resistant bacteria. Moreover, the mechanisms
of action of phages seem to be independent of those of antibiotics,
and they do not provide selective pressure likely to increase
antibiotic resistance. Finally, their narrow specificity against
bacterial strains allows them to have a negligible impact on
the patient’s microbiota (commensal flora). The host range of
a phage is the spectrum or number of strains of bacterial species
that a given specific phage can infect. Phages exhibit a narrow
host range, and each phage can only infect a small number of

bacteria, and therefore the use of a single phage has a low
probability of being able to treat infections caused by several
bacteria (Matsuzaki et al., 2014; Nilsson, 2014; Mapes et al., 2016).
It is therefore essential to precisely identify the bacteria
responsible for the infection before implementing the PT and
to use a combination of several phages (phage cocktail)
(Matsuzaki et al., 2005), which increases the number of
targeted bacterial strains, that is, the spectrum of action of the
treatment and reduces the rate of evolution of resistance to
phages (Filippov et al., 2011; Gu et al., 2019; Ramirez et al., 2020).

However, the selection of adequate phages (discovery,
isolation, and characterization) is time-consuming and
requires laborious regulatory approval (Socher et al., 2011),
which makes it one of the main limiting steps of PT. One
forward-thinking modernization of phage therapy involves
genetically modifying phages to overcome the limited
efficiency of natural phages. In the last few years, the main
genetic modifications applied to phages generally include i)
mutations in genes (Yehl et al., 2019), ii) the partial or full
replacement of genes (Mahichi et al., 2009; Lin et al., 2012;
Dunne et al., 2019), and iii) the insertion of foreign genes
(Bikard et al., 2014; Pei and Lamas-Samanamud, 2014; Yosef
et al., 2015; Lam et al., 2021) using molecular techniques such as
homologous recombination (HR) and genome rebooting with the
aim of mainly improving the host range or enhancing the
antibacterial effect of phages. For more details on the
methodologies used by genetic engineering, we suggest recent
reviews (Chen et al., 2019; Guo et al., 2021; Lenneman et al.,
2021). All this research led to the first success in phage genetic
engineering in 2019. In the context of the treatment of a 15-year-
old lung transplant recipient (Dedrick et al., 2019), some genes
were removed from phages to increase their activity. Such
genetically engineered (GE) phages can therefore provide
substantial advantages over natural phages in terms of host
range, immune system recognition, and environmental
stability. Phage engineering could provide a rapid strategy to
generate phages with unique properties, and thus accelerate the
development of PT, provided that a sound methodology is
developed to suggest appropriate modifications to be applied
to phage genomes. Currently, there is no such systematic method
to guide the design of genetically engineered phages. Phages
exhibit unparalleled genetic diversity, which makes it
extremely complicated to factor in all possible variables for
creating GE phages exhibiting expected properties. New
technologies are needed to accelerate the design–build–test
cycle for engineering phages and to make it possible to
translate proof-of-concept academic work more efficiently into
real-world use.

In this context, we explore herein the application of artificial
intelligence (AI) which has the potential to both guide and
accelerate genome modifications to generate phage variants
with unique properties that overcome the limitations of
natural phages. Until now, the application of AI to phage
biology mainly concerns automated recovery, prediction, and
classification of bacteriophages (Ren et al., 2017; Amgarten et al.,
2018; Chibani et al., 2019; Kieft et al., 2020; Shang et al., 2021)
predicting phage–bacteria interactions or host prediction at the
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genus, species, and/or strain levels (Leite et al., 2018; Ataee et al.,
2020; Boeckaerts et al., 2021; Li et al., 2021; Zhou et al., 2022),
bacteriophage lifecycle (McNair et al., 2012; Tynecki et al., 2020),
or the identification of viral sequences (Seguritan et al., 2012;
Manavalan et al., 2018; Cantu et al., 2020; Meng et al., 2020).

We propose a novel approach, dubbed PERPHECT (for Deep
Generative Networks for Bacteriophage Genetic Edition), aiming
to genetically engineer bacteriophages to enhance the activity of
resulting phages (Ataee et al., 2020) (Ataee et al., 2020). The case
study will focus on increasing the host range of phages. To
achieve this, we combine state-of-the-art techniques from deep
learning: a phagi–bacterium interaction predictor, the
PERPHECT predictor, and a phage genome-sequence
generator, the PERPHECT generator. Therefore, to evaluate
the ability of our generator, we compare the host range of
phages determined experimentally with their predicted host
range computed by counting the number of bacterial strains
predicted as positive by the PERPHECT predictor after rewriting
their genomes. A key point of the PERPHECT architecture is that
its two fundamental components are loosely coupled. With this
property, different methods and approaches could be used to
implement either or both the predictor and the generator.

In this article, we explore and evaluate the adequacy of a deep
learning model to implement the generator component. For this
purpose, we take advantage of LSTMs, a special type of recurrent
neural network (Servan-Schreiber et al., 1988; Servan-Schreiber
et al., 1991), to process long genomic sequences to capture high-
level structures contained within them. LSTMs (Hochreiter and
Schmidhuber, 1997; Sherstinsky, 2020) are extremely powerful
deep learning models used to capture long-range dependencies
since they are made of memory units allowing to save important
features. LSTMs are particularly used in natural language
processing (NLP), in applications such as paraphrase detection
(Socher et al., 2011), speech recognition (Li et al., 2015), language
modeling (Siami-Namini et al., 2018), text generation
(Santhanam, 2018), but also for genome modeling (Li, 2019),
or temporal data analysis (Abdel-Nasser and Mahmoud, 2017;
Deng et al., 2020). The PERPHECT architecture paves the way for
the use of deep learning methodologies to genetically modify
phages and extend, for example, their host range, thus confirming
the potential of these approaches to guide bacteriophage
engineering.

2 METHODS

As already mentioned, the PERPHECT architecture is formed of
two fundamental components (schematically represented in
Figure 1):

• The PERPHECT predictor, used to predict potential
interactions between bacteria and phages based solely on
their genomic information, is a deep learning model,
composed of a multi-branch 1-D CNN (Brownlee, 2018)
(Figure 2). The proposed predictor was trained, validated,
and tested on a dataset composed of 7,720 interactions
between 227 bacteria and 3,208 phages. Its evaluation results
showed performance figures as follows: 85% accuracy, 85%
recall, 72% precision, and 78% f1-score on the test set.
This predictor is explained in more detail (Ataee et al.,
2020).

• The PERPHECT generator modifies existing phage genome
sequences to improve their predicted host range. In this
article, we concentrate on this component, presenting a
novel model based on LSTM (Brownlee, 2017a), used to
learn the context from the input sequence in order to make
predictions. The model is conceived so that it is able to
complete a genome sequence starting from a seed of n
nucleotides and then predicting, iteratively one-by-one, the
next nucleotides in the sequence.

2.1 Data
Among hundreds of bacterial genomes available in our dataset,
we selected 46, belonging to the Pseudomonas aeruginosa species,
as a target for phage infection. It is the species of the Pseudomonas
genus that most often causes infections in humans.
Unfortunately, many Pseudomonas infections are becoming
difficult to treat as they are increasingly showing antibiotic
resistance. Among all the interactions in our dataset, there are
42 phages able to infect at least one of the 46 Pseudomonas
aeruginosa strains. We selected these phages as the, potentially,

FIGURE 1 | PERPHECT model architecture. PERPHECT architecture is
formed of two fundamental components: i) The PERPHECT predictor used to
predict potential interactions between bacteria and phages based solely on
their genomic information and composed of a multi-branch 1-D CNN
and ii) the PERPHECT generator used to modify existing phage genome
sequences to improve their predicted host range and composed of LSTMs.

FIGURE 2 | Phage–bacterium interaction predictor (Ataee, Rodriguez,
Brochet, & Pena, 2020). The predictor model is composed of a stack of 1-D
CNNs. The predictor architecture has a non-linear network topology. The two
inputs (bacteria genome sequences and phages genome sequences)
are processed separately by two parallel convolutional branches whose
outputs are then merged and passed through two sub-sequential dense
layers. A dropout layer is also used to reduce overfitting and to improve the
generalization of the proposed deep neural network.
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best candidates for genome modification. The genome sequences
of 46 bacteria and 42 bacteriophages under study as well as the
actual interaction between any bacterium and any phage under
study are extracted from experimental results obtained by one of
our partners during a previous project (Leite et al., 2018).
Consequently, the new, specific dataset is composed of
genome sequences for all 46 bacterial strains and 42 phages
under study, as well as all the 1,932 interaction values, among
which there are 277 positive interactions. In this dataset, our
PERPHECT predictor exhibits a good performance when
predicting interactions between the selected bacterial strains
and their phages (accuracy � 89%, recall � 59%, specificity �
95%, precision � 68%).

On this basis, the goal of the PERPHECTGenerator is tomodify,
ormore precisely to rewrite, the genomes of the phages under study
in such a way that, after modification, they can infect as many
strains as possible from the Pseudomonas aeruginosa species. In
other words, we want to modify phages to maximize their host

range. Figure 3 shows the distribution of the host range of the
selected phages across the 46 bacterial hosts available in the dataset.
Note that the host range takes on values between 1 and 22, but only
7 of the 42 phages can infect more than 10 bacterial strains.

Training the generator model requires providing input–output
sub-sequences, where a given input subsequence of length nwill serve
to predict one output symbol, which is the next nucleotide in the
sequence. Going through thewhole genome sequence of a given phage
of lengthNwill, thus, generate (N - n) input–output sub-sequences of
length (n+1) symbols, as illustrated in Figure 4. The value n, called
seed length, is defined as the number of nucleotide symbols that needs
to be passed to the generatormodel to predict the next nucleotide. This
process is applied to each of the 42 phages in our dataset and repeated
for different seed lengths. We use four different values of seed length
(200, 500, 700, and 1,000) to build generator models.

From an information point of view, genomic sequences contain
four different symbols, representing DNA’s nucleotides (i.e., “A,”
“C,” “G,” and “T”). Actual sequences may contain degenerate base
symbols which represent more than one potential nucleotide at a
given position. As such symbols are very rare in the phage
sequences of our dataset, we decided not to keep them as
separate symbols but to replace them randomly with one of
their possible representations according to the IUPAC
degenerate base symbols table (Nomenclature, 1970). Finally, the
sequences of symbols are one-hot encoded to provide an input
representation for the neural network. Under such encoding,
nucleotides are represented by 4 bits, each bit corresponding to
one of the symbols (Brownlee, 2017b).

2.2 The Model Architecture
The proposed generator model is composed of an input layer, one
or two hidden layers, and an output layer, as shown in Figure 5.
The input layer takes sequences with n positions (where n = seed
length) of four features, each counting for the one-hot encoded
input sequences. Each hidden layer is an LSTM with 256 neurons.

FIGURE 3 | Distribution of host ranges of phages under study. Distribution of the host range of the selected phages across the 46 bacterial hosts available in the
dataset. Note that the host range takes on values between 1 and 22, but only 7 of the 42 phages can infect more than 10 bacterial strains.

FIGURE 4 | Creation of training data for the generator model. The
training data are composed of input–output sub-sequences, where a given
input subsequence of length nwill serve to predict one output symbol, which is
the next nucleotide in the sequence. Going through the whole genome
sequence of a given phage of length N will, thus, generate (N - n) input–output
sub-sequences of length (n+1) symbols. The value n, called seed length, is
defined as the number of nucleotide symbols that needs to be passed to the
generator model to predict the next nucleotide.
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The output layer is a fully connected layer with softmax activation
function to ensure the outputs are interpreted as the probability of
membership for each class (i.e., the type of nucleotide). For this
multi-class classification problem, we use commonly used
parameters including cross-entropy as a loss function
(Brownlee, 2020) and an Adam optimization algorithm
(Brownlee, 2021). To avoid underfitting and overfitting during
training, the number of epochs is considered as a hyperparameter
and tuned using grid search while training a few models. The
number of epochs is then fixed to the best number of epochs
(130 epochs) to avoid underfitting/overfitting, and a python script
is written to train all different models. Since in our experiments,
we trained the proposed deep learning models hundreds of times
(e.g., model A is trained 126 times: three times based on the
genome sequence of each of the 42 phages under study), we did
not use grid search to train all those models. The mean training
accuracy and loss of the last three epochs are reported for each
trained model. The trained models with a mean accuracy of the
last three epochs higher than 70% are also saved. As shown in
Figure 5, we propose two different model architectures. They
differ in the number of hidden layers but also in the number of
phages used to train them. The experiments were developed and
run using Python 3.8.5, Keras 2.4.3, and TensorFlow-GPU 2.2.0.

2.2.1 Model Architecture A: A Single LSTM Layer
Model A has a single LSTM with 256 neurons as a hidden layer,
and it is trained using genome sub-sequences from only one
phage. This phage is selected among the 42 phages under study
based on two criteria: i) It should be able to train the generator
model with high accuracy and ii) it should have a good enough
host range before modification. We trained the generator model
A with each bacteriophage separately and repeated the process
three times because of the stochastic nature of LSTM models.
Then, among those phages whose trained model exhibits a mean
accuracy higher than 55%, we selected the phage with the highest
host range. Finally, amid the three models of the selected phage,

the one with the highest accuracy is chosen as the generator
model. As already mentioned, the whole process is repeated four
times for the different seed length values: 200, 500, 700, and 1,000.

2.2.2Model Architecture B: Two Stacked LSTM Layers
Model B has a more complex architecture as its hidden layer is
composed of two stacked LSTMs, each with 256 neurons. Thanks to
this complexity, it may be used to learn simultaneously from more
than one phage genome sequence. Model A, with a single LSTM
layer, was unable to learn on two or more phage genomes, and
considering three or more LSTM layers will imply much more
parameters, increasing the risk of overfitting the training data. Next
arises the challenge of how to choose a set of two or more phage
genomes for training. For this purpose, we apply two criteria: i) each
of the selected phage genomes should be able, alone, to train the
generator model with high accuracy and ii) their combined host
range (i.e., the union of their host sets) should be good enough. To do
so, we rank the phages according to their mean accuracy, obtained
when learning model A and selecting the top phage. Then, we add
the next top phage if and only if doing so increases the combined
host range. This procedure is repeated for the top 10 candidate
phages and guarantees obtaining the highest combined host range
with the minimum possible number of phages. Each time a phage is
aggregated to the list, we use the selected phages to train model B,
and because of the stochastic nature of themodels, we trained it three
times. Finally, from the configuration with the highest mean
accuracy, we selected the most accurate model as the final
generator to be used to modify genome sequences. This process
is repeated for the four different seed length values.

2.3 Modifying Phage Genome Sequences
In this phase, the trained model (either model A or model B) is
used to rewrite the genome sequence of all the 42 phages
following the iterative process shown in Figure 6. For each
phage, we need to provide the sequence of the first n symbols
(where n = seed length) as input to the model to start the
generation process. The input sequence is processed by the

FIGURE 5 |Different generator model architectures. Two different model
architectures are proposed. They are composed of an input layer, one or two
hidden layers, and an output layer. The input layer takes sequences with n
positions (where n = seed length) of four features, each counting for the
one-hot encoded input sequences. Each hidden layer is an LSTM with
256 neurons. Architecture A is composed of one hidden layer, whereas the
architecture B is composed of two hidden layers. The output layer is a fully
connected layer with a softmax activation function to ensure the outputs are
interpreted as the probability of membership for each class (i.e., the type of
nucleotide).

FIGURE6 | Iterative generation of a genomic sequence. Rewriting phase
of the phage genomic sequence by a trained model (A or B). The sequence of
the first n symbols (n = seed length) is used as input to the model to start the
generation process. The input sequence is processed by the model to
generate the next character in the sequence. Then, at each iteration, the last n
symbols of this growing sequence are passed to the model to generate the
next symbol. The process continues until the desired sequence length is
attained.
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model to generate the next character in the sequence. Then, at
each iteration, the last n symbols of this growing sequence are
passed to the model to generate the next symbol. The process
continues until the desired sequence length is attained. In this
article, the phage genome sequences are completely rewritten,
conserving their original length (comprised between 50,000 and
150,000 nucleotides). Note that as the generator model is trained
to very closely reproduce the phage sequences used for training,

the generated sequences are expected to be very similar to the
original phages.

3 RESULTS

The results of the phage genomic modification using the
generator models A (single LSTM) and B (two-stacked LSTMs)

FIGURE 7 | Impact of applyingmodel A with a 200-nucleotide seed on phage sequences. Twomodels are trained based on the genome sequence of either phage
5294 (A) or phage 5296 (B)with a seed length of 200. These trained models are then used tomodify the genome sequence of all 42 phages under study. The plots show
the host range of these phages before and after modification using each trained model. The green spots show phages whose host range is improved after modification.
The host ranges of 13 phages are improved after modifying with these two models.

TABLE 1 | Summary of evaluation results for models A and B with four different seed length values. For both models and for the four seed lengths used, the following results
are presented: the number and ID of the phages used to train themodel together with the training accuracy, the number of phages whose host range has been extended,
the percentage of host range improvement, the percentage of the phage genome that is modified, and finally, the maximum host range obtained with the corresponding
generator.

Architecture Seed
length

No.
of training
phages

Training phage IDs Training
accuracy

No. of phages
with host range
improvement
(total = 42)

Average host
range

improvement (%)

Maximum
modified host
range obtained

A 200 1 [5,294] 0.89 13 75.5 21
1 [5,296] 0.97 13 57.1 24

500 1 [5,309] 0.95 20 100 22
1 [5,284] 0.92 19 61 21

700 1 [5,286] 0.97 20 63.1 21
1,000 1 [5,294] 0.96 22 81.2 22

B 200 Max: 3 [5,294, 5,296, 5,311] 0.98 10 53.5 22
Selected: 3

500 Max: 5 [5,309, 5,284] 0.99 9 61.3 24
Selected: 2

700 Max: 6 [5,286, 5,296, 5,319, 5,318,
5,323, 5,291]

0.98 24 100 23
Selected: 6

1,000 Max: 5 [5,294, 5,317, 5,291] 0.995 26 200 29
Selected: 3

The best obtained results are shown in bold.
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are shown in Table 1. For both models and for the four seed
lengths used, the following results are presented: the number and
ID of the phages used to train the model together with the
training accuracy, the number of phages whose host range has
been extended, the percentage of host range improvement, the
percentage of the phage genome that is modified and, finally, the
maximum host range obtained with the corresponding generator.
The proposed generators A and B are trained with an average
accuracy of 94.3 and 98.7%, respectively, and are able to improve
the host range for, respectively, an average of 18 and 17 phages
among the 42 under study. The average host range of phages
modified with model A is improved by 73%, while with model B,
it is improved by 103.7%.

A more detailed view of the effect of the PERPHECT
generator on the host range of all the 42 phages is illustrated
in Figures 7–9 for three configurations of interest (Note: The
Supplementary Figures S1–S8 present these results for all the
configurations explored). In these graphics, green dots represent
phages whose host range is improved after modification.
Figure 7 shows the configuration exhibiting a maximum host
range of 24, the highest for model A. It is obtained with n = 200.
Figure 8 presents the behavior of model A with a seed of
1,000 nucleotides. This configuration allows model A to
improve the host range for 22 of the 42 phages under study,
although the maximum host range is only 22. Finally, Figure 9
illustrates the behavior of the best configuration overall: model B
(Two stacked LSTMs) with a seed of 1000 nucleotides which was

trained on sequences from three phages. As shown in Table 1, it
improves the host range of 26 of the 42 phages under study. This
generator is also able to improve the maximum host range from
21 to 29 (a 38% improvement) with six of the phages exceeding
20 predicted interactions.

In general, one can observe from these results that there is no,
or little, correlation between the host ranges before and after the
modification of the phages. Indeed, the largest host ranges after
modification are not necessarily obtained with phages exhibiting
the largest host range before modification. From the results, one
can associate a higher model complexity (i.e., a stacked LSTM
model, trained on several phages, and using longer seeds) with
better performance.

4 CONCLUDING REMARKS

In this article, we proposed an innovative approach composed of
two fundamental deep learning components: a phage–bacterium
interaction predictor and a phage genome-sequence generator.
For the latter component, we developed two different artificial
RNNmodels composed of either one or two stacked LSTM layers
with 256 neurons each, while the genome sequence of either one
or several phages participated, respectively, in the process of
training the models. The proposed generators are used to
engineer the genome sequences of 42 selected phages. The
phage–bacterium interaction predictor, composed of a multi-

FIGURE 8 | Impact of applying model A with a 1000-nucleotide seed on
phage sequences. The model is trained based on the genome sequence of
phage 5294 with a seed length of 1000. The trained model is then used to
modify the genome sequence of all 42 phages under study. The plot
shows the host range of these phages before and after modification. The
green spots show phages whose host range is improved after modification.
The host ranges of 22 phages are improved after modifying with this model.

FIGURE 9 | Impact of applying model B with a 1000-nucleotide seed on
phage sequences. The model is trained based on the genome sequence of three
phages with IDs 5294, 5317, and 5291 with a seed length of 1000. The trained
model is then used to modify the genome sequence of all 42 phages under
study. The plot shows the host range of these phages before and aftermodification.
Thegreen spots showphageswhosehost range is improvedaftermodification. The
host ranges of 26 phages are improved after modifying with this model.
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branch 1D-CNN, is then used to estimate the host range of the
modified bacteriophages across 46 strains of the Pseudomonas
aeruginosa species under study.

As shown by the evaluation results presented in Table 1 and
Figures 7–9, both generator architectures are able to significantly
improve the host range of the phage panel under study. For model
A, based on a single LSTM hidden layer, the seed length used does
not seem to have a strong effect on its performance and the most
limiting issue appears to be its relatively limited learning
capabilities. For model B, with two stacked LSTM hidden
layers and trained on several phage genomes, the effect of the
seed length is more apparent as the host range improvement for
seeds of 700 and 1,000 nucleotides is markedly better with respect
to the number of improved phages and the average improvement.
Nevertheless, the effect on the maximum host range is
substantially better only for the longest seed attaining 29.
Exploring even the longest seeds could not provide additional
advantages as the training accuracy of this model is already
99.5%. These encouraging performances give a green light to
further usage of deep learning models, especially LSTM models,
in guiding genetic editing of phages to improve their antibacterial
power.

Our proposed approach is the first step toward a systematic
method to guide the search for genetically engineered phages.
Nevertheless, our approach is currently addressing one
optimization goal, that is, maximizing phage interaction with
target bacteria, while other fundamental criteria, such as
minimizing noise, repeats, and non-informative code and
maintaining the biological coherence of the organism are yet
to be addressed. Some of them, such as noises, repeats, and even
unnecessary code, could be tackled by including them in the loss
function during the optimization process. Nevertheless,
reinforcing the biological coherence of the resulting sequence
would require more elaborated strategies. For example, the use of
XAI (explainable AI) methods could allow to systematically
detect phage-relevant hotspots/motifs in the predictor model.
On this base, only essential code segments, selected on the basis of
sequence similarity and alignment, will be allowed to integrate
existing phage genomes.
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