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Blood coagulation is a vital physiological mechanism to stop blood loss following an injury
to a blood vessel. This process starts immediately upon damage to the endothelium lining
a blood vessel, and results in the formation of a platelet plug that closes the site of injury. In
this repair operation, an essential component is the coagulation factor IX (FIX), a serine
protease encoded by the F9 gene and whose deficiency causes hemophilia B. If not
treated by prophylaxis or gene therapy, patients with this condition are at risk of life-
threatening bleeding episodes. In this sense, a deep understanding of the FIX protein and
its activated form (FIXa) is essential to develop efficient therapeutics. In this study, we used
well-studied structural analysis techniques to create a residue interaction network of the
FIXa protein. Here, the nodes are the amino acids of FIXa, and two nodes are connected by
an edge if the two residues are in close proximity in the FIXa 3D structure. This
representation accurately captured fundamental properties of each amino acid of the
FIXa structure, as we found by validating our findings against hundreds of clinical reports
about the severity of HB. Finally, we established a machine learning framework named
HemB-Class to predict the effect of mutations of all FIXa residues to all other amino acids
and used it to disambiguate several conflicting medical reports. Together, these methods
provide a comprehensive map of the FIXa protein architecture and establish a robust
platform for the rational design of FIX therapeutics.
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1 INTRODUCTION

In humans and other animals, the blood is responsible for functions essential to sustain life, including
the transport of gases and nutrients, regulation of body temperature, and importantly, the repair of
damaged blood vessels (i.e., clotting). This process involves the activation and adhesion of platelets
and fibrin to form a platelet plug that ceases the blood loss (Lee et al., 2014; Hoffbrand et al., 2016).
The blood coagulation pathway consists of a well-orchestrated series of protein activation and
complex formation, and involves more than 10 different components, termed coagulation factors
(Lee et al., 2014; Hoffbrand et al., 2016). Disruptions of this delicate system often leads to hemorrhage
or thrombosis.

Among these blood coagulation disorders is hemophilia B (HB), a relatively rare condition
affecting 1 in ~50,000 live births, caused by mutations in the coagulation factor 9 gene (F9) (Lee et al.,
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2014). The human F9 gene is located on the X chromosome, has
34 kb and after transcription it produces an 8-exon mRNA
molecule encompassing 2,802 bp. The encoded protein has 461
amino acids, and after removal of the 46 residues signal- and
leader peptides, a 415 mature protein is produced (Anson et al.,
1984). Following an injury and the consequent trigger of the
coagulation cascade, FIX is activated on a two-step calcium-
dependent operation by the FVIIa/Tissue Factor complex and by
FXIa. These activation steps result in the removal of a peptide
spanning residues 192-226, and produce a FIXa with a light- and
a heavy-chain [residues 47-191 and 227-461, respectively (Di
Scipio et al., 1978; Bajaj et al., 1983)].

The FIXa protein has four domains (Gla, EGF1, EGF2, and
serine protease). The Gla domain is involved in binding the
phospholipid membrane of platelets (Rawala-Sheikh et al., 1992),
the tandem copies of the EGF domain are involved in binding
other coagulation factors (Wilkinson et al., 2002; Zhong et al.,
2002), and the serine protease domain (SP), which comprises
about half of the FIXa’s mass, contains the amino acid triad
responsible for the FX activation (Brandstetter et al., 1995).

Although FIX exhibits a relatively simple domain architecture,
substitutions of amino acids often lead to the disruption of the
FIX catalytic activity, as indicated by more than 1,000 mutations
reported to date (Rallapalli et al., 2013). These mutations cause
HB with different symptoms (White et al., 2001), ranging from
mild cases with only occasional bleeding episodes (5%–40% of the
normal FIX activity), to moderate (1%–5% of the normal FIX
activity), and severe cases (less than 1% of the normal FIX
activity).

For patients who have access to treatment, it consists of
periodic prophylactic injections of recombinant FIX to prevent
bleeding episodes. Recently, clinical trials have demonstrated the
feasibility of gene therapy, whereby an adenovirus was modified
to introduce the F9 gene in the liver of patients to generate a
steady production of FIX (George et al., 2017). Although these
treatment options dramatically improved the quality-of-life of
HB patients, the development of inhibitory antibodies in
1.5%–3% of patients (Santoro et al., 2018), the short half-life
of recombinant products (Franchini et al., 2013), and the toxicity
associated with the high doses necessary for efficient gene therapy
(Manno et al., 2006), indicate that HB therapeutics still require
further improvements.

In this sense, as attested by the fact that some FIX
mutants—either natural (Simioni et al., 2009) or engineered
(Nair et al., 2021)—dramatically increase the catalytic activity
and the half-life of FIX, it is clear that a deep understanding of the
FIX structure and function is crucial to accelerate the
development of more potent and less immunogenic FIX
constructs.

To address this issue, we created an in silico network
representation of the FIXa structure—a residue interaction
network (RIN)—where each of its residues is a node, and two
nodes are connected by an edge if they are in close proximity to
each other in the FIXa 3D structure. As we reported previously for
FVIII (Lopes et al., 2021a; Lopes et al., 2021b), this novel
representation allowed us to calculate several centrality
measures of each amino acid, effectively quantifying their

importance in the FIXa structure and indicating which amino
acids are more or less tolerant to substitutions. To ensure the
robustness of this approach, we carefully validated our in silico
findings against hundreds of clinical reports associating
mutations to the severity of the HB symptoms.

Next, we created an open-source machine learning framework
called HemB-Class to generalize these findings and predict the
effects of mutations of all FIXa residues to all 19 remaining amino
acids. Notably, we verified that we could use the HemB-Class
framework to disambiguate clinical reports that had conflicting
results (i.e., database entries showing different severities
associated to the same amino acid substitution).

Together, the findings presented here provide a
comprehensive map of the FIXa protein structure, and
demonstrate the feasibility of in silico tools to mechanistically
quantify the characteristics of every residue of this vital
coagulation factor.

2 RESULTS

2.1 Creation of the FIXa RIN
The FIXa protein activates FX to FXa via a protealytic cleavage
mediated by its amino acid triad located on the SP domain
(Anson et al., 1984; Johnson et al., 2010), and this reaction is
catalyzed several thousand folds by the presence of FVIIIa (Lee
et al., 2014). To understand the details of this process and to
design efficient recombinant therapeutic proteins, it is essential
to investigate the protein structure of FIXa. Even though no
complete structure of the human FIX was determined, the
structures of its individual domains (Freedman et al., 1995;
Rao et al., 1995; Johnson et al., 2010) and the complete
porcine (Brandstetter et al., 1995) version of this protein were
determined at good resolutions (1.7Å–2.8 Å). Therefore, to study
the structure of FIXa we used the same strategy from a previous
study that aligned the individual domains of the human FIX to
the backbone of the porcine structure, and further refined it
using optimization software (Rallapalli et al., 2013). We verified
that in this structure, ~30% of its residues are buried at the core
of the structure, 15% present in alpha helices, 24% in beta-sheets,
and more than 40% are present in loops of different shapes and
sizes (Supplementary Table S1). Compared to the human FIX
structure predicted by AlphaFold 2 (Tunyasuvunakool et al.,
2021), the two models displayed an almost identical
conformation on the heavy chain, but had considerable
differences on their light-chains; this is due to the fact that
the AlphaFold model was based on the complete form of the FIX
protein and had low modeling confidence at several regions
(Supplementary Figure S1). Given that the model we use in this
study is derived from structures determined at good resolutions
(1.7Å–2.8 Å), we opted to use solely our model for the analyses.
Although this homology model was a “snapshot” of this
coagulation factor and did not take into account the
conformational changes that take place upon interaction with
its partners (Freato et al., 2020), this domain alignment strategy
yielded an appropriate homology model of FIXa, with more than
95% of its residues displaying good or very good conformations
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(Supplementary Figure S2), and was successfully used in
protein binding studies (Venkateswarlu, 2010; Venkateswarlu,
2014).

Next, given that protein structures are chains of amino acids
organized in a three-dimensional space, we reasoned that a
network representation of the FIXa structure could offer a

detailed understanding of its underlying properties. Therefore,
we created a RIN where each of its amino acids is a node, and two
nodes are connected by an edge if they are in close proximity to
each other in the FIXa 3D structure (Methods). The edges
between nodes indicate that there is either a 1) side-
chain–side-chain, 2) side-chain–main-chain, 3) main-

FIGURE 1 | Representation of FIXa structure as a residue network. (A) In the FIXa RIN, each node represents an amino acid, and two nodes are connected by an
edge if their atoms are in close proximity (~5 Å). (B) The degree quantifies the number of connections a residue has, the betweenness indicates how many times a node
served as a bridge on the shortest path along two other amino acids, and the Burt’s constraint was derived from social science studies to quantify the position of
advantage of individuals within an organization (Burt, 2009). Nodes with high-degree participate in multiple molecular interactions, and those with high-
betweenness and low Burt’s constraint serve as intermediate between different groups of amino acids. In contrast, residues with low degree, low betweenness and high
Burt’s constraint usually do not have many connections to other residues and are located at the periphery of the network. (C) Properties derived from the FIXa structure
or from the RIN are good indicators of the severity of HB. Depicted is the solvent-accessible (areaSAS) and the solvent-excluded (areaSES) surface areas, the relative
exposure of amino acids (Rel. Exposure Area), the conservation of the FIXa residues (smaller values indicate higher conservation), and the RIN centrality measures. Also
depicted are measures derived from SIFT (Sim et al., 2012), Provean (2 Scores, −2.5 and 0.05) (Choi and Chan, 2015), and from Polyphen-2 (PPH2-Prob, dScore, Score
1, Score 2, MinDJxn, IdPmax, IdQmin) (Adzhubei et al., 2010). The boxplots show the median (center line), the first and third quartiles (lower- and upper-bounds), and
1.5 times the inter-quartile range (lower- and upper whiskers). Each dot in the plot is an amino acid mutation (i.e., a clinical case report). Unpaired, two-sided Wilcoxon
test (***p-values < 0.001; **p-value < 0.01; *p-value < 0.05).
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chain–main-chain hydrogen bond or non-covalent interaction
between the atoms of the residues (usually located within less
than ~5 Å) (Figure 1A; Supplementary Table S2 contains the
complete network). Interestingly, the FIXa RIN displayed several
hydrogen bonds between residues (Supplementary Figure S3); in
all domains, these residues were separated by ~6 Å, and these
bonds most likely help stabilize the FIXa structure by maintaining
the correct orientation of all interacting partners.

In total, the FIXa RIN had 360 nodes and 1,229 edges. Previous
studies demonstrated that the centrality measures of amino acids
in a RIN are strong indicators of the protein stability (Dokholyan
et al., 2002; Yan et al., 2014; Nisthal et al., 2019) and provide
valuable information about the role of residues in the protein
conformation and interaction with other proteins (Reichmann
et al., 2005; del Sol et al., 2006). Therefore, to quantify the
centrality of the FIXa RIN, we calculated several measures
based on distinct underlying principles (Figure 1B), as well as
quantitative features derived directly from the protein structure,
like the solvent exposed area, hydrophobicity and the psi and phi

angles of each of its residues, and their conservation throughout
evolution (Methods).

Next, we wondered if these features could be used as indicators
of the severity of HB. Similar to other proteins (Kessel and Ben-
Tal, 2010), we found that mutations of the most conserved,
hydrophobic and buried residues are usually associated with
severe forms of HB (Figure 1C). Moreover, we evaluated the
predictive performance of 3 popular methods that are able to
determine the effect of point mutations in proteins [i.e., Provean
(Choi and Chan, 2015), Polyphen-2 (Adzhubei et al., 2010), SIFT
(Sim et al., 2012)]. These methods output a binary classification of
the most likely result of amino acid substitutions (i.e., neutral or
deleterious), and numerical scores quantifying this effect. We
used 393 FIXa mutations as input to these methods and verified
that while their binary classifications could not predict the
severity of hemophilia A (Supplementary Figure S4), their
numerical scores were powerful discriminators of severe and
mild/moderate cases (Figure 1C). Finally, we observed that
substitutions of the most central residues of the FIXa RIN

FIGURE 2 | Centrality measures from the FIXa RIN and the important residues. (A) The Spearman correlation between all measures considered in this
study. (B) The degree and betweenness of all residues of the FIXa RIN. Each dot represents an amino acid, and groups of residues with different characteristics
are highlighted. (C) The location of the residues highlighted in panel (B) in the FIXa protein structure. (D) The boxplot displays the betweenness and the Burt’s
constraint values of the nodes taking part in atomic interactions with residues in other domains of FIXa (link nodes), compared to the nodes interacting only
with residues from the same domain. (E) The residues with the highest degree, betweenness and (lowest) Burt’s constraint; these residues are most likely the
most central of the whole FIXa protein. The boxplots show the median (center line), the first and third quartiles (lower- and upper-bounds), and 1.5 times the
inter-quartile range (lower- and upper whiskers). Unpaired, two-sided Wilcoxon test (***p-values < 0.001; *p-value < 0.01; *p-value < 0.05).
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(indicated by the high-degree, high-betweenness and low Burt’s
constraint values), lead to more severe symptoms. On the other
hand, mutations of the less conserved residues located at the
protein surface, and less central in the FIXa RIN are mainly
related to mild or moderate HB symptoms (Figure 1C).

In an analogy to the train system of a large city, disturbances at
the “hub” stations quickly propagate and cause the collapse of the
transportation network; in a similar fashion, substitutions of the
most connected residues of FIXa lead to the impairment of its
function. As our results demonstrate, the FIXa RIN is able to
capture the underlying properties that associate the position of
each network residue to the severity of HB symptoms, and

together with existing methods, these findings converge from
multiple lines of evidence.

2.2 RIN Derived Measures Identify Critical
RIN Residues
After verifying the suitability of the RIN to represent the FIXa
structure and to quantify the importance of its residues, we aimed
to identify which of them are critical for the proper functioning of
this protein.

For this purpose, we compared the measures we calculated for
the FIXa RIN, and found that several of them were correlated

TABLE 1 | Key-residues identified using the centralities of the FIX RIN.

Group Pos.a AA Dom. Rel. Exp. Areab Degreeb Betw.b Burt’s Constr.b Conserv.c Severityd Struct.e

Sev. Mod. Mild

HDHB 87 Phe Gla 31.1 99.4 92.8 11.4 8 3 2 1 H
88 Trp Gla 35.3 99.4 86.1 16.4 8 1 — — H
240 Trp SP 25.3 99.4 95.6 3.9 8 7 4 1 T
256 Ile SP 6.4 100.0 91.1 2.5 8 1 — — E
282 His SP 11.1 99.4 85.6 3.3 5 1 — 3 T
316 Ile SP 7.5 99.4 82.8 0.3 8 7 4 — C
358 Arg SP 41.7 99.4 80.6 9.2 3 1 — 1 T
410 Asp SP 30.6 99.7 90.0 1.1 9 7 4 — T
424 Phe SP 9.7 99.4 99.2 2.2 2 7 — — E
444 Tyr SP 6.4 99.4 88.6 0.6 9 — 1 — E
450 Tyr SP 10.5 99.4 83.6 6.7 6 4 1 1 H

LDHB 48 Asn Gla 64.7 29.2 89.2 74.7 6 2 8 1 C
97 Cys EGF-1 51.1 29.2 81.9 78.6 9 5 1 2 T
107 Ser EGF-1 75.8 18.3 98.3 73.1 1 — — — E
109 Lys EGF-1 57.8 29.2 96.9 75.8 3 — — — E
111 Asp EGF-1 68.6 29.2 97.2 72.8 2 — — — T
125 Gly EGF-1 59.4 18.3 79.4 80.6 8 4 — — T
161 Tyr EGF-2 67.5 29.2 87.5 35.3 7 2 2 — T

LDLB 47 Tyr Gla 100.0 0.8 3.3 74.7 5 — — — C
81 Thr Gla 90.0 7.8 3.3 78.6 1 — — — C
99 Ser EGF-1 96.9 7.8 3.3 73.1 5 — — — T
149 Ala EGF-2 98.6 7.8 3.9 75.8 1 — — — T
160 Gly EGF-2 99.7 0.3 3.3 72.8 8 5 10 4 T
165 Glu EGF-2 91.7 7.8 3.3 80.6 2 — — — T
171 Glu EGF-2 75.0 7.8 4.4 35.3 8 — — — C
271 Thr SP 94.4 7.8 3.3 98.9 1 — — — T
303 His SP 81.7 7.8 3.3 98.3 5 1 — 1 T
309 Ile SP 93.3 7.8 3.3 99.2 1 — — — T
360 Phe SP 90.8 7.8 3.3 96.1 2 1 1 1 T
387 Lys SP 83.6 7.8 3.3 96.9 2 4 — 5 T
421 Gly SP 97.2 0.8 3.3 99.7 3 — — — T

Super-critical 144 Phe EGF-2 8.3 88.9 100.0 10.8 4 — — — E
168 Lys EGF-2 40.8 96.7 99.4 8.3 4 — — — C
256 Ile SP 6.4 100.0 91.1 2.5 8 1 — — E
263 Val SP 14.7 96.7 96.7 1.7 6 1 — — E
316 Ile SP 7.5 99.4 82.8 0.3 8 7 4 — C
356 Trp SP 33.1 96.7 91.7 1.4 9 9 3 4 C
410 Asp SP 30.6 99.7 90.0 1.1 9 7 4 — T
424 Phe SP 9.7 99.4 99.2 2.2 2 7 — — E
425 Leu SP 14.4 93.6 98.1 0.8 7 1 3 1 E
444 Tyr SP 6.4 99.4 88.6 0.6 9 — 1 — E

aNumbering following the Human Genome Variation Society numbering (HGVS).
bPercentile values, showing the percentage of other residues with centrality values smaller than the value indicated.
cConservation according to the ConsurfDB server. It varies from 1 (least conserved) to 9 (most conserved).
dNumber of reports in the EAHAD FIX mutation database, including all types of mutations. Visited in Feb. 2021.
eSecondary structure elements: alpha helix (H); beta-strand (E); coil (C); turn (T).
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(Figure 2A). Therefore, for further analyses we selected only the
least correlated measures: two well-studied centrality measures
(degree and betweenness), and an index not commonly used in
biological network analysis [the Burt’s constraint, derived from
social science studies (Burt, 2009)].

After inspection of the degree and betweenness values of
residues in the FIX RIN (Figure 2B), we divided the residues
into three patterns, 1) High-Degree and High-Betweenness
(HDHB), 2) Low-Degree and High-Betwenness (LDHB), and
3) Low-Degree and Low-Betwenness (LDLB) (Table 1). We
found that the HDHB residues are mainly part of alpha
helices or beta-strands, are connected to 12–14 other residues
via non-covalent or hydrogen bonds, are buried at the core of the
Gla and the SP domains, and althoughmutations at these residues
are mainly associated to severe forms of HB, occasionally there
are reports of moderate symptoms (Figure 2C). Among these
residues, Phe424 is located at the edge between the SP and the
EGF2 domains, and is consistently associated with severe forms
of HB if mutated to leucine, valine, or serine (Chen et al., 1991;
Caglayan et al., 1997; Liu et al., 2000). Moreover, we found that in
the FIXa RIN, 40 residues take part in atomic interactions with
residues from a different domain. Interestingly, while the degree
of these residues did not differ from other residues of FIXa, their
betweenness and their Burt’s constraint values were markedly
different—they were more than 3 times higher compared to
residues interacting only with residues from the same domain
(Figure 2D; Supplementary Table S3).

The LDHB residues are located at loops and beta-strands, but
serve as bridges along the shortest paths between other amino
acids. These residues are located mainly at the outer regions of
EGF1 and EGF2 and have neighbors at different domains, most
likely stabilizing the overall FIXa conformation. Most mutations
at these residues are associated to severe forms of HB (e.g.,
Gly125Arg (Caglayan et al., 1997); however, residues Ser107,
Lys109, and Asp111 had no reports of HB, possibly because these
mutations occur in humans but people carrying this mutation did
not show symptoms, given that these amino acid positions are not
conserved and accepted different types of amino acids throughout
evolution (Supplementary Table S1).

Next, the LDLB residues are the most peripheral residues of
FIXa, located at the most outer loops of the Gla, EGF1, EGF2, and
SP domains (Figure 2C). While six of those residues did not have
HB reported in the medical literature, the remaining had a few
cases described, indicating mainly mild, and occasionally
moderate or severe cases (e.g., Thr271).

Along these lines, we also verified that the Padua (Simioni
et al., 2009) and the CB 2679d-GT mutants (Nair et al., 2021),
known to considerably increase the activity of FIXa, have a high
surface exposure and centrality values tending towards the least
connected residues of the FIXa RIN. Interestingly, we observed
that while most FIXa surface residues interacting with FVIIIa
display low connectivity and high surface exposure, some
residues eluded this trend by taking part in multiple molecular
interactions with other residues (i.e., Lys347, Arg379, Leu383),
and caused a major reduction of FXa generation if mutated to
alanine (Kolkman et al., 1999; Bajaj et al., 2001). This suggests
that although most surface residues have low centrality values in

the FIXa network, some are highly connected, most likely to
preserve their correct positioning within the binding sites
(Reichmann et al., 2005; del Sol et al., 2006).

Together, these findings indicate that centralities measures
derived from the RIN help to identify critical residues of the FIX
structure, and their position within the network largely reflect the
severity of HB symptoms that ensues if those residues are mutated.

Having observed that the Burt’s constraint could significantly
differentiate between HB severities (Figure 1C), and that this
measure had only a moderate correlation with the betweenness
centrality (0.78, Spearman correlation, p-value < 0.01), we
considered it together with the degree and the betweenness
and used the Pareto front to identify the FIXa residues that
had the highest values on all three measures. This strategy offered
a strong combination of local and global centrality measures,
pointing to the residues that played a critical role in its local
neighborhood (high degree) as well as on distal locations of FIXa
(high betweenness and low constraint values)—we termed these
residues supercritical (Figure 2E; Table 1).

We found that these residues are mainly part of beta-strands,
are located in the hydrophobic core of the SP domain, at a surface
loop of EGF2, and within less than ~1.5 Å of several residues of
EGF1. Moreover, the substitution of these residues is strongly
associated to severe HB symptoms—for instance, Trp356,
Asp410, and Phe424 had combined more than 30 reports of
severe HB in the EAHAD database (Rallapalli et al., 2013).

In all, these findings indicate that the connectivity of residues
in a RIN provides quantifiable information reflecting their
importance, and the combination of measures can uncover
patterns that would otherwise remain obscured.

2.3 Development of a Machine Learning
Classifier for Hemophilia B
After identifying the properties of key FIXa residues, we
wondered if we could use all structural and centrality
measures in conjunction to train a machine learning classifier
to predict the severity of HB that ensues upon mutation of the
FIXa residues. A machine learning classifier algorithm works by
learning the patterns from only a part of the input dataset, and by
repeatedly tuning its parameters to prioritize features that are
informative to predict the class of each instance. In our case, we
had 393 instances representing a FIXa mutation that caused HB
in a patient (213 mild/moderate, 180 severe). Current databases
do not have enough data of Type I and Type II mutations to allow
us to create specific machine learning models for each type
(namely, those that impair secretion and activity, or those
affecting only the activity of FIXa).

The input features were the structural and centrality measures
derived from the FIXa RIN and from the structure itself, the
residue conservation score derived from a large multiple sequence
alignment, and other measures of difference between the wild-
type and the new amino acid after the substitution (Methods).
Finally, the class label to be predicted was the severity of the
disease (mild/moderate or severe) (Figure 3A).

We compared the predictive power of 6 different classifiers.
The input data was divided into 10 equal parts, and 9 parts were
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used for training and 1 part was used to evaluate (test) the
performance of the classification—namely, how many instances
were correctly classified as mild/moderate or severe HB. During
the training phase, the hyperparameters used to control the learning
process were tuned using a 10-fold cross-validation approach to
avoid overfitting the models. To increase the robustness of the
results, this procedure was repeated 10 times to ensure that
several combinations of training and test sets were considered.
Using this approach, the classifiers obtained an overall accuracy
of ~70%, indicating that the individual algorithms could learn
moderately well the underlying patterns of the FIXa structure
and correlate them to the severity of HB symptoms (Figure 3B).

We observed that the classifiers outputted slightly different
predictions for the same instance, as reflected in the low
correlation between their outputted probabilities (Figure 3C).
This situation is ideal for the creation of an ensemble of
classifiers–i.e., the combination of predictions from different
classifiers to come closer to the real class of an instance (Dong
et al., 2020). Therefore, to find the best combination of classifiers,
we calculated the median of their outputted predictions
considering all possible classifier combinations, from
individual algorithms to all six algorithms together.
Additionally, we verified that the classification accuracy
improved considerably if we created an “exclusion zone”
where we did not consider instances that had ambiguous
classifications (Figure 3D).

The best ensemble was the combination of two well-known
algorithms, namely, Random Forest (Breiman, 2001) and

XGBoost (Chen and Guestrin, 2016). We named this
ensemble HemB-Class. Additionally, instead of outputting a
simple binary classification (e.g., mild/moderate or severe HB),
we implemented HemB-Class to output a probability that a
mutation will impair the function of the FIXa protein. We
named this output as Severity Score and verified that it
raised the accuracy of HemB-Class to more than 80% while
retaining more than 70% of the instances (Figure 3D).
Additionally, HemB-Class achieved sensitivity of 0.71 and
specificity of 0.89, demonstrating that it could accurately
distinguish between mild/moderate and severe HB cases
(Supplementary Table S4).

Together, these results indicate that although HB had only a
few hundred unique instances—as is often the case for rare
diseases—we found that a rational combination of classifier
algorithms leveraged HemB-Class’ performance and led to
correct predictions of the association between amino acid
substitutions and the severity of HB. Importantly, the Severity
Score provided the flexibility to select the stringency of the
classification, either classifying more instances with less
confidence, or less instances with more certainty.

2.4 Predicting the Severity of all Possible FIX
Mutations
One of the greatest assets of machine learning classifiers is their
ability to predict the class of instances not used during the training
phase. For this reason, we aimed to predict the severity of 1,373 HB

FIGURE 3 | The HemB-Class machine learning framework. (A) Our machine learning classifiers received as input the properties from the FIXa structure, from the
FIXa RIN, the conservation score of each amino acid and measures derived from other variant prediction algorithms [SIFT (Sim et al., 2012), Provean (Choi and Chan,
2015), and Polyphen-2 (Adzhubei et al., 2010)]. The output of our classifiers is the severity of HB, derived from clinical reports from the EAHAD FIX mutation database
(Rallapalli et al., 2013). (B) Comparative performance of six classifiers and a combination of the best classifiers (Ensemble—we named it HemB-Class). The bars
depict the mean values of 10 repetitions of 10-fold cross validations and the error bars are the standard deviation values. (C) Spearman correlation of the predicted
probabilities outputted by the classifiers. (D) The trade-off between the number of instances classified and the accuracy. Each dot is the classification performance of an
individual classifiers or the ensembles when we vary the classification threshold to create an “exclusion area” to disregard instances with ambiguous classifications.
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mutations that had conflicting clinical reports (i.e., mutations at the
same position, but with different symptoms).

We used HemB-Class to calculate the Severity Score of those
mutations and found that our predictions largely agreed with the
majority class of the reports—i.e., mutations with high Severity
Scores are often associated to severe forms of HB and vice-versa
(Figure 4A). These results indicate that HemB-Class can help
disambiguate FIXa mutations, and narrow down the number of
candidates that require a meticulous laboratory follow-up
(Supplementary Table S5).

Next, we used HemB-Class to predict the effect of mutating all
residues of FIXa to all 19 remaining amino acids (Figure 4B). We
found that the core of all domains have regions that are intolerant
to mutations. For instance, Glu72 and Glu73 on the Gla domain,
Cys97 on EGF1, Cys141 on EGF2, and Trp261 on SP were
predicted to impact the function of FIXa if mutated to most
other residues, especially if the changes introduce residues with
opposite charges or differing sizes (Supplementary Table S6).

Finally, we combined all predictions to identify the residues
that were the most reactive to mutations—in other words,
residues unlikely to accept any amino acid substitution
(Figure 4C). We found that the buried residues of all domains
are the regions where mutations are more likely to cause a
disruptive effect; however, while previously this was only a
qualitative measure in the protein structure field (i.e., buried
or exposed), we effectively represented this characteristic in
quantitative terms and observed a major difference between
the predicted Severity Score of the most buried compared to
the exposed residues (Figure 4D), suggesting that substitutions

aimed at improving the activity of FIXa should take the buried
and exposed thresholds into account.

In summary, these results demonstrate that a versatile
machine learning framework can anticipate the effects of
amino acid substitutions in FIXa, as demonstrated by the close
agreement between these predictions and hundreds of clinical
reports collected over the past 3 decades.

3 DISCUSSION

In this study, we established a novel representation of the FIXa
structure that enabled us to quantify the importance of all of its
amino acids. We organized the FIXa structure as a residue
network, where two nodes are connected if they are in close
proximity to each other in the 3D structure of the FIXa protein.
We found that the amino acid centrality measures derived from
this network are good indicators of the severity of HB that ensues
if those residues are mutated (Figure 1). Moreover, we inputted
these and other structural measures into a machine learning
classifier framework that we named HemB-Class, and found that
it accurately predicts the severity of HB. We used this framework
to disambiguate conflicting medical reports and to predict with
high accuracy the extent of impairing mutations.

In comparison to FVIII, the FIX protein is relatively simple,
containing 461 residues and only 4 domains. However, this
simplicity also requires that all of its binding sites and
catalytic regions are correctly positioned for its activity to take
place (i.e., activate FX) (Lee et al., 2014; Hoffbrand et al., 2016).

FIGURE 4 | Severity Score of all possible FIXa mutations. (A) The Severity Score of mutations not used during the training phase because they had conflicting
symptoms reported in the medical literature. Our predictions agreed with the majority class of each mutation (Supplementary Table S5). (B) The Severity Score
predicted by the HemB-Class framework for themutations of each FIXa residue to the 19 remaining amino acids. (C) The location of the residues with the highest Severity
Scores. These residues, located at the core of each FIXa domain, are unlikely to accept any amino substitution (Supplementary Table S6). (D) The most buried
residues (less than 25% relative surface exposure), have significantly higher Severity Scores than themost exposed residues. The boxplots show themedian (center line),
the first and third quartiles (lower- and upper-bounds), and 1.5 times the inter-quartile range (lower- and upper whiskers). Each dot in the plot is an amino acid mutation
(i.e., a clinical case report). Unpaired, two-sided Wilcoxon test (***p-values < 0.001; **p-value < 0.01; *p-value < 0.05).
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While major perturbations to the F9 gene are more likely to result
in severe HB (e.g., deletions or introduction of premature stop
codons), the effects of single-nucleotide polymorphisms are less
predictable. Therefore, as the conformation of proteins is
intimately related to their functions (Kessel and Ben-Tal,
2010), studying the impact of amino acid substitutions in the
overall protein architecture is an essential step to link and
anticipate the effects of nucleotide substitutions to the clinical
symptoms of HB.

In addition to identifying properties and centrality measures
associated to mild, moderate and severe HB (Figure 1C), we used
the FIXa RIN to identify the residues that display relevant
properties and that can either be safely substituted, or should
be avoided in attempts to improve FIX’s activity and
immunogenic profile (Supplementary Table S1). In particular,
we observed that the positions mutated in the Padua (Simioni
et al., 2009) (Arg384) and the CB 2679d-GT (Arg364, Arg384,
Thr389) variants (Nair et al., 2021), known to increase FIX’s
activity and stability, have a centrality profile similar to other
peripheral nodes (Figures 2B–D), corroborating the idea that
residues with this profile can be safely substituted without
impacting the stability of FIXa. Notably, we verified a mixed
composition of more and less connected residues at the FVIIIa-
FIXa binding sites (Kolkman et al., 1999; Bajaj et al., 2001),
suggesting that while some residues can be safely substituted,
others take part in numerous molecular interactions that hold the
modular structure of the binding sites in place (Dokholyan et al.,
2002; Reichmann et al., 2005).

While individual structural properties and the RIN measures
are good to identify critical FIXa residues, we wondered if we
could leverage the overall predictive power of our approach if
we used machine learning algorithms (Figure 3). Indeed, we
found that after a strict training, evaluation and combination
procedure, we could use the HemB-Class framework to predict
the effects of mutations at FIXa positions not used during the
training phase; thus, we created an index—the Severity
Score—to quantify the likelihood that mutations cause a
major disruption of the FIXa activity. In particular, we used
the Severity Score to disambiguate several clinical HB reports
that had conflicting observations, indicating that the HemB-
Class captured in silico the essence of the FIXa structure
(Figure 4A; Supplementary Table S5).

Finally, we explored the fullest extent of HemB-Class’
predictive power to study the effects of mutations of all
FIXa residues to all 19 remaining amino acids
(Figure 4B). This analysis produced a comprehensive list
of residues that are likely intolerant to substitutions due to
their high number of molecular interactions to other
residues, their buried position and their evolutionary
characteristics (Figure 4C; Supplementary Table S6); on
the other hand, we found positions located at the outer loops
of all FIXa domains that are more likely to accept amino acid
substitutions, and are unlikely to disrupt the delicate inter-
molecular network that holds the FIXa structure in place (del
Sol et al., 2006; Han, 2008).

In summary, the FIXa RIN and the HemB-Class are versatile
resources that can capture the intrinsic properties of the FIXa

structure, and associate its features to the severity of HB. Thanks
to its open source and scalable architecture, they can be
immediately refined as soon as new FIX mutation reports and
structures become available. Thus, we are optimistic that the
findings presented here will pave the way for the rational design
of better therapeutics, and that the overall methodology will be a
starting point to study the underlying molecular mechanisms of
other rare diseases.

4 METHODS

4.1 Database Sanitation
We manually queried the European Association for Haemophilia
and Allied Disorders Database (EAHAD) on 20th February 2021.
At present, the EAHAD is the largest source of information about
hemophilia B mutation in the public domain. It is manually
curated and contains both clinical and genetic information
(Rallapalli et al., 2013). We selected “Point” and
“Polymorphism” (on type), and “Missense” (on variant effect)
on the advanced search. Next, we removed mutations on the signal
peptide regions, or outside the activated form of the protein.

Finally, we removed instances with ambiguous reported
classifications (e.g., “mild/moderate,” or “moderate/severe”).

4.2 Creation of the FIXa Residue Interaction
Network
To create a homology model of FIXa, the authors from a previous
study (Rallapalli et al., 2013) aligned the structures of its
individual domains (Freedman et al., 1995; Rao et al., 1995;
Johnson et al., 2010) and the complete porcine (Brandstetter
et al., 1995) version of FIX, and further refined its structure using
optimization software. The domains and their resolutions were
Gla: 2.80 Å, EGF1: 1.50 Å, EGF2-SP: 1.7 Å (PDB codes: 1CF1,
1EDM, and 3KCG, respectively).

We transformed the structure of the FIXa protein in an
undirected, unweighted graph using RINerator version 0.5.1
(Doncheva et al., 2011) with the default parameters. This
program first adds hydrogen atoms to the structure, which is
essential to identify non-covalent interactions between amino
acids (Word et al., 1999b), and second, it identifies the non-
covalent interactions using a small probe (~0.25 Å), rolled around
the van derWaals surface of each amino acid (Word et al., 1999a),
and a contact is established if the probe is simultaneously in
contact with two non-covalently bonded atoms.

We considered that two residues interacted if there was at least
one edge between them, independently of the edge type. To
analyze the FIXa-RIN, we used R version 3.6.3 (https://www.
R-project.org/) and the iGraph package, version 1.2.5 (Csardi and
Nepusz, 2006). With the iGraph package, we used the function
simplify to remove redundant edges and self-interactions. We
calculated the degree, betweenness, closeness, Burt’s constraint
(Burt, 2009), Authority Score, Page Rank-like, and the Authority
Score measures.

We visualized the networks using Cytoscape version 3.8.2
(Shannon et al., 2003).
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Finally, we obtained the conservation score from the
ConsurfDB webserver (Ben Chorin et al., 2020), using the
FIXa protein structure as input for the search query.

4.3 Calculation of the FIXa Protein Structure
Properties
We used Chimera version 1.14 (Pettersen et al., 2004) to extract the
solvent-excluded area (areaSES) and to calculate the relative surface
exposure of all amino acids from the customized FIXa structure. We
divided the solvent-excluded area of the residue by the surface area of
the same type of residue in a reference state; in our case, we used the
reference values of the 20 standard amino acids in Gly-X-Gly
tripeptides (Bendell et al., 2014). Other measures calculated with
Chimera were areaSAS, kdHydrophobicity, PSI, and PHI, for each
residue of the FIXa structure.

To predict the secondary structure elements, we used the FIXa
sequence as input to STRIDE (Frishman and Argos, 1995), and to
determine whether the residue was buried of exposed, we divided
the relative surface exposure area (relSESA) of each amino acid by
the maximum value of all FIXa residues. Values below 0.25 were
considered buried, otherwise, they were considered exposed.

For other measures, we used 393 FIXa single-point mutations
as input to SIFT (Sim et al., 2012), Provean (Choi and Chan,
2015), and from Polyphen-2 (Adzhubei et al., 2010). For SIFT, we
used the swiss_prot_2010_09 database, and a value of 0 for the
median conservation of sequences.

4.4 Amino Acid Distance Index
We used the R package seqinR (Charif and Lobry, 2007) to obtain 544
numerical properties of each amino acid. Next, we used the package
AMAP (Lucas, 2014) to perform a principal component analysis (PCA)
of this set, and reduced thenumberof properties to 19 componentswhile
retaining 99% of the information in the dataset. Next, we calculated the
Euclideandistance between all amino acid, considering all 19 component
values. This gave us a 20 x 20 matrix which was the distance index used
in our analyses (Supplementary Table S1).

4.4.1 Machine Learning
We used supervised machine learning (ML) algorithms to analyze
instances of FIXa mutations (input space χ) to predict different HB
severities (output labels Ƴ). The learning process was executed in
three steps. First (preprocessing), we organized the input space χ to
be used as input for the ML algorithms. We removed all instances
with a missing value in any FIXa feature. Then, we normalized the
FIXa features to the interval [0, 1]. Next, we used a stratified 10-fold
cross-validation strategy to find the best possible ML models from
the mapping f: χ→Ƴ. This strategy randomly splits the input space
in ten parts, respecting the original distribution of the output labels
(213 mild/moderate and 180 severe). During this phase, the
optimal ML models (considering different ML algorithms) are
obtained by iteratively using 9 folds for training and 1 fold to
evaluate the output of the algorithms. Finally, the final performance
of such models was assessed using validation methods to compare
the expected and the predicted HB severity for a set of unseen
examples. The last two steps were repeated 10 times to ensure that
the results were consistent despite random fluctuations. The

validation methods used here were the accuracy, Kappa
Coefficient, Matthews Correlation Coefficient (MCC), and Area
under the ROC curve (AUC). The accuracy is used to determine
the number of instances classified correctly. The Kappa Coefficient
measures the agreement between the predicted and the expected
severity, emphasizing that the results were not obtained by chance.
The MCC uses a contingency matrix, produced by the expected
and the predicted severity, to compare classifiers in a way similar to
the Pearson’s correlation coefficient. Finally, the AUC uses a
contingence matrix to create a curve between the TPR (True
Positive Rate) and FPR (False Positive Rate) values. As the area
under the curve approaches 1, the quality of the classification
increases.

TheML algorithms used in our study were: Decision Trees (DT)
(Breiman, 1984), XGBoost (Chen and Guestrin, 2016), Random
Forest (RF) (Breiman, 2001), and Support Vector Machine (SVM)
(Vapnik, 2000). Our ensemble was built on top of Random Forest
and XGBoost, whose combination provided the best results.

For all ML algorithms, the training step relied on a grid search
strategy to determine the best parametrization. The DT model was
optimized by varying the minimum number of observations in a
node before splitting the data within the interval [2, 50]. The
minimum number of observations in a terminal node (leaf) was
searched in the interval [1, 35]. Finally, we looked for the optimal
complexity parameter (cp) within the range [0.0001, 1]. We trained
the RandomForest (RF)model by varying the number of trees (ntree)
in the interval [4,100], the number of variables randomly sampled as
candidates at each split (mtry) in the interval [2, 7], and minimum
size of terminal nodes or leaves (nodesize) between [1, 5]. The Naïve
Bayesmodel was estimated by only varying the Laplace smoothing, to
avoid handling with zero probabilities, in the interval [0, 1]. The SVM
(Support Vector Machine) models were adjusted using the two best
kernels: radial ϵ(−y[x−ω]2), and polynomial (yω′x + c)d, such that x is
a vector representing the training data and ω is the kernel coefficient
varying in [0, 0.1, 0.2, ..., 2]. For the radial kernel, we analyzed the
following parameters y = [0.01, 0.02, ..., 1.5], while the polynomial
kernel was assessed using c = [0, 0.1, 0.2, ..., 2], d = {2, 3, 4, 5}. Finally,
XGBoost was optimized considering the maximum depth of a tree in
the interval [1, . . . , 25], and the learning rate (parameter ɳ) in the
interval [0, 0.5].

In our experiments, we used the R statistical package 3.6.3 and the
MLR package (Bischl et al., 2016) (version 2.19.0), which provides a
machine learning interface to train models by using hyperparameter
tuning, cross validation, feature selection, ensemble construction,
and model validation. Internally, the MLR package calls the e1071
package (version 1.4.1.1 - https://cran.r-project.org/web/packages/
e1071/index.html) to create the SVM model, the XGBoost package
(v1.7-6) (Chen and Guestrin, 2016) to create the ensemble model
using the gradient boosting approach, and the rpart package (v4.1-
15) (Breiman, 1984) to create the DT model. All packages are
available at the CRAN repository (https://cran.r-project.org).
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