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Single-cell RNA sequencing (scRNA-Seq) enables researchers to quantify the
transcriptomes of individual cells. The capacity of researchers to perform this type of
analysis has allowed researchers to undertake new scientific goals. The usefulness of
scRNA-Seq has depended on the development of new computational biology methods,
which have been designed to meeting challenges associated with scRNA-Seq analysis.
However, the proper application of these computational methods requires extensive
bioinformatics expertise. Otherwise, it is often difficult to obtain reliable and
reproducible results. We have developed SingleCAnalyzer, a cloud platform that
provides a means to perform full scRNA-Seq analysis from FASTQ within an easy-to-
use and self-exploratory web interface. Its analysis pipeline includes the demultiplexing and
alignment of FASTQ files, read trimming, sample quality control, feature selection, empty
droplets detection, dimensional reduction, cellular type prediction, unsupervised clustering
of cells, pseudotime/trajectory analysis, expression comparisons between groups,
functional enrichment of differentially expressed genes and gene set expression
analysis. Results are presented with interactive graphs, which provide exploratory and
analytical features. SingleCAnalyzer is freely available at https://singleCAnalyzer.eu.
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INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) has allowed for the quantification of RNA transcripts
within individual cells. These assays allow researchers to explore cell-to-cell variability and meet new
scientific goals. In the last few years, scRNA-seq has been applied, for example, to differentiate tumor
cells from healthy ones, deconvolute immune cells, describe states of cell differentiation and
development, and to identify rare populations of cells that cause disease (Haque et al., 2017).
Although experimental scRNA-seq assays are becoming increasingly user-friendly, the analysis of
sequencing data is complex. Data analysis requires the application of complex computational
pipelines and data analysis methods that require bioinformatics expertise (Hwang et al., 2018). The
interpretation of scRNA-seq results is strongly influenced by its analysis pipeline, and the incorrect
application of methods could lead to conclusions that are incorrect. Since data analysis is complex
and very important for correctly interpreting results, the development of analysis tools that produce
reliable results and minimize the possibility of error is essential for enhancing the usefulness of
scRNA-seq data.

Throughout the last 5 years, some software development projects have aimed to address the
absence of software available for the analysis of scRNA-seq data (Guo et al., 2015; Gardeux et al.,
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2017; Kiselev et al., 2017; Lin et al., 2017; Perraudeau et al., 2017;
Zhu et al., 2017; Scholz et al., 2018; Wagner and Yanai, 2018;
Chen et al., 2019; Monier et al., 2019; Stuart et al., 2019).
Designers of the projects have developed analysis pipelines
that can be executed with R or Python function calls or with
websites. Although the platforms have tremendous utility, they do
possess some usability and functionality limitations that should
be solved. For example, none of the applications are capable of
analysing raw sequencing files (FASTQ), they do not allow for the
interactive selection of groups and a few provide an integrated
functional analysis of results (see Supplementary Table S1).

We have developed SingleCAnalyzer to provide a Web
application server that performs a fully interactive and
comprehensive analysis of scRNA-Seq data with two simple
steps. It provides an integrated and interactive platform which
is able to process sequencing files (FASTQ) and perform full

scRNA-seq analyses and the functional analysis of results. It was
implemented as a cloud analysis platform that can be executed
without installing any software. SingleCAnalyzer facilitates the
analysis of scRNA-seq data to non-experienced users and
provides quick exploratory analyses to computational biologists.

RESULTS

The SingleCAnalyzer Website
The front-end of SingleCAnalyzer has been designed to provide a
means to fully analyse scRNA-Seq data using the following two
steps: 1) Setting input files and analysis parameters and 2) cluster
determination and the execution of comparative analysis. In the
first step, FASTQ/HDF5 files are uploaded or an ENA project
identifier is provided by the user. Basic information regarding the

FIGURE 1 | SingleCAnalyzer Workflow. Schematic representation showing SingleCAnalyzer workflow example. Panel 1 and 2 show the web interface for setting
input files and parameters. Panel 3 shows an example of visualization of dimensionality reduction, cellular type classification, pseudotime analysis and clustering results.
Panels 4 and 5 show selected sections of differential expression and functional analysis results.
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species studied and type of sequencing performed, as well as
optional parameters for the alignments of sequences can also be
specified on the web. Once the files are uploaded, demultiplexed
and aligned, users may perform further analysis including feature
selection, empty droplet deletion, dimensional reduction,
prediction of cellular type, analysis of trajectories/pseudotime
and unsupervised clustering. These analyses can be performed
and adjusted by selecting parameters in the ‘analysis parameters’
section (Figure 1).

Cluster determination and the execution of comparative
analysis is accomplished through the website, which provides
an interactive interface that allows the user to visualise cellular
type prediction, pseudotime predictions or clustering results via
six interconnected scatterplots generated using each
dimensionality reduction technique. Point colour and type
can be changed according to each analysis results. Users can
also generate new representations of gene pairs and colour the
points based on gene expression values. This interface specifies
the most adequate aggrupation, cellular classification or time
frame and is guided by the user’s knowledge regarding the
samples studied. On the interface, the user can also launch a
comparative analysis of all groups, or manually determine
which groups should be compared. The comparative analysis
includes an analysis of differentially expressed groups of genes,
and the functional analysis of gene ontology categories and
pathways.

Results are displayed in tabular form, which reveal the
execution status of each computational process and provide a
link to final results. These are provided as static reports and
interactive web pages. Results regarding the quantification of gene
expression values are provided with a table of quantification
statistics and downloadable files that contain information for
aligned reads regarding the number of reads generated per
transcript and the number of transcripts per million (TPM).
The quality control page descriptively reveals the distribution
patterns of expression using box plots, reveals estimated numbers
of expressed genes using a bar plot and represents the first two
components of a PCA analysis. The clustering results page
integrates dimensionality reduction, clustering, pseudotime
and cellular classification results within self-explanatory
interface which can also generate static reports that
incorporate user modifications and launch comparisons
between groups. Reports containing results are generated for
each comparison, which include differential expression,
functional enrichment and GSEA analysis. Differential
expression results are summarised in a table which is linked to
the following means to visualise data: MA plot, volcano plot, box
plot, line chart and heatmap. Functional analyses are also
summarised in tables and interactive visual means to represent
data such as bar plots, networks and symmetric heatmaps are
provided.

Supplementary Table S1 shows a comparison with
12 scRNA-Seq analysis platforms. The main features of the
SingleCAnalyzer website are:

- scRNA-Seq analysis from raw FASTQ, HDF5 files or ENA
project identifications

- Fully functional cloud platform that does not require the
installation of software

- Semiautomated analysis which avoids the need for
configuration using complex parameters

- User guided classification of cells within groups that is
guided by interconnected graphs that integrate
dimensional reduction, cellular type prediction, trajectory
analysis and unsupervised clustering results

- Performs FASTQ processing, gene filtering, empty droplets
detection, gene quantification, dimensionality reduction,
unsupervised clustering, differential expression, functional
overrepresentation and gene set expression analyses

- Straightforward presentation of results using interactive
visual representations of data and provides a means to
generate reports that are publication ready

Analysis Pipeline
Figure 2 shows the analysis pipeline of SingleCAnalyzer. It
integrates generally accepted tools used for the analysis of
RNA-Seq data, which also perform well as computational
resources. Supplementary Table S2 shows the computational
time required to analyse nine scRNA-Seq public data sets. The

FIGURE 2 | SingleCAnalyzer Pipeline. Chart of SingleCAnalyzer pipeline
with computational processes and output results.
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complete analysis of 154 demultiplexed samples takes an average
of 36 min, which allows for the real time analysis of low cell
number scRNA-Seq experiments. The most time-consuming
processes in the pipeline involves the upload, demultiplexing
and alignment of samples, which are tasks that are performed in
parallel. This parallelisation reduces the global analysis time by
57%, which makes the time requirement of our cloud
infrastructure equal to virtual machine or local pipelines
solutions. Moreover, SingleCAnalyzer does not store raw
sequences or aligned files in order to avoid user disk space
limitations, and the number of analysed samples of non-
commercial cloud platforms.

The next steps of the pipeline include feature selection, empty
droplets detection, dimensionality reduction, cellular type
prediction, trajectory/pseudotime analysis and unsupervised
clustering. SingleCAnalyzer applies gene filtering, which is based
on user input parameters to avoid non-informative output, noise or
drop out events. Afterward, six dimensionality reduction methods
are applied to the data and samples are visualised using interactive
scatter plots. Simultaneously, four unsupervised clustering
algorithms are applied to produce nine possible clustering
divisions for each method, a cellular type prediction method is
executed for each training dataset, and a pseudotime analysis is
performed (see methods). These cluster types can be mapped on
interactive plots at the request of the user.

Based on the unsupervised or manually curated clusters
produced, users can identify gene characteristics and the
functions of each group by launching comparison analysis.
This feature incorporates the differential expression analysis of
groups and the functional analysis of gene ontologies and
pathways. The analysis pipeline also processes quality control,
clustering, differential expression and functional analysis results,
and integrates them in an interactive and self-explanatory web
interface.

SingleCAnalyzer was conceived as an agile project, and new
scRNA-Seq analysis methods can be integrated within its analysis
pipeline. Only generally accepted methods that have been
demonstrated to generate reliable and reproducible results that
require reasonable quantities of computational resources will be
considered for addition to our cloud platform. The increasing
development of computational methods will inspire the
adaptation of the platform to meet the needs of researchers as
scientific trends regarding scRNA-SEQ data analysis emerge.

Interactive Visualization
Visualization is a key aspect on the interpretation of scRNA-Seq
results (Cakir et al., 2020). Analysis pipelines performs scatter
plots for the representation of dimensional reduction results
where point colors represent clusters, cell types, gene
expression or trajectory features of each cell (Kiselev et al.,
2017; Lin et al., 2017; Stuart et al., 2019). These plots are
adequate for publishing results, but not for explorative
analyses. At present, new technologies based on JavaScript
enable the generation of interactive graphs in a Web User
Interface. They allow the connection between graphs and the
use of HTML5 components which could control visualization
aspects. SingleCAnalyzer adopts this technology to visualize

information, interconnect graphs, show meta-information,
calculate descriptive statistics, generate new graphs under user
request and change the representation features interactively.
SingleCAnalyzer includes six different graphical
representations such as scatter plot, bar chart, heatmap,
network, boxplot and density plot. These graphs are
interactive, and the user can modify them by clicking on
tables, html controls or other graphs.

The central result page is the representation of dimensional
reduction and clustering of cells. It is composed by scatter plots
where points represent cells, and the user can select the color and
shape of points manually or by using clustering, cell population,
pseudotime or gene expression results. The user can also explore
group frequencies and define resulting groups based on meta-
information or cell disposition on the graph. All graphs are
interconnected, changes on graphical attributes or cell
selections are synchronized on all displays. Cells can be
located in all the graphs with a selection over one graph or by
means of the locate samples menu. The application also allows the
generation of new scatter plots which represent the expression of
two genes in each cell.

Once the user defines the groups, he can launch a comparative
expression analysis which results in two types of interactive
reports. One is the differential expression report which are
composed of interactive scatterplots, a boxplot, a line plot and
a heatmap. All these graphs show information on mouse action
and are connected with the table which summarizes the statistical
analysis. They enable the comprehensive exploration of results
and the query of information about expression changes of genes.
The other report is the functional analysis which includes self-
explanatory graphs such as bar plots, networks of terms and
triangular heatmaps. Networks and heatmaps represent relations
between gene sets which helps in the identification of related gene
functions or pathways, while the bar plot shows the number of
observed versus expected genes in each category.

Visualization features of SingleCAnalyzer enable the
exploration and interpretation of results in an integrated
platform which covers the main steps of scRNA-Seq analysis.
The platform was presented and discussed at the VIZBI21
conference, where some improvements were suggested by
attendants (VIZBI, 2022). Suggestions were focused on
improving the usability of the platform and the adaptation of
the analysis pipeline for their objectives. For example, an attendant
required an adaptation for the analysis of RNA-Seq data which was
developed and can be executed disabling the multiplexing process.
SingleCAnalyzer is also distributed as a Docker machine and our
graphical functions will be made public as R packages for its open
use in analysis pipelines. All the representations performed with
SingleCAnalyzer can be downloaded as graphical files ready for its
inclusion in publications and analysis reports.

MATERIAL AND METHODS

Implementation
The SingleCAnalyzer website runs using LAMP architecture
(Linux, Apache, MySQL and PHP). The front-end of the
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website was developed using PHP, HTML5, JavaScript, D3,
JQuery, AJAX and CSS3. Its implementation was based on the
RaNA-Seq project, which contains similar alignment, differential
expression and functional analysis tools (Prieto and Barrios,
2019). The analysis pipeline can be executed by a task
manager that runs the analysis processes using R, Python or
Linux Bash Shell. It also balances the computational load on our
high-performance computing cluster. The analysis pipeline
integrates cutting-edge tools which rapidly and reliably analyse
scRNA-Seq data. Figure 2 shows a flowchart of the pipeline used.
We have optimised the analysis processes in our pipeline by
harnessing computational clustering. Most of the tasks of analysis
can be executed in real time. This optimisation has facilitated the
development of an open and free cloud-based system.

FASTQ Processing
Raw sequence files in FASTQ format can be demultiplexed with
Alevin software (version 1.3.0) (Srivastava et al., 2019) or pre-
processed using the Fastp tool (version 0.19.4) (Chen et al., 2018).
Gene expression quantification of genes in the selected reference
genome is performed using Alevin or Salmon software (Patro
et al., 2017). The platform can be used to assess data generated
from any organism. At present, we have downloaded the most
popular genomes from Ensembl (164 genomes) and have
incorporated their transcriptome indexes within our server
(Cunningham et al., 2019). Quality control of samples is
performed based on the alignment summary, descriptive
statistics and the Alevin report of demultiplexed samples non-
supervised clustering performed using AlevinQC package
(version 1.4.0).

Gene Filtering
Gene filters based on the quantification of gene expression, which
reduce the noise and computational costs are available on
SingleCAnalyzer. The current version can filter genes with the
lowest levels of expression or standard deviations. We have also
integrated the function ‘FindVariableFeatures’ within the Seurat
package (version 3.2.2), which can identify variably genes by
considering the strong relationship between variability and
expression level (Stuart et al., 2019). Moreover, the user can
also perform further dimensionality reduction and clustering
processes by analysing the principal components obtained via
principal component analysis (PCA). The optimum number of
components used for the analyses can be determined using the
calc_npc function of the CIDR package (version 0.1.5) (Lin et al.,
2017). Empty droplets can be detected and removed with the
application of the DropletUtils tool (version 1.8.0) (Lun et al.,
2019).

Dimensionality Reduction
Interactive visualisation of samples in scatter plots requires a
dimensionality reduction process, which is performed using the
following methods: 1) PCA, which is generated with the prcomp
function of the stats R package (version 4.0.3); 2) Classic
multidimensional scaling (cMDS), which is performed with
the cmdscale function of the stats R package using camberra as
distance method; 3) Nonmetric multidimensional scaling

(isoMDS), which is performed using the isoMDS function of
the MASS R package (version 7.3); 4) t-distributed stochastic
neighbor embedding (t-SNE), which is performed using the Rtsne
function of the Rtsne R package (version 0.15); 5) Uniform
manifold approximation and projection (UMAP), which is
performed using the umap function of the uwot R package
(version 0.1.9); 6) and Non-negative matrix factorisation
(NMF), which is performed using the nnmf function of the
NNLM package (version 0.4.3). Collectively, application of
these methods provides users with a multi-perspective
assessment of the relationships between data.

Unsupervised Clustering
Determination of clusters within the interactive web interface is
supported by the results provided by unsupervised clustering
methods. At present, SingleCAnalyzer applies the following
unsupervised clustering methods: 1) k-means, which is
computed using the kmeans function of the stats R package
(with iter_max = 15); 2) partition around medoids (PAM),
which is computed using the pam function of the cluster R
package (version 2.1.0); 3) hierarchical clustering, which is
performed using the hclust function of the stats R package; 4)
leiden clustering and pseudotime analysis, which is performed
using Monocle3 R package (version 0.2.3) (Qiu et al., 2017). The
user can specify input parameters such as the desired number of
groups, the distance metric used by pam and hclust functions and
the agglomeration parameter of hclust.

Pseudotime Analysis
Trajectory and pseudotime analyses are performed using the
Monocle3 R package (Qiu et al., 2017). It calculates possible
trajectories between leiden clusters over the UMAP projection.
The pipeline calculates the pseudotime prediction for each cluster
centroid and a scale colour which represent the time is applied
over the points when an origin cluster is selected. The function
preprocess_cds uses PCA or LSI output based on user options
with the following parameters: norm_method = log and scaling =
true. The function reduce_dimension uses the following
parameters: max_components = 2, reduction_method =
UMAP, umap. metric = cosine, umap. min_dist = 0.1, umap.
n_neighbors = 15L, umap. nn_method = annoy. The function
cluster_cells uses the following parameters: k = 20,
cluster_method = Leiden, nunm_iter = 2, partition_qval =
0.05. The function learn_graph uses use_partitium and
close_loop as true.

Comparison Between Clusters
Groups of samples can be compared by applying different
methods to assess differential expression. Reviews of the use of
methods have concluded that no single method outperforms the
others under all circumstances, and suggest that it is necessary to
determine the optimal method or pipeline for each analysis
performed (Seyednasrollah et al., 2013; Soneson and
Delorenzi, 2013). However, researchers have acknowledged
that DESeq2 (version 1.28.1) (Love et al., 2014), EdgeR
(version 3.30.3) (Robinson et al., 2010) and limma (version
3.44.3) (Law et al., 2014) are the most widely used methods
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and consistently performed well when their reliability was
assessed. We have integrated all of the methods within a
SingleCAnalyzer that can be adjusted to apply customised
parameters to individual tests.

SingleCAnalyzer performs a functional enrichment analysis
and a gene set enrichment analysis (GSEA) for each comparison
result. The enrichment analysis is performed with the R package
GOseq (version 1.40) (Young et al., 2010) and the GSEA is
performed with the R package fgsea (version 1.14)
(Korotkevich et al., 2016). Functional annotation database
used by these methods was downloaded from the NCBI
BioSystems repository (Geer et al., 2009). Resulting graphs are
generated with the package RJSplot (version 2.6) (Barrios and
Prieto, 2018).

Data Management
Analyses can be launched as anonymous or registered users.
Anonymous accounts are regularly deleted, and registered users
can require the cancellation of their account. Data of registered
users are protected by their personal password which is encrypted
on our system. Users can freely download or delete their
processed data and analysis results without any limitation.
Raw data files uploaded by users (FASTQ, HDF5) are deleted
once they are processed. This deletion avoids storage limitations
and the presence of sequences in our system.

DISCUSSION

Single-cell platforms provide computational methods which
enable the transformation of sequences into expression values
of genes in each cell (Zheng et al., 2017; Shum et al., 2019).
Further steps can be performed by the application of
bioinformatics methods which are available on code
repositories or analysis servers. These methods are connected
in series to compose an analysis workflow. The development of
pipelines is a complex work which involves the installation, test,
setting up and integration of computational methods. In addition,
full processing of scRNA-Seq data requires an intensive
computational processing and the knowledge of programming
languages for the execution of the pipeline. On the other hand,
cloud servers are designed to avoid the development and
execution of pipelines by the analysts, but its use also implies
limitations such as additional data uploading time, uncertain
server loads and limited customization of the analysis. Previous
works have provided web servers for the analysis of scRNA-Seq
data from a matrix with gene counts of cells (Gardeux et al., 2017;
Zhu et al., 2017; Scholz et al., 2018; Chen et al., 2019; Monier et al.,
2019). In this work we have developed the first cloud server which
allow a complete analysis from sequences to pathways in a fully
integrated platform. It was possible with the integration of low
computational cost methods for the demultiplexing and
quantification of reads which supports Drop-seq and 10x
Chromium single-cell protocols (Srivastava et al., 2019).

Another approach for the analysis of scRNASeq sequences is
the use of workflow management systems. A popular option is
Galaxy which offers a web-based system for the pipeline

construction and the execution of bioinformatic analyses (Jalili
et al., 2021). A recent study has presented Galaxy workflows for
the analysis of scRNASeq data (Moreno et al., 2021). One of the
workflows allows the uploading of FASTQ files for processing
into an annotated cell matrix with Alevin. Then, post processing
is done with Scanpy (Wolf et al., 2018) and the interactive
visualization with the UCSC CellBrowser (Speir et al., 2021).
This workflow has similar limitations to cloud solutions, as
customization and uploading time, and requires of a
computational cluster account and training about Galaxy
workflows. Regarding the integration of results, the application
of standard visualization tools avoids the creation of custom
interfaces which integrate different nature of results, and the
execution of new analysis based on the user interaction with the
graph cannot be performed.

Visualization is a key aspect on the interpretation of scRNA-
Seq results (Cakir et al., 2020). An adequate and interactive
representation facilitates the correct classification and
characterization of cells. This issue has been extensively
approached by analysis techniques of cytometry and
visualization methods have been adapted to the specific
characteristics of single-cell such as the lower number of cells
and the increment on the number of variables (transcripts/
proteins). Two dimensional plots have been traditionally used
for the representation of fluorescent makers on Cytometry. At
present, flow cytometry panels can include dozens of makers and
its representation as scatterplots are performed by a dimensional
reduction technique. Similar strategy is followed for single cell
visualization, but the lower number of cells allows its
representation with web-based technologies which avoids
software installation and platform dependencies.
SingleCAnalyzer has developed its graphical interface with D3
and JavaScript technologies which allows the user-graph
interaction on a Web browser. This solution has efficiently
tested for the representation of 6,000 cells on six simultaneous
scatterplots and allows a full interaction with clustering, cell
classification, transcript quantification and cell trajectory
results. Regarding the differential expression interface, it can
handle 60,000 transcripts and perform six interconnected
representations (MA-plot, volcano plot, scatterplot, boxplot
and heatmap) on user interaction. The scalability of the
platform will depend on the optimization of Web Browsers in
the storage, representation and processing of interactive HTML
Canvas and Scalable Vector Graphics. Current browsers have
memory management and multiprocessing limitations. However,
these technologies are becoming popular, and browsers are
adapting their rendering engines for improving their
performace (e.g. RenderingNG technology of chrome).

Future implementations of SingleCAnalyzer will be directed
to the integration of novel analysis methods for scRNA-Seq and
to the compatibility with new platforms and experimental
protocols. At present, we provide semi-automated analysis of
scRNA-Seq data on the cloud with analytical and interactive
graphs, which enable the comprehensive analysis of results. It is
freely available for scientists to explore the potential of their
scRNASeq studies running quick analysis on an easy-to-use
interface.
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