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As practitioners of machine learning in the area of bioinformatics we know that

the quality of the results crucially depends on the quality of our labeled data.

While there is a tendency to focus on the quality of positive examples, the

negative examples are equally as important. In this opinion paper we revisit the

problem of choosing negative examples for the task of predicting protein-

protein interactions, either among proteins of a given species or for host-

pathogen interactions and describe important issues that are prevalent in the

current literature. The challenge in creating datasets for this task is the noisy

nature of the experimentally derived interactions and the lack of information on

non-interacting proteins. A standard approach is to choose random pairs of

non-interacting proteins as negative examples. Since the interactomes of all

species are only partially known, this leads to a very small percentage of false

negatives. This is especially true for host-pathogen interactions. To address this

perceived issue, some researchers have chosen to select negative examples as

pairs of proteins whose sequence similarity to the positive examples is

sufficiently low. This clearly reduces the chance for false negatives, but also

makes the problem much easier than it really is, leading to over-optimistic

accuracy estimates. We demonstrate the effect of this form of bias using a

selection of recent protein interaction prediction methods of varying

complexity, and urge researchers to pay attention to the details of

generating their datasets for potential biases like this.
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1 Introduction

Prediction of protein-protein interactions (PPIs), and more recently host-pathogen

interactions (HPIs) is a very active area of research in computational biology (Lian et al.,

2021; Hu et al., 2022a). Most of the work in this area focuses on prediction of interactions

from sequence, especially using deep learning techniques. Some recent publications
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reported highly accurate prediction results from sequence alone

that caught our attention (Tsukiyama et al., 2021; Asim et al.,

2022; Madan et al., 2022). As long-time practiotioners of

machine learning in this area, we approach such results with a

healthy dose of skepticism. What could be the cause of such high

accuracy? In this paper we focus on one issue related to the choice

of negative examples that keeps showing up in various guises.

While databases of PPIs and HPIs are abundant and provide

curated information on protein interactions, finding reliable

examples of non-interacting proteins is more of a challenge.

The Negatome database is one such resource (Blohm et al., 2014);

however, the number of interactions in it is very limited and

much smaller than the number of experimentally determined

interactions, and does not cover HPIs. In the absence of gold-

standard non-interacting proteins, some researchers have chosen

to constrain their negative examples in various ways—either by

protein localization, justified by the fact that proteins that reside

in different cellular compartments are less likely to interact

(Martin et al., 2005) or by constraining the similarity of

negative examples to known positive examples (Eid et al.,

2016). These approaches produce more reliable negative

examples than the alternative of choosing random pairs of

proteins that are not known to interact, reducing the number

of false negatives. However, PPI networks are expected to be very

sparse, and therefore the false negative rate for the random pairs

method of choosing negative examples is expected to be very

small Ben-Hur and Noble (2006). And as we have discussed

elsewhere Ben-Hur and Noble (2006), the bias introduced by

choosing negative examples according to their localization makes

the problem easier, inflating prediction performance. Yet another

way to introduce a bias on the choice of negative examples is to

use proteins with low degrees in the interaction network, since

these are less likely to interact with a viral protein of interest Dey

et al. (2020).

Eid et al. (2016) suggested that while PPI networks are indeed

sparse, HPI networks are less likely to be so. On the basis of this

hypothesis they proposed to choose negative examples by

constraining their similarity to positive examples. More

specifically, if a host protein is part of the positive set,

negative examples of similar host proteins are excluded, since

they constitute potential interactions. As we describe below, this

is a very effective way of making the prediction problem easier,

and indeed provides improved performance. This was

demonstrated by Eid et al. and shown here using current deep

learning methods. However, this practice is wrong from a

machine learning perspective, and we argue that its

performance is not expected to hold for real data.

Although some researchers have rightfully shunned the

technique of similarity-constrained negative example selection

(Liu-Wei et al., 2021; Madan et al., 2022), this practice remains

present in the field of HPI prediction (Basit et al., 2018; Zhou et al.,

2018; Yang et al., 2020; Pitta et al., 2021; Tsukiyama et al., 2021; Yang

FIGURE 1
Denovo datasets with negative pathogen-host protein pairing by sequence similarity reported as AUCPR for each model, left: originally
published Denovo datasets, right: HPIDB based Denovo datasets.
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et al., 2021; Asim et al., 2022) and also in PPI prediction Chen et al.

(2022), necessitating this paper to alert researchers to this issue. We

have also observed the use of similarity based choice of negative

examples in other sequence-based prediction problems such as anti-

microbial peptide prediction (Veltri et al., 2018). We note that the

related practice of using cellular compartment to bias the choice of

negative examples is also still occasionally being used (Sun et al.,

2017). The very high accuracy reported in some of the publications

cited abovemay create the wrong impression regarding the accuracy

of predicting HPIs from sequence, and it is important that as

method developers we be aware of all the potential pitfalls in

designing our machine learning experiments.

2 Results and discussion

To demonstrate the effect of using similarity-based sampling on

HPI prediction accuracy we implemented the strategy proposed by

Eid et al. (2016) and created training and test sets characterized by a

threshold of themaximumallowed sequence similarity between host

proteins that participate in the training and tests sets (see details in

the Methods section). In addition to the original Support Vector

Machine (SVM) model of Eid et al., we applied this strategy to a

selection of deep learning models that were developed for PPI and

HPI prediction. Model performance was assessed using five fold

cross validation for varying sequence similarity thresholds for

datasets constructed using two collections of positive examples:

the dataset used in Eid et al., and a larger dataset generated

using the latest version of the Host-Pathogen Interaction

Database (HPIDB). Results are shown in Figure 1. The general

trend for all the methods is that performance as measured by the

area under the precision recall curve (AUPR) decreases as the

similarity threshold increases. For low values of the similarity

threshold, i.e. when the distinction between proteins in the

training and test sets is extremely well pronounced all the

methods achieve close to perfect accuracy, even the simple SVM-

based method that uses trimer composition of the two proteins to

represent the data. As the similarity threshold increases, the problem

becomes more difficult as test set proteins are allowed to become

more similar to proteins in the training set. In this regime, the SVM

performs at a level that is not much better than a random classifier.

The situation is described in Figure 2: for a high similarity threshold,

the sampling produces what are essentially randompairs that are not

known to interact, and the two classes can overlap. As the similarity

threshold decreases, the two classes are pushed further apart, making

the problem increasingly easy to solve. If this is done just on the

training set as in (Lanchantin et al., 2021), this is appropriate;

however, when done on examples on the test set, it makes the test set

easy by construction, providing the user with a false sense of success.

In-fact, in related work, we have shown that negative examples

chosen by constraining sequence similarity does not generalize as

well as random pairs for the problem of protein-compound

interaction prediction based on an independent test set that uses

negative examples chosen as pairs that have low binding affinity

(Yaseen et al., 2022). Some authors choose to use similarity-

constrained negative examples only in the training set

(Lanchantin et al., 2021). This way of using similarity-

constrained negative examples is not problematic, since there is

no information leakage between the training and test sets. However,

we suspect that the reduced label noise is not sufficient to

compensate for the resulting difference in the distribution of

training and test set, and would result in lower prediction accuracy.

It is worth noting that PIPR, which is the most sophisticated

deep learning method among those tested is able to maintain a

FIGURE 2
The effect of similarity-based selection of negative examples. When using similarity-based selection of negative examples this forces a
distinction between positive and negative examples, making the problem much easier to solve.
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reasonable level of accuracy even for random pairing, and is the

most responsive to even low deviations from random sampling.

All the other methods required more help in terms of the

separation between train and test sets in order to achieve high

accuracy.

3 Conclusion

In this paper, we discussed pitfalls in the selection of negative

examples for host-pathogen and protein-protein interactions. There

are other issues that come into playwhen designingmachine learning

experiments in this domain. While our focus was on negative

example selection, there are multiple issues that are relevant for

the choice of positive examples as well: data from experimental

methods such as yeast-two-hybrid are known to have a sizable

fraction of false positives, and it is common practice to select

positive examples by choosing interactions that have been

assigned a high confidence score Hamp and Rost (2015). Another

issue is whether to include in the test set interactions for host or

pathogen proteins that are present in the training set: if a protein is

present in the training set, either as a host or pathogen protein, the

classifier is better able tomake accurate predictions. So, a naive cross-

validation procedure like we have used here provides accuracy

estimates that may over-estimate performance if the user is

interested in performance over proteins that were unseen by the

classifier. This has been discussed by (Park and Marcotte, 2012;

Hamp and Rost, 2015) in the context of protein-protein interactions.

A common evaluation procedure in HPI prediction is to test the

method on novel pathogens for which no data is present in the

training set. This captures a likely use case where we wish to obtain

potential interactions for an emerging pathogen whose interactions

are yet to be studied in the lab. The final issue we would like to

mention is class imbalance. Since host-pathogen interaction networks

are expected to be sparse, the number of negative examples is

expected to be much larger than the number of positive

examples, leading to highly imbalanced classification problem.

This has impact on the expected classification performance as

demonstrated in a recent publication on PPI prediction (Dunham

and Ganapathiraju, 2021). Unlike the area under the ROC curve

which is invariant to class imbalance, more realistic measures like the

area under the precision-recall curve are strongly affected by class

imbalance. In summary, we call upon authors to be aware of these

issues and exercise good experiment design that provides valid

indication of the method’s performance in the real world.

4 Materials and methods

4.1 Models

Themodels we selected for our experiments cover a wide variety

of sequence based published machine learning methods for HPI

prediction from simple methods like the SVM from the original

Denovo paper (Eid et al., 2016) and the single layer convolutional

methods DeepViral Liu-Wei et al. (2021) and Hu et al. (2022a), to

more complexmethods like PIPRChen et al. (2019). In our work we

used the original Denovo SVM method (Eid et al., 2016) as a

baseline. The model represents a pair of protein sequences in

terms of their k-mer composition vectors normalized to unit

vectors and concatenated, to which a Gaussian kernel is applied.

Our implementation uses scikit-learn Pedregosa et al. (2011) SVM

implementation after verifying it produced the same results on their

original datasets, and uses 3-mers in a reduced amino-acid alphabet

as in the original publication (Eid et al., 2016).

We also chose a selection of sequence-based deep learning

methods of varying complexity. The simplest, DeepViral Liu-Wei

et al. (2021), is a fully convolutional network which uses a single

convolutional layer composed of eight different convolutional

modules executed in parallel, with convolution applied

independently to each protein and concatenated. In our

implementation we removed the dropout on the convolutional

layer, as we found the model performs much better without it.

This is the sequence-only variant of DeepViral, for a fair comparison

with the other methods. Each sequence is one hot encoded and the

models were trained for 30 epochs.

PIPR Chen et al. (2019) is a more elaborate deep learning

architecture for protein-protein interaction prediction comprised of

multiple layers of convolution and gated recurrent units. PIPR

encodes each amino acid using a vector that combines amino

acid composition in a reduced seven dimensional space obtained

by clustering amino acids by their properties Shen et al. (2007) with a

set of features generated using theword2vec skip-grammodel which

represents the co-occurence of amino acids. The skip-gram model

was trained on 8,000 sequences from the STRING protein-protein

interaction network database Szklarczyk et al. (2016).We trained the

models for 100 epochs as in the original publication.

We also used DeepTrio Hu et al. (2022b), a deep learning PPI

prediction fully convolutional model which is comprised of

33 convolutional modules executed in parallel on the input

sequence. The sequences are one hot encoded and the models

were trained for 50 epochs.

All methods used a batch size of 256 with cross entropy loss, and

were originally written in Keras and translated to PyTorch Paszke

et al. (2019). Full implementations are provided on the github

repository of this project at https://github.com/biodlab/hpi-neg.

4.2 Datasets

In our experiments we used datasets parameterized by the

maximum allowed sequence similarity between host proteins in

the train and test sets with thresholds ranging from 10% (highly

constrained examples, allowing only up to 10% similarity) to 100%

(no constraint on similarity between the host proteins in the train

and test sets). The original Denovo dataset is comprised of

Frontiers in Bioinformatics frontiersin.org04

Neumann et al. 10.3389/fbinf.2022.1083292

https://github.com/biodlab/hpi-neg
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2022.1083292


5,445 human-pathogen interactions, with 445 pathogen proteins

and 2340 human protein derived fromVirusMenthaCalderone et al.

(2015). These interactions were used to create 10 different datasets

with similarity thresholds between 10% and 100%, where sequence

similarity is computed using the Needleman-Wunsch algorithm

Needleman and Wunsch (1970). For complete details of the

algorithm we refer the reader to the original publication (Eid

et al., 2016). In addition to the original Denovo dataset we

created a second much larger dataset (Denovo-HPIDB) based on

the latest Host-Pathogen Interaction Database (HPIDB) Ammari

et al. (2016). HPIDB comprises multiple host and pathogen species,

with human being the predominant host. All interactions were

restricted to human host only which totaled 50,681 interactions

between 9580 human proteins and 5930 pathogen proteins.
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