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Networks are ubiquitous throughout biology, spanning the entire range from

molecules to food webs and global environmental systems. Yet, despite

substantial efforts by the scientific community, the inference of these

networks from data still presents a problem that is unsolved in general. One

frequent strategy of addressing the structure of networks is the assumption that

the interactions among molecular or organismal populations are static and

correlative. While often successful, these static methods are no panacea. They

usually ignore the asymmetry of relationships between two species and

inferences become more challenging if the network nodes represent

dynamically changing quantities. Overcoming these challenges, two very

different network inference approaches have been proposed in the

literature: Lotka-Volterra (LV) models and Multivariate Autoregressive (MAR)

models. These models are computational frameworks with different

mathematical structures which, nevertheless, have both been proposed for

the same purpose of inferring the interactions within coexisting population

networks from observed time-series data. Here, we assess these dynamic

network inference methods for the first time in a side-by-side comparison,

using both synthetically generated and ecological datasets. Multivariate

Autoregressive and Lotka-Volterra models are mathematically equivalent at

the steady state, but the results of our comparison suggest that Lotka-Volterra

models are generally superior in capturing the dynamics of networks with non-

linear dynamics, whereas Multivariate Autoregressive models are better suited

for analyses of networks of populations with process noise and close-to linear

behavior. To the best of our knowledge, this is the first study comparing LV and

MAR approaches. Both frameworks are valuable tools that address slightly

different aspects of dynamic networks.
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1 Introduction

Living systems are notoriously complex due to the large

number and variety of their components and the dynamic

interactions among them. The overriding task of biology is to

decipher how these components and interactions lead to

functioning organisms and communities. Network science has

proven instrumental for this task by developing methods for the

extraction of information characterizing the structure and

dynamics of these systems, not only in biology (Matchado

et al., 2021) but in all fields of science that deal with

complexity. As (Barabási, 2015) stated, “The exploding

interest in network science during the first decade of the 21st

century is rooted in the discovery that despite the obvious

diversity of complex systems, the structure and the evolution

of the networks behind each system is driven by a common set of

fundamental laws and principles. Therefore, notwithstanding the

amazing differences in form, size, nature, age, and scope of real

networks, most networks are driven by common organizing

principles. Once we disregard the nature of the components

and the precise nature of the interactions between them, the

obtained networks are more similar than different from each

other.”

In biology, network inference has been an important

endeavor in numerous diverse applications. In molecular

biology, the characterization of gene regulatory and protein

interaction networks has been a hallmark of progress over the

past decades [e.g., (Bansal et al., 2007; Penfold and Wild, 2011)].

This characterization is often achieved with Bayesian methods

(Kim, 2003; Friedman and Alm, 2012) or by computing mutual

information between network components (Kim, 2003; Olsen

et al., 2009; Friedman and Alm, 2012; Villaverde et al., 2014), but

many other methods have been proposed [e.g., (Saint-Antoine

and Singh, 2020)]. In ecology, and more recently in microbiome

investigations, networks are at the core of assessing coexisting

populations, and a variety of methodologies of analysis exists.

Nonetheless, the inference of network structure from data is still

an open problem (Matchado et al., 2021). In particular, no clear

guidelines or gold standards exist, and none of the existing tools

successfully addresses all issues of network inference. For

instance, many methods have problems with identifying

spurious relations within microbial communities.

Consequently, the selection of the most appropriate technique

is often made in an ad hocmanner, based on the characteristics of

the available data and features like computational scalability.

The relationships among the species of microbial

communities are traditionally assessed with network analyses

of graph theory. The vertices in these networks represent the

different species or operational taxonomic units (OTUs), while

edges represent pairwise or complex relationships. The typical

method of analysis of these types of data is the establishment of

correlation networks based on the presence, absence, or

abundance of the species across multiple locations or time

points. Specifically, pairwise interactions are characterized

with a similarity index or a modified Pearson Correlation

Coefficient (Ruan et al., 2006; Barberán et al., 2012; Faust

et al., 2012; Friedman and Alm, 2012; Gilbert et al., 2012),

while more complex relationships are derived from regression

or rule-based networks (Chaffron et al., 2010; Faust and Raes,

2012). Other methods include local similarity analysis,

probabilistic graphical models, and matrix factorization

techniques (Matchado et al., 2021).

While static correlation networks can address complex

communities of thousands of species across multiple

environments (Chaffron et al., 2010; Barberán et al., 2012),

they do not capture potentially important dynamic trends and

often ignore the asymmetry of relationships between species.

Namely, the interactions in ecological networks are usually

represented as undirected edges, although the effect of A on B

is often qualitatively different from the effect of B on A. This issue

can be remedied to some degree by the use of directed graphs

(Matchado et al., 2021).

Network analysis faces three types of biases:

compositionality, sparsity, and spurious associations. Data

may be compositional if they only offer information about the

relative abundance of populations. In sparse data, a zero may

indicate either the absence of a population or insufficient reading

depth, and these two explanations are indistinguishable. Finally,

the association of two observed populations to an unobserved

third can be wrongfully interpreted as a spurious association

between the two observed populations. For more details

regarding the inference of networks from data, see the review

(Matchado et al., 2021).

The inference becomes even more challenging if the network

nodes represent dynamically changing quantities, such as protein

abundances during an immune response or different populations

in a mixed community (Oates and Mukherjee, 2012). Many

methods exist to study these dynamic changes, including local

similarity analysis (Ruan et al., 2006) and dynamic Bayesian

network analysis (De Smet and Marchal, 2010), but most of the

existing microbial network tools emphasize nodes while giving

interactions lower priority (Matchado et al., 2021).

A generic alternative to these approaches is a system of

differential equations (Kirschner and Blaser, 1995; Liu et al.,

2006; Balagaddé et al., 2008; Mounier et al., 2008; Faith et al.,

2011; Hanly et al., 2012; Stein et al., 2013; Berry and Widder,

2014; Fisher andMehta, 2014; Fujikawa and Sakha, 2014; Marino

et al., 2014). These equations are naturally dynamic and typically

include terms that describe growth and decay, pairwise

interactions between species, and the effects of nutrients or

other environmental factors (Stein et al., 2013). Among these

approaches, Lotka-Volterra (LV) models have been used

extensively since the mid-1920s to assess different types of

interactions in dynamically changing populations; a small

sample is (Liu et al., 2006; Balagaddé et al., 2008; Mounier

et al., 2008; Stein et al., 2013; Berry and Widder, 2014; Fisher
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and Mehta, 2014; Fujikawa and Sakha, 2014; Marino et al., 2014).

LV models were independently proposed by (Lotka, 1925), who

studied periodic increases and decreases in the populations of

lynx and hare in Canada, and (Volterra, 1926), who analyzed fish

catches and the competition among marine populations in the

Adriatic Sea. Since these early days, LV models have become a

mainstay—and typical default—in theoretical ecology [e.g.,

(May, 2001)].

With the discovery of complex microbiomes and their

surprisingly strong effects on human health and the

environment, quantitative assessments of interactions among

different species have received renewed attention (Gavin et al.,

2006; Stein et al., 2013; Shenhav et al., 2019). As an example, we

recently inferred the temporally changing interactions among

bacterial communities in different lake environments with over

12,000 operational taxonomic units (OTUs) (Dam et al., 2020;

Dam et al., 2016). We chose as our computational framework an

LV model, which we augmented with LV equations for

environmental variables that affect the OTUs. Our rationale

for this choice was a combination of 1) the track record of

successful applications of LV models, 2) their mathematical

simplicity and tractability, 3) the straightforward option of

incorporating time-dependent external perturbations (Stein

et al., 2013), and 4) the important fact that parameter

values—and thus signs and strengths of interactions—can be

obtained from time series data of OTU abundances with methods

of linear regression (Voit and Chou, 2010).

Multivariate Autoregressive (MAR) models were first

proposed a few decades ago as a viable alternative to LV

models. Originally proposed for problems in economics (Sims,

1980), Ives suggested their use for predicting responses of

populations to environmental changes (Ives, 1995). His

specific motivation was to establish techniques for studying

how population abundances change in response to long-term

environmental trends and for partitioning different factors that

drive key changes in population densities in response to these

trends. Since this early work, MAR models have been chosen to

represent the interaction dynamics between biotic and abiotic

drivers, infer the intra- and interspecific effects of species

abundances on population growth rates, identify

environmental drivers of community dynamics, predict the

fate of communities exposed to environmental changes and

extract measures of community stability and resilience; the

latter was initially applied to lake and marine systems and

later in terrestrial ecology (Certain et al., 2018).

LV systems are ODE models, whereas MAR systems are

statistical models. The former were designed to elucidate the

long-term dynamics of interacting populations, whereas the

latter were conceived not only to study interacting population

but also the stochastic structure of the supporting data. Thus, two

modeling frameworks with different mathematical structures

have been proposed for essentially the same purpose of

extracting key features of dynamic interactions among

coexisting species from observed time series data. Both

methods have had successes, but a direct comparison of the

two approaches has never been reported. Such a comparison is

the subject of this article. Our focus for their comparison is the

ability of each model framework to produce an acceptable fit to

observation data, capture the process dynamics underlying the

observed trends in population abundances and infer correct

parameter sets as well as possible.

We use four versions of MAR: MAR without data

transformation; MAR with log transformation, as often

proposed by MAR users (Dennis and Taper, 1994; Ives, 1995;

Certain et al., 2018); MAR upon data smoothing; and MAR with

log transformation upon data smoothing. A log transformation is

necessary for comparing the general mathematical interpretation

of a MAR model with a widely used ecological interpretation,

namely, as a multispecies competition model with Gompertz

density dependence (Ives, 1995; Certain et al., 2018) (see also

Supplementary Section S1.3).

Because noise is ubiquitous in real-world data, we explore for

both frameworks the effects of data smoothing on the parameter

inference results. We recognize that this smoothing step impedes

the ability of MARmodels to describe stochastic structures in the

data, but this aspect is not the focus of the present study.

Smoothing is often used to reduce stochastic features affecting

the data, and while it can be very helpful, one must be aware that

it might also obscure deterministic features, thereby yielding

misleading results (Supplementary Figure S11).

We begin with a description and comparison of the main

features of LV and MAR models, subsequently analyze small

synthetic systems, which offer the advantage of simplicity and full

knowledge of all model features, and then assess several real-

world systems. It is quite evident that it is impossible to compare

distinct mathematical approaches with absolute objectivity and

without bias (Rykiel, 1996), and it sometimes happens that

inferior choices of models in specific cases outperform

otherwise superior alternatives. We will attempt to counteract

these vagaries by selecting case studies we consider representative

and by stating positive and negative facts and features as

objectively as possible.

2 Models and methods of analysis

2.1 Lotka-Volterra models

Lotka-Volterra (LV) models (Lotka, 1925; Volterra, 1926) are

systems of first-order ordinary differential equations (ODEs)

with the format

dXi

dt
� aiXi +∑n

j�1bijXiXj, i � 1, 2, . . . , n (1)

The left side of Eq.1 represents the change in species Xi with

respect to time. With only the first term on the right side, aiXi,
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the equation yields exponential growth, while the sum captures

interactions between pairs of populations. Most of these terms

represent interactions between different species, such as

predation or competition for the same resources or

cooperation, but one term in each equation, biiXiXi, accounts

for interactions among the members of the same species and is

sometimes interpreted as a crowding effect.

If time-dependent environmental inputs are to be

considered, one may add one or more terms γikXiUk, where

Uk is the kth element of a vector of these inputs and the

coefficients γik are weights that quantify the effects of the

factors on species Xi (Stein et al., 2013; Dam et al., 2016,

2020). This addition does not fundamentally alter the format

of Eq. 1:

dXi

dt
� aiXi +∑n

j�1bijXiXj +∑m

k�1γikXiUk, i � 1, 2, . . . , n (2)

In an effort to simplify the comparisons in this study, these

environmental factors will be omitted henceforth, both in LV

and MAR.

Background and further details regarding these models are

presented in Supplementary Section S1.1. Because ODEs are

natural representations of dynamic processes, explicit mention of

time, t, is omitted.

2.2 Estimation of LV parameters based on
slopes of time courses

Any of the numerous generic parameter estimation

approaches for systems of non-linear ODEs may be used to

estimate the parameter values of LV systems; reviews include

(Mendes and Kell, 1998; Wedelin and Gennemark, 2007; Chou

and Voit, 2009). Here, we use a combination of smoothing, slope

estimation, and parameter inference, for which we use the

recently introduced, very effective Algebraic Lotka-Volterra

Inference (ALVI) method (Voit et al., 2021). We begin by

smoothing the raw time series to reduce noise in the data as

well as in their slopes, where the effects of noise are usually

exacerbated (Knowles and Renka, 2014). Many options are

available, but smoothing splines and local regression methods

are particularly useful (Cleveland, 1981); they are reviewed in

Supplementary Section S1.2.1. Splines have degrees of freedom

and we will refer to a spline with, say, 8 degrees of freedom as

“8DF-spline”.

The estimation of slopes is a preliminary step for converting

the inference problem from one involving ODEs into one

exclusively using algebraic functions (Varah, 1982; Voit and

Savageau, 1982; Voit and Almeida, 2004); see also

Supplementary Sections S1.2.2, 1.2.3). For this task, we have

two options: we may estimate slope values either at time points

corresponding to the measured data points or for a sample of

many points of the smoothing function, which yields a larger set

of numerical values for variables and slopes (Voit and Almeida,

2004). The next step of this conversion is accomplished

by substituting the left side of Eq.1 for each variable Xi at K

time points with the estimated slopes. These slope values

are equated to the right-hand side of the equation with

values of the dependent variables at the same K time

points. This conversion of one ODE into K algebraic

equations leaves the parameters as the only unknowns that

are to be estimated.

After the differentials are replaced with estimated slopes,

two options permit the inference of the parameter values of LV-

models. We can apply simple multivariate linear regression

(ALVI-LR), where we either use all data points or iterate the

regression several times with subsets of points, which is a

natural means of creating ensembles of solutions. As an

alternative, if n is the number of variables, one may use

n+1 of the data points and slopes, which results in a system

of linear equations that can be solved with simple algebraic

matrix inversion (ALVI-MI). For a thorough description of

these algebraic methods see (Voit et al., 2021) and an example

in Supplementary Section S1.2.5.

2.3 Multivariate Autoregressive (MAR)
models

In contrast to the ODEs of the LV format, Multivariate

Autoregressive (MAR) models are discrete recursive linear

models (Ives et al., 2003; Holmes et al., 2012). They have the

general format

Xi,t+1 � αi +∑n

j�1βijXj,t +∑m

g�1γigug,t + wi,t;

i � 1, 2, . . . , n; wi,t ~ N 0, δi( )
(3)

In this formulation, the quantities ug,t represent

environmental variables and the noise wi,t is normally

distributed. Expressed in words, the “state” of the system at

time t+1, represented by the vector Xt+1, depends exclusively on

the state of system one time unit earlier, Xt, as well as on external

inputs and stochastic effects.

This set of equations, for all i, is usual represented in the

matrix form as

Xt+1 � α + βXt + γut + wt, wt ~ MVN 0, δ( ) (4)

α is the vector of intersects and β is the population interaction

matrix. The term γut describes how cofactors affect the

dependent variables. Specifically, ut is a vector of external

variables and γ is the matrix of weights associated with these

external variables. Finally, the term wt is a vector representing

stochastic noise affecting the dependent variables.

Eq. 4 conveys that the state of the system at time

t+1 depends on the state at t and possibly on temporary

environmental and/or other stochastic input. As an alternative

Frontiers in Bioinformatics frontiersin.org04

Olivença et al. 10.3389/fbinf.2022.1021838

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2022.1021838


to this modeling structure with “memory 1,” it is possible to

extend MAR models to depend also on states farther in the past,

such as Xt-1, Xt-2, and Xt-3, in addition to Xt. However, this

strategy greatly increases the number of parameters to be

estimated, and the commonly used models depend only on

the immediately prior state; they are sometimes called

MAR(1). Here, we only consider MAR(1) models and refer to

them simply as MAR models.

MAR models can be interpreted in two distinct ways. In

generic mathematical terms, MAR models are stochastic,

linear approximations of non-linear dynamic systems that

evolve over time in the vicinity of a fixed point (steady

state). According to this interpretation (Holmes et al.,

2020), xt is a vector of the realization of random variables

at time t. The “noise” actually captures natural variations

in environmental conditions, as well as measurement

inaccuracies, and is modeled by a multivariate normal

distribution with mean zero and variance-covariance

matrix δ. Obviously, other distributions could be employed,

but the multivariate normal is the one typically chosen

by practitioners in the field (Ives, 1995; Certain et al., 2018).

If stochasticity is omitted, MAR models exhibit quite a bit

of similarities with LV models, as long as they operate close

to the steady state or are only mildly non-linear (see

Supplementary Section S1.3; Section 2.5 below).

One may also interpret MAR models using ecological

arguments. Specifically, they can be viewed as multispecies

competition models with Gompertz density dependence,

where instantaneous growth rates decrease linearly over

time as the population sizes increase (Ives, 1995; Certain

et al., 2018). In this view, xt is a vector of the log-

abundances of dependent variables at time t. Further details

regarding these models are presented in Supplementary

Section S1.3.

One should note that the incorporation of environmental

variations in a deterministic model may change the interaction

structure of a community (Chesson, 2020; Hawlena et al.,

2022), both in the short and the long term. For example, the

number of species able to coexist can increase if temporal

environmental variations cause fluctuations in resource

uptake, as it can be the case for nocturnal and diurnal species

that live in the same habitat and consume similar resources.

Another example is a mixed bacterial community, whose

interaction structure can significantly change if it is exposed

to an antibiotic (Varga et al., 2022). From a biological point

of view, these effects may not be surprising, but it is difficult

to propose a general mathematical solution, unless the

nature and quantitative details of the alterations can be

converted into fully characterized functions affecting the

parameters. Non-etheless, even if a precise mathematical

formulation is not feasible, these considerations should not be

ignored.

2.4 Parameter estimation for MAR models

The software package MARSS, using an expectation

maximization algorithm, greatly facilitates the estimation of

MAR model parameters (Holmes et al., 2020, 2012). Some

details of MARSS usage, and especially the setup we used, are

discussed in Supplementary Section S1.5.

2.5 Structural similarities between the two
modeling formats

Both LV and MAR models have been proposed as effective

tools for characterizing the interactions among populations

within dynamically changing mixed communities. At first

glance, the two formats appear to be distinctly different and, in

a strict sense, incomparable. However, they do exhibit fundamental

mathematical similarities, which are sketched below and analyzed

in more detailed in Supplementary Section S1.4.

To assess these similarities, we focus onMARmodels without

environmental factors and noise, i.e.,

Xi,t+1 � αi +∑n

j�1βijXj,t; i � 1, 2, . . . , n; (5)

(Dennis and Taper, 1994; Ives, 1995; Certain et al., 2018).

Borrowing the principles of solving ODEs with Euler’s method,

we discretize the LV model (Eq. 1), which yields

Xi,t+h ≈ Xi,t + h · dXi

dt
Xi�Xi,t � Xi,t + h ·Xi,t ai +∑n

j�1bijXj,t( ),
i � 1, 2, . . . , n

(6)
The left quasi-equality in this formulation can be

interpreted as a linearization of the time evolution of the LV

dynamics in Euler’s sense, while the right equality still exhibits

the genuine non-linearity of the LV model. Generically,

linearization is a common tool for developing a better

understanding of population fluctuations in ecology (Ripa

and Ives, 2003). It is usually performed at the steady state

for mathematical analyses of non-linear ODE system, such as

stability and sensitivity assessments (Voit, 2017). Here, we

employ Euler’s stepwise-linearized formulation of the system

dynamics solely as a means of discretizing the ODE format of

LV in order to compare it more directly with the MAR

structure.

For simplicity of discussion, suppose h = 1. If the dynamics

remains close to the steady state, then Xi,t+1 −Xi,t ≈ 0 for any

given t. Furthermore, division of both sides of (6) by Xi,t, as long

as it is greater than 0, yields approximately one on the left-hand

side and a linear expression on the right-hand side. Thus, the

results corresponding to Eqs 5, 6, respectively, close to the steady

state are
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αi +∑n

j�1βijXj,t −Xi,t ≈ 0 (7)
and

ai +∑n

j�1
~bijXj,t ≈ 0 (8)

respectively. The two sets of near-steady-state conditions 7) and

8) are the same if αi = ai, βij = bij for all i ≠ j and βij = ~bii � bij +

1 for i = j. Thus, in spite of their apparent differences, the basic

MAR and LVmodels have the same steady-state equations. Their

dynamics is not addressed here but it is usually expected to be

similar if it stays close to this steady state. Comparing the two

models in this manner is useful because the different formats

highlight the strengths and weaknesses of the two methods. In

MAR, noise is an aspect of the model that can be estimated and

taken into consideration for the estimation of the interaction

parameters (Certain et al., 2018). Noise is not considered in LV

models. Furthermore, MAR is linear and uses a log

transformation to deal with some non-linearities. In LV,

multiplying Xi,t by the growth rate and sum of interaction

terms allows for non-linearities and does not require any

further remediation to handle them.

3 Results

The comparison between LV and MAR models may be

executed in two ways. A purely mathematical approach was

sketched in Section 2.5 and expanded in Supplementary Section

S1.4. An alternative approach focuses on practical considerations

and actual results of inferences from data. It is described in this

section.

For simplicity, we omit environmental inputs (γik XiUk and

γig ug,t, respectively) and begin by testing several synthetic

datasets with different types of representative dynamics. We

design these data as moderately sparse and noisy, to mimic

reality. In particular, we test whether the LV inference from

synthetic LV data returns the correct interaction parameters and

whether the MAR inference from synthetic MAR data does the

same. Subsequently, we test to what degree LV inferences from

MAR data yield reasonable results and vice versa. Finally, we

apply the inferences to several real datasets from the literature. As

the main metric, we compare the sums of squared errors (SSEs)

and use a Wilcoxon rank test to assess the significance of the

differences.

3.1 Case study 1: Synthetic LV data

The first case study addresses data that were generated with a

synthetic four-variable LV model with what is called process

noise (de Valpine and Hastings, 2002; Fiasconaro et al., 2004). In

contrast to observational noise, which is due to uncertainties

during the data acquisition, process noise is not truly “noise” in

ecological systems, and the terminology is therefore misguided.

Instead, it is the manifestation of temporary environmental

variations that are natural and can be very influential for the

functioning of ecological systems. The nature of process noise

mandates that we do not solve the ODE system and then

superimpose all points of the solution with observational

noise, as it is usually done, but allow noise to affect the

system in a repeated fashion during sequential steps of the

temporal evolution of the system. This gradually accumulating

type of noise, that is, the overall effect of temporary

environmental variations, appears to be closer to reality and

actually aligns better with MAR models (for details, see

Supplementary Section S2 and Discussion). The specific

question we address here is whether and with what degree of

accuracy the LV and MAR inference methods return the true

dynamics and parameter values, which are all known by design.

Because it is difficult to embed repeated stochastic inputs in ODE

models, we discretize the LV model, which does not compromise

its richness; as an analogous conversion of ODEs in a

biochemical context, see (Voit and Olivença, 2022).

For a representative illustration of the parameter inference

process in the presence of stochastic environmental variations,

we begin with the four-variable LV system

dXi

dt
� Xi,t ai +∑4

j�1bijXj,t( ), i � 1, . . . , 4 (9)

Here, the variables Xi and Xj represent the abundances of the

different species, ai the rate constants and bij the intra- and

interspecies interaction parameters. To account for stochastic

environmental variations, we use a discretized LV system, which

yields

Xi,t+h � Xi,t + h ·Xi,t ai +∑4
j�1
bijXj,t

⎛⎝ ⎞⎠⎛⎝ ⎞⎠pgamma ki, 1/ ki − 1( )( ),
i � 1, . . . , 4

(10)

Here, Xi, Xj, ai and bij have the same meaning as in Eq. 9 and

the ki represent the shape parameter for the gamma-distributed

influences affecting the four variables. The scale parameter is set

to 1/(ki − 1) for the mode of the gamma to equal 1.

The parameters for the illustration are presented in

Supplementary Figure S1, and a time series of the dynamics

of this system is shown in Supplementary Table S1.1 and as

circles in Figure 1; Supplementary Figure S1. For the special case

of noise-free data, the inferences are close to perfect with respect

to the trajectories and parameter values (Supplementary Figure

S2). To mimic a more realistic scenario, we created a noisy

dataset, visualized in Supplementary Figure S1A, which was

constructed by permitting stochastic variations to the system

and randomly choosing forty points. The “process noise” was set

as a gamma random variable parametrized as explained before
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with the shape parameter k equal to 10,000. For all practical

purposes, the high value for kmakes the gamma almost identical

to a normal with mean one and standard deviation of 0.005, but it

generates only positive values. This noise appears to be small but

quickly accumulates, as it affects every step of the solution. This

noisy dataset is shown in Supplementary Table S1.2.

As a second realistic situation, we constructed a dataset with

replicated measurements (Supplementary Figure S1B), which

FIGURE 1
ALVI-MI andMARSSmethods applied to noisy (A) and replicate (B) LV datasets with process noise. Original synthetic data are shown as gray dots
and data with added noise as black circles. LV results are presented in blue. True parameters and LV estimates are presented in the Table. MAR
estimates are presented in green, orange and yellow. Data and parameter estimates for MAR can be seen in Supplementary Table S1. SSEs for all fits
are presented in Table 1.
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was accomplished by first choosing fifteen time points from the

data that characterize the dynamic (including extremes values).

Next, we generated time series of the system with environmental

variations and recorded the values of the variables at the

previously chosen time points. This process was iterated to

create five replicates per chosen point. This replicate dataset is

shown in Supplementary Table S1.3.

Variable X4 was intentionally designed as a (decoupled)

logistic function. It is unaffected by the other variables and

does not affect them either. It was included to explore to what

degree the methods to be tested can detect this detachment.

The fits for the noisy and replicate LV datasets, obtained per

LV matrix inversion, are presented in Figures 1A,B, along with

the inferred parameter estimates (Table in Figure 1). These

generally possess the correct sign and could, if deemed

beneficial, serve as the starting point for an additional,

refining optimization, for instance with a steepest-descent

method. The inferred and true values are quite similar for

both datasets. Because we usually obtain better results through

matrix inversion, we display those results here and present linear

LV regression results in the Supplements.

Figure 1 also displays the MARSS estimates with and

without log-transformation of the data and with or without

data smoothing. With respect to the smoothed trends of the

noisy LV dataset, the MAR estimates without smoothing

consistently yield slightly lower SSEs for X1, X2, and X3 than

the LV inferences while, surprisingly, MAR with smoothing

yields similar results. For the replicate LV dataset, the SSEs for

all methods are similar, although MAR with smoothing

produces slightly worse results (Supplementary Table S1.6).

The parameters for X4 are consistently better represented by

LV. Overall, the results for X1, X2, and X3 are quite similar, and

all LV and MAR fits capture the dynamics of these three

variables very well. In fact, given how similar the SSEs are, it

is quite possible that other simulated data with noise would

result in smaller SSEs for the LV inference (see later example of

inferences of parameter values to noisy data yielding better fits

than the correct parameter values). A possible reason for MAR

yielding smaller SSEs for X1, X2, and X3 seems to be that the

addition of process noise tends to introduce spurious

oscillations that are captured by the smoothing splines used

for the LV inferences, as can be seen in Supplementary Figure

S6. Of course, we could use splines that further smooth the data

but doing so would risk the loss of true dynamic features in the

data, as can be seen in Supplementary Figure S3.

MARSS did not perform well for the “decoupled” variable X4,

in either of the two datasets and for all variations of the MAR

method. Indeed, the poor performance for X4 rendered the

overall final SSE score for all MAR variants worse than for

LV (Supplementary Table S1.6). The most likely reason is

probably the fact that this variable starts far away from the

steady state and is highly non-linear, with is at odds with the

MAR structure. It could also be that the algorithm used in

MARSS has problems estimating parameters with a true value

of zero. Holmes et al. (2020) reported this issue for the diagonals

of R and Q matrices, although not for other parameters. LV

outperformed MAR in the case of data if observational noise was

analyzed (Supplementary Table S2.5).

Because MARSS yields parameter values for a discrete

recursive system, they are not directly comparable to the true

parameters of a LV system; nonetheless, their numerical values

are recorded for completeness in Supplementary Tables S1.4,

S1.5. For MARSS inferences from the replicate LV dataset, we

had to average points with the same time value. Additional details

are presented in Supplementary Section S2.

In both LV datasets, the matrix inversion method produced

parameters estimates closer to the true parameters

(Supplementary Table S8).

We also studied an example similar to the one discussed in

this section and presented in Figure 1, but with a high standard

deviation for the process noise (0.03 instead of 0.005). With the

higher standard deviation, the dynamic deviated considerably

from the original and all methods showed decrease in accuracy in

capturing it. In the noisy dataset, MAR without any

transformation performed better followed by ALVI-MI

(Supplementary Table S1.7). Of note, all methods performed

considerably better in the replicate dataset, suggesting that this

type of sampling may be an appropriate method to capture the

true dynamics in situations affected by high process noise. This

can be seen in Supplementary Figure S10 and discussed in the last

paragraphs of Supplementary Section S2.

3.2 Case study 2: Synthetic MAR data

Here we reverse the set-up of Case Study one by creating

synthetic data with an MAR model and test whether inferences

with either model can achieve results corresponding to the

original system. One could argue that data in the real world

very seldom result from truly linear processes, but it is

nevertheless important to analyze linear MAR models because

practitioners within the ecological community have been

using them.

As a representative example, we use a four-variable MAR

system to generate 31 synthetic datapoints. We create a noisy

MAR dataset with process noise by using the logarithm of the

data and consider the MAR model again as a multispecies

Gompertz competition model (Ives, 1995; Certain et al.,

2018). We also create a replicate MAR dataset by choosing

15 time points and harvesting them in five time series of the

process. The initial conditions and parameters are presented in

Supplementary Table S5, dynamics, LV and MAR fits are

presented in Figure 2. All fits to the synthetic MAR data, with

either method, are satisfactory. Due to the different nature of the

two modeling formats, the LV parameters are not directly

comparable to the MAR parameters.
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FIGURE 2
MARSS and ALVI-MI methods applied to noisy (A) and replicate (B)MAR datasets with process noise. Original synthetic data are shown as gray
dots, data with added noise as black circles. MAR estimates are presented in green, orange and yellow. LV estimates are in blue. The variables of the
noisy dataset were smoothed with 15DF-splines and the LV solution was calculated with spline points at times 2, 4, 7, 22, and 27. The variables of the
replicate dataset were smoothed with 11DF-splines and the LV solution was calculated with spline points corresponding to times 2, 3, 4, 5 and
12. Data and parameter estimates for LV can be seen in Supplementary Table S5. SSEs for these fits are presented in Table 1.
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MAR fits and SSEs are clearly superior to LV for the noisy

MARdataset, but that is not the case for the replicateMARdataset,

where ALVI-MI produces the lowest SSE (Table 1). For the MAR

variants, MAR with log transformation and without smoothing

yields the lower SSEs. This result highlights the importance of the

log-transformation to accommodate non-linearities with MAR. In

most cases, the different MAR models had difficulties retrieving

the true parameters of the system, and sometimes even the correct

sign (Figure 2). This finding is probably due to the small number of

datapoints: Certain et al. (2018) suggest that the length of the time

series should be at least 5 times greater than the number of a priori

non-zero elements in the matrix β in order to recover interaction

signs correctly. Our sample has 31 observations but, according to

this criterium, should have at least 80. For practical inference

purposes in biology, this requirement regarding the density of data

can be a genuine concern.

TABLE 1 Sum of squared errors (SSE) of data fits for all experiments with ALVI-LR (linear regression), ALVI-MI (matrix inversion) and four variants of the MAR
methods. We also include SSEs for the estimates obtained by Mühlbauer et al. (2020) for LV data presented in Figure 4. Bold values identify the lowest SSE
score for each example. Examples used in the Wilcoxon rank test are marked with asterisks.

Shown in ALVI-LR ALVI-MI MAR MAR
logTrans

MAR with
smoothing

MAR with
log and

smoothing

Mühlbauer
et al

Test

Noisy LV
data

Figure 1A 1.076 1.160 3.674 5.335 2.638 5.017 *

Replicate
LV data

Figure 1B 0.349 0.226 1.513 1.395 1.394 1.481 *

Noisy MAR
dataset

Figure 2A 1360.438 1221.929 636.272 381.430 830.475 1141.293 *

Replicate
MAR
dataset

Figure 2B 754.249 385.279 1144.325 454.437 1070.461 583.539 *

Synthetic
Data 1

Supplementary
Figure S5A

3.29E-07 9.04E-07 10.493 4.626

Synthetic
Data 2

Supplementary
Figure S5B

8.68E-06 8.57E-06 3.029 5.876

Synthetic
Data 3

Supplementary
Figure S5C

0.002 0.018 5.111 4.378

Synthetic
Data 4

Supplementary
Figure S5D

5.65E-04 2.10E-02 2.47E+04 3.99E+35

Synthetic
Data 5

Supplementary
Figure S5E

7.048 18.939 16.588 15.695

Synthetic
Data 6

Supplementary
Figure S5F

71.271 28.357 7379825.00 174.247

Mühlbauer
et al. 1

Figure 3A 2588.491 2515.934 18159.950 51738.263 17876.615 16398.792 3271.035 *

Mühlbauer
et al. 2

Figure 3B 6203.687 4781.476 13016.262 22162.242 9292.995 12446.589 40603.67 *

Mühlbauer
et al. 3

Figure 3C 24182.900 2190.5862 4618.7096 10146.0397 4779.6096 8795.03 578.092 *

Mühlbauer
et al. 4

Figure 3D 17,700,169 1,118,350 2,199,174 1,777,559 9,904,281 3,973,876 7,934,136 *

Mühlbauer
et al. 5

Figure 3E 12,114,811 2,251,804 4,245,588 4,450,871 5,596,187 4,554,089 2,893,764 *

Holmes
et al. 1

Figure 3A 16,8134,153 153,703,251 217,478,452 166,186,993 143,728,190 212,424,910 *

Holmes
et al. 2

Figure 3B 32,326,913 5,556,585 10,267,681 10,947,294 11,136,306 14,342,449 *
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FIGURE 3
“Data” (Column 1) and results of inferences with ALVI-MI (Column 2) and MAR methods (Columns 3 and 4) for LV systems exhibiting different
types of increasingly complex dynamics. Thick lines in Columns 2–4 correspond to the time period from which the data were sampled, while thin
lines are extrapolations in time. Row (A) Data converging to a stable steady state; Row (B) Damped oscillations; Row (C) Initially erratic oscillations
converging to a limit cycle; Row (D) Sustained oscillations; Row (E) Deterministic chaos, example 1; Row (F) Deterministic chaos, example 2.
Data, ALVI-MI and MARSS estimates are presented in Supplementary Table S3. The SSEs concerning the differences between the data and estimates
for t ϵ [1, 500] are presented as labels to the Y-axis. No smoothing was needed because the data were noise free.
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We used data without noise to calculate the final SSEs and

determine which method captures the process best. For

everything else including selecting the best parameter sets, we

used the MAR data with noise. One should note that ALVI fits

may be judged differently in quality if the SSE is computed either

with respect the smoothed trends or the raw data. In fact, ALVI-

MI could be set with different configurations, which might give a

lower final SSE against the smoothed data but would have a

higher SSE against the noisy data. As an example, using again the

noisy MAR dataset, consider splines for four variables with 20,

15, 15, 12 degrees of freedom, respectively, and a subsample

consisting of the second, fourth, seventh, 22nd, and 28th

datapoints. With these settings, we obtain an SSE of

1,530 against the noisy data themselves but an SSE of 600,

when measured against the smoothed trend. With a different

setting, the SSE against the noisy data is about 1,360 (Table 1).

For the noisy MAR dataset, the MAR parameter estimates

without transformation or smoothing worked best and yielded

the closest parameter estimates to the true parameters (Figure 2).

3.3 Inference of complex dynamics

ALVI also works for more complicated dynamics than

analyzed so far, as can be seen in Figure 3. Here we are

interested in determining if the methods can recover the

dynamics, which in some cases turns out to be challenging for

sparse data even without the introduction of noise. Thus, we used

the synthetic data unaltered. Specifically, data for early time

points (t ∈ [1, 100]) were fitted and then extrapolated for a much

longer time horizon of t ∈ [1, 500]. In these examples, ALVI-MI is

used with 100DF-splines. It uses data samples with points

corresponding to timepoints t = 5, 10, 20, 30, and 50 for all

cases except for the chaotic oscillations where we used t = 4, 6, 10,

15, and 35. For each case, we also present the MAR estimates. In

all fairness, one must recall that the original data were produced

with LV models. While the MAR model extrapolations are not

always satisfactory, it is nevertheless comforting that the

inference method returns good results for the short initial

time interval used for data fitting.

ALVI-MI generally performed very well but did not

adequately capture the deterministic chaos (chaos 1), which is

understandable as chaotic systems are extremely sensitive to any

type of numerical variation. For this case only, we obtained a

better fit using ALVI-LR. Apart from this situation, results with

ALVI-LR are very similar to ALVI-MI results and therefore not

displayed.

For the data in Figure 3B, the MAR model performed well

when log-abundances were used. In the remaining cases, it failed

to replicate the oscillations, or these exploded by reaching

amplitudes far bigger than in the dataset. One also notes early

discrepancies between the initial points used to create the

estimates and the MAR estimates.

3.4 Case study 3: Experimental data from
the literature

3.4.1 Published LV inferences
Data from Georgy Gause’s experiments in the 1930s and

others were recently compiled in the R package gauseR

(Mühlbauer et al., 2020). In the accompanying paper, the

authors present five examples to test their method for

estimating LV model parameters. We use the exact same

examples to demonstrate to what degree LV and MAR

methods are compatible with these real-world data and

compare our results to those presented by Mühlbauer and

colleagues. For more information regarding the original

experimental data, see (Gause, 1934; Huffaker, 1958; McLaren

and Peterson, 1994; Mühlbauer et al., 2020). The results are

presented in Figure 4, with data as circles and various estimates as

lines. SSEs of the different estimates for these and other test

examples are presented in Table 1.

The overall result is that the inferred MAR models never

outperform the results for the corresponding LV models. Details

are provided below. One could argue that these examples had

been used to test actual data for compatibility with the LV

structure, which may explain the superior performance of the

LV model. However, these are actual, real-world data of the type

that both LV and MAR are supposed to capture.

For the case in Figure 4A, matrix inversion with the LV

model yields the same results as found in (Mühlbauer et al.,

2020). In contrast, the MAR estimates are poor, with a very high

estimate for the noise (Supplementary Table S4.3), especially if

one does not use log-abundances; this problem occurs for all

cases presented in Figure 4. The data in Figure 4A are close to a

logistic function, similar to X4 in the previous noisy dataset,

where MAR also did not perform well.

Figure 4B shows data from a competition experiment

between the unicellular protists Paramecium caudatum and

Paramecium aurelia that were co-cultured. Estimates for P.

aurelia are similar for all methods but LV matrix inversion

exhibits clear superiority for P. caudatum.

The data in Figure 4C are complicated. Mühlbauer and

colleagues noted that additional quantities of protists were

introduced to avoid species extinction. Furthermore, many

datapoints in this dataset are zero, which causes problems for

the parameter estimators. As a remedy, we changed the zeros to

10−5, but our initial estimates still produced poor fits. However, if we

use the estimated trajectories from Mühlbauer et al. (2020) as

“data,” quasi as a diagnostic measure, matrix inversion captures the

parameters that reproduce the fit of Mühlbauer et al. (2020) very

well. This finding suggests that the initial poor fit is not a problem of

LV adequacy. Instead, we hypothesize that the problem is caused by

insufficient datapoints or almost-linear dependence, which affects

the matrix inversion. To test this hypothesis, we used the first

splines as data to create a second set of splines that has more

datapoints to create the subsample to be used for the LV matrix
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inversion. We were able to achieve the presented fit, which is still

somewhat inferior to the one by Mühlbauer et al. (2020), but

constitutes a considerable improvement over our initial fits.

Furthermore, using the solution from the matrix inversion as

initial parameter values for a subsequent gradient-descent

optimization, the resulting solution reflected the data well, with

a better SSE than all other methods.

When calculating splines for this dataset, it is difficult to

choose degrees of freedom that capture both maxima. High

degrees of freedom capture the global maxima but overshoot

the local maxima. Low degrees of freedom capture the local but

undershoot the global maxima. We suspect this to be the cause

for the initially poor performance of LV. Still, LV yields better fits

than MAR.

The data in Figure 4D are also complicated, in this case due to

two aspects. First, they show a stark difference in absolute

numbers, with the abundance values for moose being several

magnitudes higher than the numbers of tree rings. As a potential

remedy, we normalized the fitting error for each dependent

variable by dividing it by its mean to balance the SSE. The

FIGURE 4
Model inferences associated with Gause’s data (Gause, 1934). (A) Standardized volume of Paramecium caudatum grown in monoculture. (B)
Standardized volume of Paramecium caudatum and Paramecium aurelia grown in mixed population. (C) Predator-prey interactions between
Didinium nasutum and Paramecium caudatum grown in mixture. (D) Multi-trophic dynamics for wolves, moose, and fir trees on Isle Royale from
1960 to 1994. (E) Predator-prey interactions between Eotetranychus sexmaculatus and Typhlodromus occidentalis. Circles show observations,
gray lines are estimates from Mühlbauer et al. (2020). LV estimates are presented as blue lines and MAR estimates as green, orange and yellow lines.
Red lines in (C) correspond to a steepest descent optimization using the solution of ALVI-MI as initial guess. See Text and Supplementary Tables S4.1,
S4.3 for further details.

Frontiers in Bioinformatics frontiersin.org13

Olivença et al. 10.3389/fbinf.2022.1021838

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2022.1021838


result is shown in Figure 4D. The LV models perform better than

MAR, and MAR with log-abundances produces a better noise

estimate than with the untransformed data.

The second issue is the fact that, around 1980, the wolves

were exposed to a disease introduced by dogs, which caused a

precipitous drop in the wolf population between 1981 and 1982

(Park Service, 2021). Typical mathematical models are not

equipped to simulate such a black swan event, and the totality

of results from the various methods suggests that neither LV nor

MAR may be good models for this system, because none of the

fits, by Mühlbauer et al. (2020), LV, or MAR, are entirely

satisfactory. Non-etheless, our LV results present a decent fit

for moose and fir tree rings. To improve the fit to the wolf data,

we divided the data into two groups, from 1959 to 1980 and from

1983 to the end of the series and estimated parameters for the two

intervals. The results are presented in Supplementary Figure S8

in red lines. The fit is greatly improved, although still not perfect.

Figure 4E describes yet another complicated example.

According to the inference, the LV estimates fit the first peak

well but the oscillations die down, in contrast to the data.

Estimates from Mühlbauer et al. (2020) produce even poorer

estimates, suggesting that the data may not be compliant with the

LV structure. As in the previous example, MAR models do not

capture the dynamics, although MAR with log-abundances

produces good noise estimates. Surprisingly, MAR with

smoothing yields very poor fits to these data.

We repeated the analysis using linear regression instead of

matrix inversion for the LV inference. The results were by and

large similar and slightly inferior; they are shown in

Supplementary Figure S7; Supplementary Table S4.2.

One should note that Mühlbauer et al. (2020) used a steepest-

descent method, while our method did not. Therefore, our results

can be further improved by adding a refinement cycle of steepest-

descent optimization. We present an example in Figure 4C where

the fit of the steepest descent optimization over the algebraic LV

solution is depicted with a red line. The optimization reduces the

error from 2,191 to 874.

3.4.2 Published MAR inferences
In this section, we use two datasets presented in the MAR

inference package MARSS. The first dataset, “gray whales,”

consists of 24 annual abundance estimates of eastern North

Pacific gray whales during recovery from intensive

commercial whaling prior to 1900 (Gerber et al., 1999). It is

thus to be expected that the whales are initially relatively far from

the carrying capacity of the system. The second case consists of

data for wolf and moose populations on Isle Royale in Lake

Superior between 1960 and 2011; this dataset was used by

Holmes and colleagues (Holmes et al., 2020) to demonstrate

usage of the MARSS R package.

Figure 5A shows fits to the gray whale data (Gerber et al.,

1999). LV noticeably outperforms MAR, even though the data

came from aMAR demonstration. In particular, the MAR results

(without transformation) suggest that the whales are close to

regaining their carrying capacity, which seems to contradict the

trend in the data. The SSEs can be seen in Table 1. It is

unclear why the MAR method without transformation does

not perform better. As it stands, the estimates are inadequate

(with the highest SSE) and have a very high variance for the error.

An LV model with one variable is a logistic function, and the

LV fit represents initial quasi-exponential growth that starts to

slow down after a while. This behavior nicely reflects the fact that

the whales were recovering from very small numbers due to

overfishing but the population is apparently still much below the

carrying capacity.

Figure 5B returns to the Isle Royale dataset from (Vucetich,

2021), which we already used in the context of examples from the

collection of Mühlbauer and colleagues (Mühlbauer et al., 2020);

cf. Figure 4. Holmes et al. (2020) used only the data of wolves and

moose for a MAR analysis but extended them over a longer time

horizon. Specifically, eight datapoints were added since the

former usage of this dataset by Holmes and colleagues, from

2012 to 2020 (gray symbols in Figure 5B).

The results of the MAR model are identical with those

published in, with the same log transformation and z-scoring

of the data, and the same parameter values were inferred. The

result consists of acceptable estimates, although we found a

slightly better fit without the z-scoring. Still, for a direct

comparison, we opted to present the example exactly as

Holmes et al. (2020) did. Interestingly, these fits miss all

oscillatory behavior seen in the data. The LV results do show

oscillations but clearly suffer from the disruption in the wolf

population in 1981 and 1982, as discussed before.

Because we used in this example only MAR with log

transformation, we display the confidence intervals for the

MAR model as dashed green lines. Very few datapoints are

outside the confidence intervals.

3.4.3 Performance of MAR and LV models with
different initial conditions

We decided to test the hypothesis that MAR might perform

better if the simulations were initiated near the steady state, because

themodel thenwould not be affectedmuch by the non-linearities in

dynamics, which can strongly affect a simulation starting far from

the steady state. For this purpose, we again used the artificial LV and

MAR artificial systems utilized in Figures 1, 2.

We started each simulation with six different initial

conditions calculated as the system’s non-trivial steady-

state values multiplied by 0.001, 0.01, 0.1, 1.9, 10, and 100.

For each combination of artificial system type and initial

conditions we again used two different sampling methods:

noisy datasets were produced by sampling 40 random points

from a 100-point time series, while replicate datasets were

created by running five simulations for each case with

sampling 15 pre-determined points. We used ALVI-MI

with 8 degrees of freedom and MAR with the same
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configuration in almost all cases, for the sake of a fair

comparison across the different initial conditions. Degrees

of freedom used in the different initial conditions experiments

can be seen in Supplementary Table S11.

We collected three metrics to assess the different cases. The

first was the sum of squared errors (SSEs) of the fits against a

noise-free time courses of the artificial systems. The objective was

to evaluate which method could recover the noise-free dynamics

more accurately. The results can be seen in the Supplementary

Figures S12, S13; Supplementary Table S9.1 for the artificial LV

system and in Supplementary Figures S14, S15; Supplementary

Table S10.1 for the artificial MAR system. Both cases reveal an

increase in SSEs as the simulations start further away from the

steady state. For the artificial LV system, ALVI-MI performed

better than MAR when the initial conditions were set further

away from the steady state, which was not the case in the MAR

synthetic datasets. This observation supports the claim that MAR

will have difficulty obtaining a good fit to the data if extreme non-

linear dynamics are present.

The second metric was the SSE for the last five points of a fit

against the last five points of the noise-free time course of the

systems, which allowed us to test if the methods could capture the

original system steady state accurately. The results can be seen in

the Supplementary Table S9.2 for the artificial LV system and

Supplementary Table S10.2 for the artificial MAR system. As

before, we can note an increase in SSEs as the simulations start

further away from the steady state, but less pronounced than in the

last metric. Nomethod distinguishes itself for being better or worse

in this metric. Finally, we tested to what degree the different

methods estimated the parameters for the artificial systems

correctly. Because we cannot compare MAR estimates inferred

from an LV artificial system or LV estimates inferred from a MAR

system, we counted the number of estimates with signs opposite of

the original values. A high number of these signal flips indicates

that the estimates are not capturing the true sense of the

interactions. The results can be seen in the Supplementary

Table S9.3 for the artificial LV system and Supplementary

Table S10.3 for the artificial MAR system. These results show

FIGURE 5
Two datasets of wildlife observations. Column (A) Abundance data of gray whales (Gerber et al., 1999). The plot shows results from ALVI-MI in
blue; variousMAR estimates are displayedwith dark and light green, orange and yellow lines. Column (B)Wolves andmoose on Isle Royale (Vucetich,
2021). The original data used for parameter estimation are displayed with black circles, data not used by the estimation processes are shown in gray,
ALVI-MI results are in blue, MAR estimates using log-abundances are displayed with green lines. The dashed lines indicate confidence intervals
for the MAR estimates. Values of the estimates can be seen in Supplementary Table S6.
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that the LV models capture the interactions of the artificial LV

system better as the MARmodels better capture the artificial MAR

system. This result was expected, although it did not reveal any

tendency directly associated with the initial conditions.

In conclusion, we found that MAR will have difficulty

obtaining a good fit to the data if non-linear dynamics are

present. The data also suggest that both methods have greater

SSEs as the starting point shifts away from the system’s steady

state.

4 Discussion

We have compared methods for inferring interaction

parameters in LV and MAR models of population

communities that are composed of several coexisting species.

These modeling approaches are derived from slightly different

philosophies and comparing them fairly and comprehensively is

not straightforward, as one consists of ODEs and the other of

discrete recursive equations. We therefore focused specifically on

the goal of comparing the two approaches from the point of view

of someone who is interested in quantifying the dynamics of a

mixed community. As parameter estimation strategies, we used

the published MARSS method for MAR models (Holmes et al.,

2012) and a recently introduced algebraic LV inference method

[ALVI; (Voit et al., 2021)].

Our comparisons required some choices. First, MAR could

theoretically use information from several earlier timepoints (t, t-

1, t-2, t-3, . . . ) to predict the value of a variable X at time t+1. We

decided to use only information from time t to predict Xt+1,

which in the literature is called MAR(1), for three reasons: First,

most studies in the ecological literature have used MAR(1).

Second, accounting for information from earlier timepoints

would lead to an explosion in the number of parameters to be

estimated, and the time series are already too short for good

inferences, according to Certain et al. (2018). Third, ODEs do not

have memory, so that a comparison would seem unfair. If MAR

models with memory were considered, one should probably

compare them to delay differential equations (DDEs). In other

words, the decision for MAR(1) appears to provide the fairest

comparison between MAR and LV.

Another choice we had to make was the type of noise for

creating our synthetic data. Most studies focusing on parameter

estimation methods consider observational noise: Perfect time

courses are generated, and noise is secondarily superimposed,

usually with a variance proportional to the value of the

investigated variable. Here we decided to use process noise,

which corresponds to uncertainties incurred by the system as

it progresses from one state to the next. We note again that the

terminology of “noise” is somewhat misleading as it is often the

result of environmental variations, which are typical and

important in ecological systems. The significant difference

between the two types of noise is that process noise

accumulates and often tends to result in time series exhibiting

erratic oscillations (Supplementary Figure S6). This type of

variation is natural for MAR systems but not

straightforwardly accommodated by the LV format. Non-

etheless, because we considered this type of noise as

potentially more appropriate than static observational noise,

we mimicked it by simulating the system with a discretized

version of the LV structure. This decision pertained only to

test data we created to compare the different models. Actual data,

as we analyzed in Section 3, most likely contain a mixture of

process and observational noise, which can hardly be teased apart

based on the data alone.

A smoothed representation of a dataset implicitly integrates

information that is not explicit in the data. This integration step

is not entirely unbiased and requires prudent judgment, because

it must answer the following questions, often without true

knowledge of the system: Are the deviations between the data

and the smoothing function due to (random) noise or are they

part of a true signal? For instance, do they belong to a trajectory

exhibiting true oscillations? Also, if a few data points deviate

much more than all others from the smoothing function, are they

true peaks or valleys or are they statistical outliers? It is difficult to

answer these questions objectively, but two features of the data

are of great benefit: First, if the variation in noise amplitude is

much smaller than the range of signal values (high signal-to-

noise-ratio), the distinction between signal and noise is relatively

straightforward. Second, if the data come in replicates, they may

support or refute the potential of true oscillations or peaks at

certain time points in the data. Even if only one dataset is

available, the biologist familiar with the phenomenon at hand

usually has developed an expectation regarding signal and noise,

and if there is no biological rationale for expecting oscillations or

strong deviations from some simple trend, the smoothing

strategies are flexible enough to allow the integration of the

biologist’s knowledge and expectations. The result of the

smoothing process therefore is a synthesis of all relevant

information, constrained by external knowledge and

reasonable expectations. Of course, it is also feasible to create

alternative models with different thresholds between signal and

noise and to analyze them side by side.

Algebraic LV inference (ALVI) allows a choice between two

variants (linear regression or matrix inversion). The former is

simpler, because it uses all points available, and faster since no

data samples need to be chosen. In most cases tested, it also

produces good fits and estimates. However, the matrix inversion

variant usually produces slightly better results and works well

even in occasional cases where the regression solution fails

(Table 1). It also offers a natural approach to inferring

comprehensive ensembles of well-fitting model

parameterizations. While both variants are quite effective, it is

of course possible that other parameter estimation methods

could outperform both in some or even all cases of LV

inferences. If so, our overall conclusions still stand; in fact, the
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differences between LV and MAR would be even more

pronounced.

Our overarching goal of inferring interaction parameters may

in itself create a slight disadvantage forMARmodels, because these

models were designed for phenomena with random noise and, in

particular, for characterizing the structure of this noise. As a

possible consequence, MAR may have allocated some of the

true dynamics into the noise estimates and that may have

impeded the MAR parameter estimation. Also, Certain et al.

(2018) prescribed the length of the data series as at least five

times greater than the number of non-zero interaction elements in

order to recover interaction signs correctly. This condition was

clearly not satisfied in the examples we analyzed, and the same

shortcoming applies to most actual observations in real-world

contexts, especially in biology [e.g., (Dam et al., 2020; Dam et al.,

2016)]. In the end, we considered data such as those complied by

Mühlbauer et al. (2020) as a typical and representative target for

inference analyses with the goal of extracting information

regarding interactions among populations.

The MARSS software makes modeling with MAR models

easy, although not entirely automatic, as many options must

be tested to find the one that returns the best fit in a specific

situation. For example, one must decide which variables

should have the same noise level and whether to use the

initial datapoints as initial conditions or estimate them. In

contrast to MARSS, which has been vetted over close to a

decade, the ALVI methods for LV models are recent (Voit

et al., 2021), and while all steps are straightforward and code is

available on GitHub (Olivença et al., 2022), no other public

software exists that encompasses all methodological steps in a

streamlined manner. This novelty of the method suggests that

ALVI has the potential of being refined and made more

efficient and user friendly. For example, MARSS uses a

steepest-descent optimization step, which ALVI presently

does not. Although ALVI already performs better than

MARSS (Table 1), it might be possible to improve its

results further by adding a refinement step based on

steepest-descent optimization, as we illustrated with the

example in Figure 3C. Generally, steepest-descent methods

tend to get trapped in local minima if the initial guesses are

poor, but using ALVI in the first step, one would likely not

encounter this problem, as the solutions are already very good

and could be used directly as initial guesses for the refinement

step. A second example of potential future improvement and

automation is the adequate smoothing of the raw data with

splines, which requires the determination of a suitable number

of degrees of freedom and may also suggest beneficial weights

for different variables within a dataset.

It might be interesting in the future to study howwell MARSS

deals with non-normal process noise. The algorithm used by

MARSS assumes the noise nature to be normal, which is a fair

assumption in many cases. However, if that assumption is

severely violated, it should be interesting to test what happens

to the estimation of not only the noise itself, but also of the

inferred parameters.

A comparison of MARSS results with or without log

transformation of the dependent variable abundances did

not yield clear results. If the MAR models are to be viewed

as multispecies competition systems with Gompertz density

dependence, as suggested in (Certain et al., 2018), a log

transformation is required (Supplementary Section S1.3).

We did obtain good SSEs for the artificial MAR datasets,

which were essentially of this type. In addition, the log

transformation helps MAR deal with non-linearities. While

inferences for LV models usually benefit from smoothing, the

same is apparently not true for MAR models, where

smoothing leads to improved data fits in some cases, but

certainly not always (Table 1).

Because the LV structure is continuous, solutions can directly

be evaluated at any point or for any interval between the points in

the numerical solution. MAR does not truly reveal a time

resolution higher than its intrinsic interval between solution

points but addressing this issue, Holmes et al. (2012)

demonstrated with the MARSS R function that it is feasible to

interpolate any number of missing values between the known

datapoints, and that this method can be used to decrease the time

unit for stepping forward. While this step does not make the

MAR model as densely time-resolved as an ODE model, it

mitigates the apparent granularity disadvantage considerably.

It also increases the computational requirements of MARSS

considerably.

Concerning the analysis of the effect of initial conditions,

presented in Section 3.4.3, the result may have been influenced by

the particular model structure or the sampling. Changing the

initial conditions created quick but intense dynamics near the

initial part of the simulation. The sampling scheme may not have

been able to capture these dynamics accurately, causing the

observed result that all methods yielded higher SSEs when the

simulation started further away from the system’s steady state.

Estimation and inference methods typically do not scale well.

The algebraic LV inference bucks this trend, at least to some

degree, as both the smoothing and estimation of slopes are

performed one equation at a time. Thus, instead of scaling

quadratically, the inference problem scales linearly. The

computing time for matrix inversion or linear regression is

essentially the same for all realistically sized models. Thus, the

only time-consuming step within ALVI-MI is the choice of

datapoints. An exhaustive test for all combinations grows

quickly in the number of analyses, but it is always possible to

opt for a much faster random search, for instance, through

Monte-Carlo simulation. In fact, this method is so fast that

many inferences can be obtained in a short period of time

and the best solutions are retained while other solutions are

discarded. The result might not necessarily be the best possible

solution, but it can still provide an excellent fit or, at the very

least, a valuable starting point for a steepest-descent refinement
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optimization. Importantly, a collection of good solutions can be

collated to establish an ensemble of well-fitting models, which

will often yield more biologically meaningful insight than a single

optimized solution.

Our overarching conclusion, with numerical results

summarized in Table 1, is that LV outperforms MAR in the

vast majority of analyzed cases, by yielding often substantially

lower SSE values. However, one must note that while the two

approaches have similar goals, they are best suited in different

situations. MAR models are very useful for investigations where

the quantification of noise is of importance because noise is

characterized in MAR by a parameter that can be estimated

together with the other parameters. Along the same lines, we

noticed that MAR performed rather poorly for artificial LV

datasets where the model had a fair number of zero-valued

parameters. Thus, although we do not completely understand

the reasons, our study suggests that MAR should not be used

in cases wheremany parametersmay have zero values. By contrast,

MAR models proved to be very effective in dealing with process

noise when there were no replicates. This outcome was true for

both the artificial LV and MAR data. Finally, MAR appears

appropriate for data that display non-linearities that align with

the MAR model structure, possibly upon a log transformation of

the data.

LV models are better suited to capture the dynamics in many

datasets because this architecture is able to deal with complex

non-linearities. In fact, the LV structure was shown to be capable

of modeling very complex non-linear dynamics (Peschel and

Mende, 1986; Voit and Savageau, 1986; Vano et al., 2006) and has

no problems with zero-values parameters as we encountered

them with MAR. Our experiments with the artificial LV and

MAR data suggest that LV models should be used when

replicates for the different time points are available or when

the influence of process noise is moderate.
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