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Background: Parkinson’s disease (PD), Alzheimer’s disease (AD) are common
neurodegenerative disease, while mild cognitive impairment (MCI) may be happened in
the early stage of AD or PD. Blood biomarkers are considered to be less invasive, less cost
andmore convenient, and there is tremendous potential for the diagnosis and prediction of
neurodegenerative diseases. As a recently mentioned field, artificial intelligence (AI) is often
applied in biology and shows excellent results. In this article, we use AI to model PD, AD,
MCI data and analyze the possible connections between them.

Method: Human blood protein microarray profiles including 156 CT, 50 MCI, 132 PD, 50
AD samples are collected from Gene Expression Omnibus (GEO). First, we used
bioinformatics methods and feature engineering in machine learning to screen
important features, constructed artificial neural network (ANN) classifier models based
on these features to distinguish samples, and evaluated the model’s performance with
classification accuracy and Area Under Curve (AUC). Second, we used Ingenuity Pathway
Analysis (IPA) methods to analyse the pathways and functions in early stage and late stage
samples of different diseases, and potential targets for drug intervention by predicting
upstream regulators.

Result: We used different classifier to construct the model and finally found that ANN
model would outperform the traditional machine learning model. In summary, three
different classifiers were constructed to be used in different application scenarios, First,
we incorporated 6 indicators, including EPHA2, MRPL19, SGK2, to build a diagnostic
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model for AD with a test set accuracy of up to 98.07%. Secondly, incorporated 15
indicators such as ERO1LB, FAM73B, IL1RN to build a diagnostic model for PD, with a test
set accuracy of 97.05%. Then, 15 indicators such as XG, FGFR3 and CDC37 were
incorporated to establish a four-category diagnostic model for both AD and PD, with a test
set accuracy of 98.71%. All classifier models have an auc value greater than 0.95. Then,
we verified that the constructed feature engineering filtered out fewer important features
but contained more information, which helped to build a better model. In addition, by
classifying the disease types more carefully into early and late stages of AD, MCI, and PD,
respectively, we found that early PD may occur earlier than early MCI. Finally, there are 24
proteins that are both differentially expressed proteins and upstream regulators in the
disease group versus the normal group, and these proteins may serve as potential
therapeutic targets and targets for subsequent studies.

Conclusion: The feature engineering we build allows better extraction of information while
reducing the number of features, which may help in subsequent applications. Building a
classifier based on blood protein profiles using deep learning methods can achieve better
classification performance, and it can help us to diagnose the disease early. Overall, it is
important for us to study neurodegenerative diseases from both diagnostic and
interventional aspects.

Keywords: alzheimer’s disease, parkinson’s disease, mild cognitive impairment, artificial intelligence, predictive
diagnostics

INTRODUCTION

Neurodegenerative diseases are nervous system disorders that
manifest as a progressive loss of function or structure of neurons,
including the death of neurons. The most extensively studied
neurodegenerative diseases are Alzheimer’s disease (AD) and
Parkinson’s disease (PD). AD, the leading cause of dementia
(Long and Holtzman, 2019), is a disease associated with cognitive
impairment, presents with learning, language, and memory
impairment (McKhann et al., 2011). PD is a complex disorder
of the brain system that affects not only movement, such as
rigidity, bradykinesia and tremor, but also cognition. Mild
cognitive impairment (MCI) is characterized by persistent
memory problems and is considered an asymptomatic pre-
dementia of AD, a non-motor symptom that occurs early in
PD (Albert et al., 2011; Poewe et al., 2017). It is important to
distinguish MCI status because some studies suggest that MCI
may lead to the development of AD, and PD with MCI may have
a higher risk of developing Parkinson’s disease dementia (PDD)
(Pagani et al., 2017; Saredakis et al., 2019).

When an individual is diagnosed with AD or PD, pathological
damage in the brain has actually occurred for some time, which is
irreversible (Gaig and Tolosa, 2009; Petersen, 2009). Therefore,
early diagnosis of both disease is very necessary, blood
biomarkers have got more attention due to more convenient,
less costly, and less risky sampling. Eric P. Nagele found that
differentially expressed proteins (DEPs) in human blood can
better distinguish AD, PD, and MCI from normal samples
respectively (Nagele et al., 2011; Han et al., 2012; DeMarshall
et al., 2016). For example, the accuracy of distinguishing AD from

normal samples was 93.4%, while the accuracy of distinguishing
PD from normal samples was 97.1%. Although there have been
many studies in this field, few researchers have studied MCI, PD
and AD together despite their potential association, and we
believe that a combined study would help to more fully
understand the relationship. In the process of data modeling,
traditional machine learning researchers usually use feature
engineering to process the data and rarely use bioinformatics
methods, while the opposite is true for traditional bioinformatics
researchers, which may not yield optimal results. We innovative
combine bioinformatics screening differential protein methods
with machine learning feature engineering for data processing
and model building, and achieve better results. In this paper,
based on serum protein expression profiles, we build a model to
distinguish AD, MCI, PD, and CT samples and search possible
biological phenomenon and drug targets.

MATERIALS AND METHODS

Data Sources and Preprocessing
We downloaded multiple protein expression profiles from the
GEO database (https://www.ncbi.nlm.nih.gov/geo/), including
GSE29654, GSE62283, GSE74763. These datasets were
generated by the Invitrogen ProtoArray V5.0 platform. Since
there were some duplicate samples in these three datasets, we kept
the duplicate samples with the earlier upload time. We also
removed samples from the same institution but with a sample
size of less than 3. Finally, the number of samples in each
category, as shown in Table 1.
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The format of raw data is GPR, we use the R package PPA to
load it, then normalized the data with the robust linear model
(RLM) method, which is the standard intra-slice method capable
of ignoring the effect of isolated points, allowing a good fit of the
regression line. Finally, common probes were extracted and
expression profiles were merged. We standardized the data by
the followingmethod, for each gene in each sample, calculated the
ratio of that gene to the total gene expression in the sample and
multiplied the ratio by 1 million as the final expression value. The
formula is as follows, where the data is a two-dimensional table
with i rows and j columns, the row stores the protein, j represents
the sample, xij represents the expression value of the ith protein of
the jth sample, and xij’ represents the standardized data.

x’
ij � ( xij∑n

i�1 xij
)p1000000

Model of Machine Learning and Deep
Learning
Four machine learning classifiers were used in the construction of
the model, including naive Bayes (NB) (Zhang, 2004), k-nearest
neighbor (KNN) (Troyanskaya et al., 2001), decision tree (DT)
(Breiman et al., 2017), random forest (RF) (Breiman, 2001), and a
deep learning classifier, ANN. Machine learning models are
stored in scikit-learn 0.23.1 and Python 3.8.3 (Pedregosa et al.,
2011). When building the ANN, we use the Keras 2.4.3 module.
The default parameters of sklearn and keras basic classifier are
modified during model training, where KNN (n_neighbors � 3),
DT (criterion: “gini”, splitter: “best,” min_samples_split: 2,
min_samples_leaf: 1), random forest (n_estimators:
100,criterion: “gini,”max_features: "auto",etc), ANN
(activation_relu: “relu,” optimizers: “adam,” batch_size: 64,
etc). All model parameters can be found in the https://github.
com/zhxiuli/AI.git.

Model Construct and Model Evaluation
The DEPs were identified using the limma Bioconductor package
in R (Version 3.6.3) (Ritchie et al., 2015). First, we extracted the
union of DEPs between pairs of categories as the initial features.
According to the variance of these initial features, proteins with
variance less than a quarter of the population were eliminated.
Then correlation was used to remove proteins with correlation
coefficient greater than 0.7 with other proteins. Finally, we used
an SVM-based model to extract the top N features that are most
important for model construction (Cortes and Vapnik, 1995;
Guyon et al., 2002). In the process of selecting the most important
features, we set the step size to 1, i.e., we use an iterative approach
to eliminate features one by one until the performance is optimal.

For all the classifiers, the ratio of the training set, validation set,
the test set is 3:1:1. The training set is used to train the model, the
validation set selects the optimal model parameters, and the test
set to evaluate model performance. We use micro-AUC method
to analyze the AUC of multi-label classification. Assume the
original data is n samples with m columns of features. The basic
idea is to binarize the original labels of each sample, so that the
samples can also get the format of (n,m) (the position
corresponds to 1 and the rest to 0), and then the probability
matrix and label matrix of the multi-label are expanded by rows
respectively as a way to calculate the AUC value of the binary
classification.

IPA and Protein Phase Separation
IPA is a cloud-based integrated biological pathway analysis
commercial software developed for biologists, in which the
software analysis data is manually extracted from major
professional journals and magazines by life science experts,
mainly used in life science research. The IPA was used for
biological analysis, including canonical pathway analysis,
disease and function, upstream regulators. A threshold of −log
10(P-value) > 1.3 was used to indicate statistical significance, and
a Z-score > 0 was defined as active, otherwise as inhibited. For
protein phase separation analysis, we uploaded the sequences of
the proteins to the PLAAC (http://plaac.wi.mit.edu/) to get a
phase separation scores (Lancaster et al., 2014).

RESULTS

Development of Individualized Diagnostic
Models and Analysis Process for AD and PD
Patients
Based on serum protein expression profiles, we construct three
individual disease diagnostic models useing artificial intelligence.
In addition, biological pathways, functional, upstream factors,
and pseudo-time information between diseases were mined
(Figure 1). 388 serum protein expression profiles were
downloaded from the GEO database, containing 156 Control
samples (CT), 50 MCI, 50 AD, and 132 PD samples. On the one
hand, the optimal feature for constructing the model were first
filtered based on the significance, variance, colinearity, and
importance. Then different classifier models are trained using
the optimal features, including random forest (RF), Decision Tree
(DT), and Navie Bayes (NB), Artificial neural network (ANN),
k-Nearest Neighbor (KNN). The trained models were applied to
the test set to observe the classification effects (accuracy,
confusion matrix, ROC) and feature effects (TSNE) of the

TABLE 1 | Overview of the collected data.

Group Sample numbers Age [Median (Range)] Sex (% male)

Control 156 56.50 (19–86) 56.41
Mild cognitive impairment 50 73.00 (55–91) 58.00
Alzheimei’s disease 50 79.00 (61–97) 43.47
Parkinson’s disease 132 66.00 (37–88) 57.69
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model. On the other hand, we analyzed the pathways and
functions between disease and normal samples, and then
analyzed the possible order of disease occurrence. Finally, we
analyzed upstream regulators and possible drug targets.

The AI Model for the Diagnosis of AD, MCI
and CT Based on 6 Serum Protein Markers
AD, CT, and MCI samples were extracted from the dataset, and
1879 DEPs between the AD, CT, and MCI were detected
(Figure 2A). When constructing the feature engineering, we
observed the following principles: 1) Features with small
variance have little impact on the classifier. 2) Highly
correlated features may lead to covariance problems in the
model. 3) A few important features are sufficient to represent
the whole range of features. After variance, correlation and
importance screening (Supplementary Figures S1A,B), six
features were finally obtained, containing LOC728492, PCBD2,

EPHA2, MRPL19, SGK2, LGALS1. These six optimal features
were expressed significantly differently among the groups, and
their importance was shown in the figure (Figures 2B,C).

We use different classifiers (KNN, RF, ANN, NB, DT) and
different features (optimal features, random features, all features)
to build models. In the end, the optimal features can achieve
similar or even better classification performance than all features,
and this is not due to randomness (Figure 2D). The accuracy and
loss curves of these six features during ANN model training
(Figure 2E) show that we stopped the training when the model
was stable. The micro-AUC for the optimal features was 0.9994,
higher than 0.9191 for all features and 0.6385 for random features
(Figure 2F). The accuracy of the model was greater than 0.95 in
all three test sets (Figures 2G–I), and their AUC in the test set are
shown in the Supplementary Figures S4A–C. The accuracy of
the model in all test set was 98.07%, where MCI and AD
classification being completely correct, outperforming all
features and random features (Figures 2J–L). Compared to all

FIGURE 1 | Schematic diagram of the workflow of this study. The original data set was downloaded from the GEO database, which included 156 CT samples, 50
MCI samples, 50 AD samples, and 132 PD samples. The blue arrow represents the process of exploring the biological function of the data, and the green arrow
represents themodeling process performed on the data. Biological function studies how serummolecules affect the body’s cells, tissues and organs across the board as
they flow with the blood, including differences in proteins between groups, as well as pathways, functions, pseudo-timing analysis, and upstream regulators and
potential drugs. Data modeling constructs three models with the same process. The construction process is as follows. We first use feature engineering to extract
important features, then use different machine learning model to training data, finally evaluate the classification efficiency of the model.
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features and random features, the optimal features can
distinguish samples well (Figures 2J–L). The above results
show that the optimal features selected after feature
engineering help to improve the performance and simplify the
model. We defined 0 for the CT, 0.5 for the MCI and 1 for the AD
sample to analyze the correlation between the optimal features
and disease progression. Most features were positively correlated
with the severity of cognitive loss, except forMRPL19. EPHA2 is a
neuroinflammatory factor (Supplementary Figure S1C), which

may indicate that the neuroinflammatory pathway in which
EPHA2 resides is closely related to the progression of AD.

The AI Model for the Diagnosis of PD, MCI
and CT Based on 15 Serum Protein Markers
We extracted PD, CT and MCI samples from the dataset, using 3092
DEPs as initial features (Figure 3A). Finally, after feature selection, 15
features were retained (Supplementary Figures S1D,E), containing

FIGURE 2 |Model 1(CT, MCI, AD) feature engineering and model evaluation. (A)Heat map of all features in the model. (B) Expression profile of the optimal features
in the data set. c) Importance of the optimal features filtered after feature engineering. (D) Accuracy of different classifiers on different features. (E) Accuracy and loss
curves during training of the ANNmodel. (F) AUC of the ANNmodel when using different features. (G–I)Confusion matrix corresponding to all features, optimal features,
and random features in the ANN model. (J–L) TSNE consisting of all features, optimal features, and random features.
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ERO1LB, IGLa, LOC400763, PHKG2, PPM1L, RAD51L3, IL23A,
DYNLRB2, BCAT1, CDC37, IL1RN, MAB21L2, S100A13, FAM73B,
IP6K2. Heatmaps of the 15 features also showed significant differences
between groups (Figures 3B,C). Similarly, the ANN model with
feature engineering performed best (Figure 3D). When the model
tends to be stable, the classification accuracy is the highest and the loss
is the lowest (Figure 3E). The test set accuracy for the optimal features
was 97.05%, where theMCI classificationwas completely accurate with
micro-AUC of 0.9984, while all features were 0.83343 and random

featureswere 0.7897 (Figures 3F,J–L). The accuracy of thismodel were
greater than 0.94 in all three test sets (Figures 3G–I), and theirAUCs in
the test set are shown in the Supplementary Figures S4D–F. The
optimal features distinguished the MCI samples well compared to all
features and random features (Figures 3J–L). Finally, we also analyzed
the correlation of optimal features with disease progression
(Supplementary Figure S3F). Among these features, IL23a and
IL1RN are pro-inflammatory cytokines and anti-inflammatory
factors, respectively. MAB21L2 may be associated with

FIGURE 3 |Model 2 (CT, MCI, PD) feature engineering andmodel evaluation. (A)Heat map of all features in the model. (B) Expression profile of the optimal features
in the data set. c) Importance of the optimal features filtered after feature engineering. (D) Accuracy of different classifiers on different features. (E) Accuracy and loss
curves during training of the ANNmodel. (F) AUC of the ANNmodel when using different features. (G–I)Confusion matrix corresponding to all features, optimal features,
and random features in the ANN model. (J–L) TSNE consisting of all features, optimal features, and random features.
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neurodevelopment (Wang et al., 2020), and BACT1 knockout may
cause oxidative neuronal damage (Mor et al., 2020).

TheAIModel for theDiagnosis of AD, PD,MCI
and CT Based on 30 Serum Protein Markers
Similarly, we took out the DEPs of all samples for feature
filtering and obtained the optimal model with 30 features

(Figures 4A,B), where PCBD2, LGALS1 belong to the
features in model 1, while IGLa, ERO1LB, MAB21L2, CDC37,
DYNLRB2, FAM73B, IP6K2, S100A13 belong to model 2
features, which indicates that the features extracted by
feature engineering have good robustness, and the
importance of these 30 features is shown in the figure
(Figure 4C). The filtered features are also optimal in the
ANN model compared to other methods and other classifiers

FIGURE 4 | Model 3 (CT, MCI, AD, PD) feature engineering and model evaluation. (A) Heat map of all features in the model. (B) Expression profile of the optimal
features in the data set. (C) Importance of the optimal features filtered after feature engineering. (D) Accuracy of different classifiers on different features. (E)Accuracy and
loss curves during training of the ANN model. (F) AUC of the ANN model when using different features. (G–I) Confusion matrix corresponding to all features, optimal
features, and random features in the ANN model. (J–L) TSNE consisting of all features, optimal features, and random features.
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(Figure 4D). The accuracy of the model was greater than 0.95 in
all three test sets (Figures 4G–I), and their AUCs in the test sets
are shown in Supplementary Figures S4G–I. Compared to all
features and random features, the optimal features outperform
them and have a classification accuracy of 98.71% in all test sets,

and all samples are correctly classified except one PD sample
which is misclassfied as AD, and the micro-AUC reaches 0.9999
(Figures 4F,J–L), which is greater than 0.8541 for all features
and 0.6660 for random features, and could fully identify MCI
samples in the TSNE (Figures 4J–L).

FIGURE 5 | IPA analysis under detailed classification. (A) Expression, mean Z-score and the number of up-regulated and down-regulated of canonical pathways.
(B) Expression, mean Z-score and the number of up-regulated and down-regulated of diseases and bio function (C) IPA analysis of Specific canonical pathways,
diseases and biological functions of disease compared to CT group, respectively.
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The Serum Proteins of Patients in the MCI,
AD and PD Groups all Showed Different
Differences From the Healthy Sample
In this paper, we first analyzed the DEPs of diseases. The number
of DEPs in MCI, AD and PD compared to CT was 1010, 839 and
2122 respectively. The number of DEPs was 1221 and 1467 for
AD and PD compared toMCI respectively. Finally, the number of
DEPs between AD and PD was 2082 (Supplementary Figure
S2A). First, PD was very different from CT, MCI, AD in terms of
the number of DEPs, but was closest to MCI (Supplementary
Figure S2B). Next, we found that the phase change proteins of
MCI, AD, and PD were relatively different in location and cell
type, with PDmostly distributed in the nucleus and enzymes, AD
mostly distributed in the extracellular space and transcriptional
regulators, and MCI mostly distributed in the cytoplasm
(Supplementary Figures S2C,D). In addition, we found
differences in phase separation scores in the cytoplasm
between PD and normal samples, which may indicate that
phase separation in PD is associated with the cytoplasm
(Supplementary Figure S2E). Further analysis of the cell type
scores in the cytoplasm suggests that the differences may lie in
other cell types. Finally, we show the 10 proteins that differed
most in disease relative to normal (Supplementary Figures
S2G–I), with EMG1, IFI6 are the most up-regulated and
down-regulated DEP for MCI relative to normal, ZCD2, IFI6
are the most up-regulated and down-regulated DEP for AD, and
CCT7, RANBP6 are the most up-regulated and down-regulated
DEP for PD.

Early PD May Occur Before Early MCI
Serum molecules flow with the blood and can affect the body’s
cells, tissues and organs in a comprehensive way. Regarding the
biological events affected by serum molecules, we further
analyzed the activation level of each biological event based on
the conventional significance analysis. We classified the disease in
more detail based on the underlying information, dividing MCI
into early MCI (EMCI) and late MCI (LMCI), AD into early
mild-moderate AD (EMMAD) and late mild-moderate AD
(LMMAD), and PD into early PD (ESPD) and mild-moderate
PD (MMPD). By observing the canonical pathways and disease
and biological functions, we can find that the number of up-
regulated pathways increased and the number of down-regulated
pathways decreased during the process from EMCI/CT to
LMMAD/CT (Figures 5A,B). Z-scores, the mean change in
pathway relative to control samples, showed the same trend.
ESPD followed the same trend as EMCI but with greater
variability. The results show a continuum of inertia between
multiple biological events in the organism of MCI and AD
patients, while PD is more distinct from both. The incidence
of biological events in the organism of patients with early PD was
intermediate between that of healthy and early MCI. This
suggests that early PD may precede early MCI.

Similarly, IPA was used for the analysis of seven groups of
samples (Figure 5C). Among the canonical pathways, we selected
the 10 pathways with the largest relative differences between
MMPD and LMMAD. Prelonged activation of EIF2 leads to a

sustained decrease in protein synthesis, which leads to memory
impairment and neuronal damage (Halliday et al., 2017). The up-
regulation ratio of EIF2 in MCI is small, while for AD and PD is
larger, which may indicate that EIF2 is more related to neuronal
damage.

Among the canonical pathways, we identified two pathways
associated with the Coronavirus, namely the “Coronavirus
Replication Pathway” and the “Coronavirus Pathogenesis
Pathway.” Coronavirus have an enhanced replication capacity
but reduced pathogenicity in disease compared to normal
samples. The Coronavirus replication ability of AD is stronger
than that of PD. It is known from the literature that patients with
COVID-19 appear to be more susceptible to AD and that AD
patients may be more susceptible to severe infection with
COVID-19 (Ciaccio et al., 2021). In contrast, the current
literature does not clearly indicate whether PD patients are
more susceptible to COVID-19. This may reveal a greater
susceptibility to COVID in AD.

The level of cell maturation is relatively low in the early stages
of disease compared to normal samples, while in the middle and
late stages of disease progression, cell maturation begins to
increase abnormally to approaching or even exceeding normal
levels. In terms of molecular function, excessive increases in the
activating nuclear factor kappa B (NF-kB) have been shown to
play an important role in driving Abeta deposition,
neuroinflammation and neurodegenerative disease in AD, but
NF-kB levels are not increased in PD, which may indicate that
NF-kB does not promote α-synuclein (a-SYN) deposition
(Lindsay et al., 2021).

Possible Therapeutic Targets and Drugs
Finally, we predicted the upstream regulators that may cause
differences in protein profiles of patients. Upstream regulators of
DEPs and corresponding drug treatment information were
obtained by IPA annotation, of which 85 upstream regulators
corresponding to 837 drugs. In addition, 170 DEPs
corresponding to 911 drugs. These 231 kinds of DEPs and
upstream regulators are potential therapeutic targets, and
1445 kinds of drugs can be considered as treatment options
(Figures 6A,B). The expression of 231 potential targets in seven
groups of samples is shown in Figure 6C. Among them, we can
observe that ESPD is the closest to normal, which may also
reflect the earlier onset of ESPD. Then, in order to further
narrow the scope, we extracted 24 proteins that belong to both
upstream regulators and DEPs. The predicted expression of
these 24 upstream regulators is shown in Figure 6D and the
corresponding drugs for all proteins are listed in
Supplementary Table S1. In addition, machine learning
models of LGALS1 were also present in 24 upstream factors.
In the early stages of the disease, LGALS1 expression levels were
reduced, along with reduced protein activity. In both AD and
PD patients, LGLAS1 expression and protein activity were
activated, which we speculate may be related to the
overreaction of the organism. This may suggest the use of
activators in the early stages and inhibitors in the late stages,
and OTX008 is a target drug for LGALS1. We predict potentially
intervenable drugs based on the activation levels of upstream
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factors, laying the foundation for diagnosis and intervention in
neurodegenerative diseases such as AD and PD.

DISCUSSION

In neurodegenerative diseases, patients with MCI are a vague
intermediate state that may not only present with early symptoms
of AD and PD, but may also turn into normal. There is no good
treatment for neurodegenerative diseases, and by the time they
are diagnosed it is too late. Therefore, early diagnosis of
neurodegenerative diseases is particularly important. It can
help us have more time to think and cope with clinical
symptoms before they appear.

Although there are lots of researches, many researchers’models
still have relatively large limitations. Zehra Karapinar Senturk uses
voice data to identify PD samples and normal samples based on
feature engineering and SVM classifiers. As a result, the
classification accuracy is only 93.84% (KarapinarSenturk, 2020),
which may be caused by feature engineering steps, i.e., filtering for
importance only. In Jörn Lötsch’s study, a classifier was
constructed using both olfactory and culinary information, and
the machine learning model was able to discriminate non-PD
samples with 94.1% accuracy, but only 58.9% for PD samples,

which may be due to the extreme sample imbalance during model
training (Lötsch et al., 2020). In Sanghee Moon’s study, which
collected data from wearable devices and also used multiple data
models, the highest accuracy was only 0.92, with the maximum f1
score was 0.61. In this study, the authors exposed the problem of
sample imbalance, despite the simple feature engineering and
oversampling methods (Moon et al., 2020). In Marek
Wodzinski’s study, audio information was used, but the
classification accuracy of the test set was only 0.90 (Wodzinski
et al., 2019). More importantly, the above models are all binary
models, which may lead to limited applications. In this paper, we
combine bioinformatics methods and machine learning methods
to filter out the important features in the data, i.e., we construct a
reasonable feature engineering. The classifiers using this feature
engineering can achieve higher accuracy, for example, all three
classifiers in this paper have an accuracy of more than 97%. In
addition, the features filtered by this method not only perform well
on the model, but also the classification trend can be seen in a
simple dimension reduction analysis. We use IPA method to
analyze the upstream regulators (proteins, RNAs, drugs,
metabolites, etc.) that form differential protein expression
profiles and predict the activation or inhibition of their
regulatory activities. Further, the proteins in the upstream
regulators (activation or inhibition of protein activity) are

FIGURE 6 | Analysis of upstream regulator and potential drugs of differentially expressed proteins. (A) Venn diagram of upstream regulators with drug and DEPs
with drug. (B) Venn diagram of drugs corresponding to DEPs and drugs corresponding to upstream regulators. (C) Expression profiles of potential therapeutic targets in
each group and mean Z-score. (D) Expression profiles of 24 differential upstream regulators.
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selected and intersected with the differential expressed proteins
(up- or down-regulation of expression abundance). Thus, the
candidate targets and corresponding drugs are jointly identified
from both protein activity and abundance perspectives.

We use IPA to analyze the activation level of each biological
event based on between MCI, AD, PD and CT, and three of them
deserve our attention, namely “Neuroinflammatory signaling
pathway,” “JAK/Stat signaling pathway,” “Acute phase response
signaling” (Supplementary Figure S3). Neuroinflammatory
signaling is an immune response activated by microglia and
astrocytes in the central nervous system (CNS), and is generally
considered to be related to neurodegenerative diseases. The JAK/
STAT pathway is amajor signalingmechanism for several cytokines
and growth factors (Murray, 2007). Inhibition of the JAK/STAT
pathway may prevent neuroinflammation and neurodegeneration
by suppressing the activation of a-SYN by innate and adaptive
immune responses (Qin et al., 2016). In patients with AD and PD,
the JAK/STAT signal pathway is activated and reversed in MCI,
consistent with the neuroinflammatory pathway. In contrast to the
traditional view that inflammation occurring in neurodegenerative
diseases is chronic, IPA analysis believes that acute inflammation
also occurs and plays an important role in neurodegenerative
diseases. Previous studies have shown that the formation of
senile plaques in patients with AD may involve acute
inflammation (Sawada et al., 2015), and acute inflammation is
also related to the severity of PD (Chen et al., 2012), which suggests
that we need to re-examine the role of acute inflammation in
neurodegenerative diseases. In addition, we feel that additional
attention needs to be paid to the fact that early pd may appear
before early mci in the IPA analysis, which may not be quite the
same as what is perceived.
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Supplementary Figure S1 | Variance and importance in feature engineering and
the correlation between features and disease progression. (A) Filter the features with
low variance in model1, the arrow indicates the 25% quantile of the overall variance,
and filter the protein lower than the left side of the arrow. (B) The correlation between
the features of model1. (C) The correlation between optimal features and disease
progression in model1. (D) Filter the features with low variance in model2, the arrow
indicates the 25% quantile of the overall variance, and filter the protein lower than the
left side of the arrow. e) The correlation between the features of model2. (F) The
correlation between optimal features and disease progression in model2. (G) Filter
the features with low variance in mode3, the arrow indicates the 25% quantile of the
overall variance, and the protein lower than the left side of the arrow is filtered. (H)
The correlation between the features of model3.

Supplementary Figure S2 | Overview of the DEGs. (A) The number of DEPs
between different groups,the bar with light brown for normal vs. other samples, bar
with light green for MCI vs. disease samples, and bar with light red for AD vs. PD. (B)
Venn diagram of the number of DEPs for disease relative to normal. (C) Phase
separation scores between different groups in cellular localization (D) Phase
separation scores between different groups in cell type (E) Violin diagram of
phase separation scores of different groups in cytoplasm. f) Phase separation
scores between different cell types under cytoplasm (G) 10 most up-regulated
and down-regulated DEPs for MCI relative to CT. (H) 10 most up-regulated and
down-regulated DEPs for AD relative to CT. (I) 10 most up-regulated and down-
regulated DEPs for PD relative to CT .

Supplementary Figure S3 | Overview of the DEGs. (A) IPA analysis of canonical
pathways, diseases and biofunctions of MCI, AD, PD compared to CT group,
respectively.

Supplementary Figure S4 | Overview of the DEGs. (A) AUC of each dataset in
the model.

Supplementary Table S1 | Expression trends of 24 therapeutic targets.
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