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Bone tissue consists of an organic matrix, primarily collagen type I, and an inorganic
mineral phase, mainly hydroxyapatite, which together provide bone strength, flexibility, and
function (Šromová et al., 2023). Numerous cells are involved in the maintenance and
dynamics of bone tissue. For instance, osteocytes embedded in the bone matrix function as
mechanosensors and regulators, coordinating the activity of other cells in response to
mechanical and biochemical signals (Delgado-Calle and Bellido, 2022). Mesenchymal stem
cells (MSCs), located in the bone marrow and periosteum, are multipotent cells that can
differentiate into osteoblasts and chondrocytes (Sheng, 2015). In addition to MSCs,
osteogenic precursor cells within the periosteum also play a significant role in bone
formation (Donsante et al., 2021). Furthermore, skeletal stem cells (SSCs) have been
identified as a distinct population within bone tissue that possesses the ability to self-renew
and generate various cell types, including osteoblasts, chondrocytes, and stromal cells (Yuan
et al., 2022).

The bone remodeling process is continually active throughout life by the coordinated
activities of osteoclasts and osteoblasts, which are essential for maintaining bone
homeostasis and adapting to mechanical stresses (Bolamperti et al., 2022). For instance,
during orthodontic tooth movement, alveolar bone remodeling occurs due to the actions of
osteoblasts on the tension side and osteoclasts on the compression side. The process by
which cells respond to mechanical forces is known as mechanotransduction, induced by
mechanosensors such as those on osteocytes that detect mechanical loads and translate
them into biochemical signals (Li et al., 2021). The bone regeneration process is reparative
and occurs in response to injury and involves inflammation, soft callus formation, hard
callus formation, and bone formation (Duda et al., 2023). The initial inflammatory phase
activates immune cells, such as macrophages, and releases cytokines to recruit MSCs to the
injury site (Duda et al., 2023). The subsequent phases involve the differentiation of MSCs
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into osteoblasts and chondrocytes to form new bone and synthesize
a new bone matrix (Donsante et al., 2021). The regulation of
biological signaling and the use of biomaterials play crucial roles
in these processes.

Some essential biological mediators, including morphogenetic
proteins (BMPs), transforming growth factor-beta (TGF-β), insulin-
like growth factors (IGFs), vascular endothelial growth factors
(VEGFs), receptor activator of nuclear factor kappa-B ligand
(RANKL), and osteoprotegerin (OPG), are extensively studied in
the process of bone turnover (Bartold and Ivanovski, 2025).
Osteoblasts and stromal cells produce RANKL, which binds to
the RANK receptor on osteoclast precursors, promoting their
differentiation into mature osteoclasts (Udagawa et al., 2021).
The decoy receptor OPG, secreted by osteoblasts, competes with
RANKL to prevent excessive osteoclast activation, thereby
maintaining bone dynamics (Udagawa et al., 2021). Additionally,
systemic regulators like parathyroid hormone (PTH) and vitamin D
influence calcium homeostasis and bone metabolism, stimulating
osteoblast activity through RANKL (Russell, 2024). PTH has a dual
role in these processes: It promotes bone formation with
intermittent administration while leading to bone resorption with
chronic elevation (Liu et al., 2024). Furthermore, inflammatory
cytokines such as tumor necrosis factor-alpha (TNF-α) and
interleukins IL-6 and IL-1β play dual roles as well, initially
promoting inflammation and bone resorption but later
facilitating repair by recruiting progenitor cells (Yao et al., 2024).

Mechanosensors on the cell surface can convert mechanical stimuli
into biochemical signals to regulate cellular responses to induce bone
remodeling. For instance, piezo channels, especially piezo1 and piezo2,
are found in osteoblasts, osteocytes, and mesenchymal stem cells (Xu
et al., 2021). The activation of piezo1 by mechanical stress causes calcium
influx, triggering downstream signaling pathways such as Wnt/β-catenin
and Yes-associated protein/transcriptional coactivator with PDZ-binding
motif (YAP/TAZ), along with the release of signaling molecules like
prostaglandins and nitric oxide, which influence the activity of osteoblasts
and osteoclasts (Huang et al., 2023). Research also indicates that in
osteocytes, piezo channels regulate mechanotransduction by modulating
sclerostin expression, thus affecting bone resorption through osteoclast
regulation (Huang et al., 2023). Furthermore, piezo1-mediated signaling
affects MSC differentiation toward osteogenic lineages while inhibiting
adipogenesis to enhance bone regeneration (Huang et al., 2023).

Various biomaterials have been developed and applied to
enhance bone formation. Bioactive ceramics, such as
hydroxyapatite (HA) and tricalcium phosphate (TCP), mimic the
mineral composition of bone, improving osteointegration and
stability (Juhasz and Best, 2012). Polymeric biomaterials,
including natural types like collagen, chitosan, and alginate, as
well as synthetic types like polycaprolactone (PCL), polylactic
acid (PLA), and polyglycolic acid (PGA), provide tunable
mechanical properties, biocompatibility, and degradation rates,
making them suitable for a range of orthopedic applications (Asti
and Gioglio, 2014). Composite biomaterials combine ceramics and
polymers, further optimizing bioactivity and mechanical integrity
(Vahidi et al., 2024). Moreover, scaffolds can be functionalized with
growth factors, drugs, or peptides to enhance their regenerative
capabilities. For instance, BMP2-loaded scaffolds have been widely
utilized in clinical settings to promote bone formation in critical-
sized bone defects (Chen et al., 2021).

Emerging technologies such as 3D bioprinting and gene editing
are increasingly being utilized to create patient-specific solutions,
allowing precise control over scaffold architecture and bioactive
properties for bone regeneration (Lee et al., 2024). Nanomaterials,
including nanohydroxyapatite and graphene-based substances,
provide superior bioactivity and mechanical strength by
mimicking the nanoscale structure of the bone matrix while also
serving as carriers for growth factors, genes, and drugs (Chinnaiyan
et al., 2024). Additionally, bioactive coatings that incorporate
antimicrobial agents, peptides, or stem cell-derived exosomes
further enhance the regenerative potential of biomaterial
implants (Agnihotri et al., 2024). Furthermore, DNA hydrogels
represent innovative emerging biomaterials and show significant
promise as bone-promoting scaffolds, as demonstrated by
researchers in mouse calvarial regeneration (Athanasiadou
et al., 2023).

Although extensive research has been conducted to improve bone
regeneration and remodeling, challenges persist in translating laboratory
findings into clinical therapies for patients. To ensure successful outcomes,
several factors, including biomaterial degradation rates, immune
compatibility, and cost-effectiveness, need to be addressed. Moreover,
the field is shifting towards personalized medicine approaches, where
patient-specific factors inform the selection of biomaterials, stem cells, and
therapeutic strategies. Advanced bioprinting and tissue engineering
techniques have the potential to create custom scaffolds with precise
architectural and biological properties. With the advancement of
microfluidic devices, organ-on-a-chip models have also been utilized in
the bone field, such as a bone-on-a-chip platform that simulates the
dynamic biological processes of bone remodeling and mineralization
(Mansoorifar et al., 2021), which could provide a personalized testing
platform for treating patients with bone diseases.

The six papers collected for our special issues are all discussing
about novel biomaterials for bone tissue regeneration (Kitahara
et al.; Lei et al.; Wang et al.; El-Nablaway et al.; El-Nablaway
et al.; Indurkar et al.). Lei et al. built rabbit critical-size bone
defects and tested porous calcium-phosphate (CaP) ceramics for
bone regeneration, and they found that CaP ceramics can improve
bone-forming ability with adequate time (Lei et al.). Wang et al.
established SD-rat calvarial critical-sized defects and tested the effect
of α-calcium sulfate hemihydrate/treated detin matrix composite,
and they suggest that the composite cement has promising potential
to be an alternative for bone regeneration (Wang et al.). Kitahara
et al. created a novel rat femoral nonunionmodel and tested rhBMP-
2-loaded hydroxyapatite/betatricalcium phosphate microsphere/
hydrogel composite and indicated it significantly improved bone
union rates and new bone formation (Kitahara et al.). El-Nablaway
et al. reviewed the locally applied repurposed pharmaceuticals for
periodontal tissue regeneration with their success and drawbacks to
help explore the effectiveness and efficiency, economical, and state
topical pharmaceutical preparations (El-Nablaway et al.). They also
reviewed the cutting-edge bioactive polymeric hydrogels for
periodontal regeneration to help establish prospective clinical
applications (El-Nablaway et al.). Indurkar et al. use gelatin
methacrylate and citrate-containing amorphous calcium
phosphate to develop nanocomposite hydrogel (Indurkar et al.).
All these studies provide novel information in the field of bone
regeneration and help advance its application for clinical treatment
in the future.
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