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Introduction: In response to the demand for a quantifiable means for assessing
hand dysfunction in cerebral palsy (CP), this paper proposed and conducted a
novel high-density (HD)-surface electromyography (sEMG)-based muscle force
estimation framework.

Methods and Results: A highly generalized source network was developed firstly
based on long short-term memory (LSTM) networks and three different healthy
adult HD-sEMG-force datasets, achieving a root mean square error (RMSE) of
6.31% in force estimation across various force modes; Then, transfer learning
techniques were applied to fine tune the well-trained source network using data
from healthy children, establishing five gesture-specific target networks that
achieved RMSE below 10% in force estimation tasks independent of the
subjects; Finally, a muscle force estimation experiment was conducted on 16
children with CP using the gesture-specific target networks.

Conclusion: By comparing and analyzing the experimental results of CP group
and healthy control group, CP children with different grades of Manual Ability
Classification System (MACS), andCP childrenwith different types of symptoms, it
was verified that the abnormal EMG-force relationship obtained using the
proposed muscle force estimation scheme had the potential for clinical
application in the assessment of CP hand dysfunction. Muscle force
estimation based on sEMG has broad application prospects in clinical practice.
The research work in this paper has important value in promoting the clinical
application of muscle force estimation technology based on sEMG, which is
conducive to improving the quantitative assessment level of motor dysfunction.
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1 Introduction

Cerebral palsy (CP) refers to a non-progressive brain injury syndrome caused by various
pathogenic factors from fetal to infancy and is a common and serious disabling disease in
pediatrics (Bax et al., 2005). The symptoms of cerebral palsy mainly include abnormal
muscle tone, limb deformities, motor dysfunction and so on. The mainstream treatment
options include rehabilitation training, surgical procedures, and medication relief, among

OPEN ACCESS

EDITED BY

Keyi Wang,
Harbin Engineering University, China

REVIEWED BY

Wenxin Niu,
Tongji University, China
Yi Liu,
Harbin Engineering University, China

*CORRESPONDENCE

Xiang Chen,
xch@ustc.edu.cn

RECEIVED 20 February 2025
ACCEPTED 24 March 2025
PUBLISHED 02 April 2025

CITATION

Zhang X, Wang K, Wu D, Zhang X and Chen X
(2025) Feasibility study on the application of
HD-sEMG-based force estimation technology
in the assessment of hand dysfunction in
cerebral palsy.
Front. Bioeng. Biotechnol. 13:1580098.
doi: 10.3389/fbioe.2025.1580098

COPYRIGHT

© 2025 Zhang, Wang, Wu, Zhang and Chen.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Original Research
PUBLISHED 02 April 2025
DOI 10.3389/fbioe.2025.1580098

https://www.frontiersin.org/articles/10.3389/fbioe.2025.1580098/full
https://www.frontiersin.org/articles/10.3389/fbioe.2025.1580098/full
https://www.frontiersin.org/articles/10.3389/fbioe.2025.1580098/full
https://www.frontiersin.org/articles/10.3389/fbioe.2025.1580098/full
https://www.frontiersin.org/articles/10.3389/fbioe.2025.1580098/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2025.1580098&domain=pdf&date_stamp=2025-04-02
mailto:xch@ustc.edu.cn
mailto:xch@ustc.edu.cn
https://doi.org/10.3389/fbioe.2025.1580098
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2025.1580098


which rehabilitation treatment can help improve motor dysfunction
in children with CP in the long term. In rehabilitation treatment,
assessing the motor dysfunction of children with CP can help
doctors provide more targeted rehabilitation treatments for
patients. At present, doctors mainly rely on various assessment
scales, such as the Gross Motor Function Measure (GMFM), to
assess the motor function of children with CP (Russell et al., 2013).
The assessment results largely rely on the clinical experience and
subjective judgments of rehabilitation doctors and are sometimes
not very accurate. Therefore, there is an urgent need for objective
tools to guide the rehabilitation training of CP children. Specifically,
quantitative muscle force estimation technology has important
clinical application value for assessing CP motor dysfunction.

Muscle force estimation refers to the evaluation of muscle
contraction strength, applied in fields such as rehabilitation
engineering (Lee et al., 2018), clinical medicine (Mathieu et al.,
2023), and human‒computer interaction (Su et al., 2021; Liu et al.,
2024). The methods for estimating muscle force can be divided into
direct measurement methods and indirect measurement methods.
Direct measurement methods obtain muscle strength by placing
sensors at the tendon with high accuracy, but their invasiveness
limits their application range (Amarantini et al., 2012). Indirect
measurement methods, represented by the surface
electromyography (sEMG)-based muscle force estimation, are
convenient and non-invasive, and so have become an important
research direction. sEMG collected by attaching electrodes to the
surface of the skin, carries rich information on muscle contraction
intensity and timing. sEMG-based force estimation technology has
broad application potential in the fields of clinical medicine and
rehabilitation engineering. Specifically, because of its ability to detect
the functional condition of muscles, it can provide a basis for
surgical assessment in clinical medicine (Medved et al., 2020)
and is beneficial for customizing personalized rehabilitation plans
during the rehabilitation training process (Meattini et al., 2020).
Traditional sEMG signals are measured via discrete electrodes,
which are easy to attach but are susceptible to cross interference
from adjacent muscles and can only provide information on local
positions. In contrast, high-density electromyographic signals (HD-
sEMG) collected by high-density array electrodes can provide
comprehensive muscle activity information and capture complex
motion patterns. In recent years, HD-sEMG-based muscle force
estimation has attracted considerable research interest.

To establish a nonlinear relationship between sEMG and muscle
force effectively, various models have been introduced. Hill model
proposed by A. V. Hill in 1938 is the most widely used model. Hill
model is a representative physiological model that uses parameters
such as muscle fiber contraction speed, muscle fiber length changes,
and activation signal intensity during human muscle contraction to
model and estimate muscle force (Hill, 1997). Owing to its high
complexity, Xiao and Higginson (2010), Ackland et al. (2012), and
Bujalski et al. (2018) have been dedicated to simplifying Hill model
for practical application (Xiao and Higginson, 2010; Ackland et al.,
2012; Bujalski et al., 2018). Various regression models also have been
applied to fit the relationship between sEMG and muscle force. AI
Harrach et al. (2017) reported through comparative research that
among many regression models, third-order or higher-order
polynomial models have better performance in force estimation
(Al Harrach et al., 2017). In recent years, neural networks have been

widely welcomed by researchers in HD-sEMG-based muscle force
estimation because of their strong generalizability. Choi et al. (2010)
established a fully connected neural network consisting of 12 hidden
layer units, achieving good performance in subject-related palm grip
estimation, but the model performance was poor in subject-
independent scenarios (Choi et al., 2010). Xu et al. (2018)
introduced convolutional neural network (CNN), long and short-
term memory (LSTM) network, and their combined network
structure (C-LSTM) into static isometric elbow flexion tasks (Xu
et al., 2018). Xue and Lai. (2023) proposed a one-dimensional
convolutional deep neural prediction network and applied it to
human‒machine interaction systems to achieve precise control of
sEMG-based robots (Xue and Lai, 2023).

With the development of sEMG-based muscle force estimation
technology, some researchers are attempting to introduce it into
clinical rehabilitation applications (Shan et al., 2025a; Shan et al.,
2025b). Mokri C et al. utilized machine learning techniques such as
support vector machine (SVM), support vector regression (SVR),
and random forest (RF), as well as genetic learning algorithms, to
achieve high-precision estimation of lower limb muscle force, with
an estimation root mean square error (RMSE) of 6.05%. In addition,
they designed a lower limb rehabilitation robot to assist patients in
completing knee joint rehabilitation training, greatly improving the
effectiveness of rehabilitation treatment (Mokri et al., 2022). Leung
et al. applied muscle force estimation techniques to evaluate
swallowing in patients with post radiation dysphagia. They
generated dynamic topographic maps on the basis of the root
mean square (RMS) of HD-sEMG signals to illustrate the
function of the anterior cervical muscle during swallowing and
evaluated the symmetry of muscle average force and swallowing
patterns through objective parameters, including the average RMS,
left/right energy ratio and left/right energy difference (Leung et al.,
2023). To understand the joint torque generated by the muscles of
CP patients during walking and to assist with suboptimal gait
patterns, Suncheol Kwon et al. estimated the internal torque of
the knee joint using sEMG signals and the knee joint angle. Based on
different assumptions, they proposed four estimation models. The
results showed that the best estimation model could be selected
based on the degree of contraction, with a normalized root mean
square error (NRMSE) between 0.15 and 0.29 (Kwon et al., 2012). In
summary, the application of sEMG-based muscle force estimation
technology in CP rehabilitation is still limited and requires further
exploration.

According to the potential need for assessing motor disorders,
we have summarized two main application modes of sEMG-based
force estimation technology in the clinical assessment of children
with CP. One is to predict the muscle force generated during
rehabilitation training, and the other is to assess CP motor
dysfunction based on differences in the sEMG-force relationship
with healthy children of the same age group. When we directly apply
the sEMG-based muscle force estimation schemes proposed in
existing studies to clinical practice, the following problems may
be faced. First, the effectiveness of most schemes has been validated
only in fixed force mode, such as the rectangular mode (Hajian et al.,
2021; Sittiruk et al., 2025), triangular mode (Mao et al., 2023), and
sine mode (Na and Kim, 2017; Simon et al., 2024), and with limited
accuracy in arbitrary force modes. However, it is difficult for
children with CP to exert force according to a fixed mode.
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Second, in most earlier studies, the force estimation model was
usually established in subject-specific mode, namely, the training
data and testing data came from the same subject. However, this
method of establishing a specific force estimation model for
individuals does not help reveal the abnormal sEMG-force
relationship related to individual motor disorders. Therefore, the
prerequisite for applying sEMG-based force estimation technology
to clinical CP motor dysfunction assessment is to establish a force
estimationmodel that is independent of users and highly generalized
to force mode.

With the assessment of hand dysfunction for children with CP
from the perspective of an abnormal sEMG-force relationship as the
research object, this paper proposes a novel HD-sEMG-based
muscle force estimation framework for clinical application. As we
know, to establish a force estimation model that is independent of
users and highly generalized to force modes, sufficient data covering
sEMG‒force relationship across diverse force modes during human
movement are needed. However, due to the fact that existing studies
on muscle force estimation have focused mostly on healthy adults,
the available sEMG-force datasets also come from healthy adults.
The novelty of the proposed framework is that it first attempts to
establish a highly generalized source network using healthy adult
(HA) data covering different force modes; then, it attempts to obtain
gesture-specific target networks using gesture action data from
healthy children (HC) and transfer learning techniques; and
finally, it aims to carry out a clinical hand dysfunction
assessment of children with cerebral palsy (CP) using the
gesture-specific target networks. As an innovative study that
applies HD-sEMG-based muscle force estimation technology to
clinical practice, the results of this study are of great significance
for promoting the development of quantitative assessment
techniques for motor disorders in children with CP.

2 Materials and methods

This study received approval from the Ethics Review
Committee of University of Science and Technology of China
under Application No. 2022-N(H)-150. The proposed HD-sEMG-
based muscle force estimation framework is shown in Figure 1 and
includes three parts: source network construction, target networks
construction and model application. To construct the source
network, a force estimation model was established on the basis
of a LSTM network, and three healthy adult (HA) HD-sEMG-
force datasets with different force modes were used as the source
dataset to train it to obtain a well-trained source network. To
construct the target networks, five target gestures were first
defined according to the needs of hand function rehabilitation
in children with CP, and then HD-sEMG-force data of the target
gestures were collected from healthy children (HC) to calibrate
the well-trained source network to obtain the gesture-specific
target networks. Specifically, this study adopted transfer
learning techniques on the well-trained source network and
established five gesture-specific target networks named M1-M5
tailored to corresponding target gestures. In the model application
part, with the goal of providing clinical rehabilitation physicians
with more objective and quantitative assessment criteria, thereby
facilitating improved rehabilitation treatment, using the five
gesture-specific muscle force estimation models M1-M5, the
differences in the sEMG‒force relationship between CP
subjects and healthy children of the same age group were
analyzed firstly, then the application value of sEMG-based
muscle force estimation in the hand dysfunction assessment of
children with CP was explored from the perspectives of Manual
Ability Classification System (MACS) grading and clinical
symptom manifestations.

FIGURE 1
Research route.
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2.1 Datasets

2.1.1 Source dataset
The three HD-sEMG-force datasets, namely, Dataset A (Zhang

et al., 2019), Dataset B (Xu et al., 2018), and Dataset C (Hu et al.,
2022), were established by the author’s research team using self-
developed equipment, and all consist of 128-channel sEMG signals
and the corresponding one-channel force signals. Dataset A
comprises the data of the brachial and biceps muscles during
isometric contraction elbow flexion tasks from 10 healthy males
(aged 24.8 ± 2.6 years, weight 67.2 ± 5.3 kg, and height 174.7 ±
3.9 cm). Specifically, each subject completed static isometric
contraction tasks at three levels of force, namely, 20%, 40%, and
60% MVC (Maximum voluntary contraction). The force mode
follows an increasing-plateau model (3s for the increasing phase
and 3s for the plateau phase). The signal sampling rate is 1 kHz.
Dataset B comprises the data of the biceps brachii during isometric
contraction elbow flexion task, with the subject performing tasks at
three force levels, namely, 35%, 50%, and 65%MVC. The forcemode
follows an increasing-plateau model (2s for the increasing phase and
4s for the plateau phase). The signal sampling rate is also 1 kHz.
Notably, Dataset B includes muscle fatigue data acquired as subjects
exerted force until exhaustion. All 24 healthy subjects were recruited
and categorized into three groups by age and sex: young males (aged
23.8 ± 2.2 years, height 177.4 ± 5.3 cm, weight 69.5 ± 5.8 kg); young
females (aged 22.5 ± 1.4 years, height 161.5 ± 3.6 cm, weight 46.6 ±
5.7 kg); and middle-aged and elderly males (aged 52.5 ± 5.5 years,
height 168.3 ± 3.9 cm, weight 71.9 ± 5.7 kg). In this study, data from
11 subjects (3 young males, 3 young females and 5 middle-aged and
elderly males) were adopted for source network training. Dataset C
comprises the data of forearm flexor under 11 gestures, which are
extracted from the common types of gestures in daily life, involving
pressure, pinch, grip, and the twist, involving five fingers. Subjects of
Dataset C were 10 healthy males aged 23–27 years, and executed
three force modes for each gesture: two regular force modes and
random force mode. The regular force modes consist of a sine wave
force ranging between 0% and 60%MVC (5s) and a constant force at
40% MVC (5s). In the random force mode, the subjects performed
each gesture action in a non-fixed mode of their own choice for 20 s.
The signal sampling rate is 2 kHz. The samples obtained from

datasets A, B and C after processing form the source dataset, with a
total of 43,479 sEMG-force samples.

2.1.2 Target gestures and target gesture dataset
Taking into account the fundamental need for hand function

rehabilitation in children with cerebral palsy (CP), this study focused
on five gestures involving grasping, pinching, and twisting.
Specifically, these gestures encompass two-finger pinching (G1),
five-finger pinching (G2), clenching (G3), four-finger pressing (G4),
and twisting (G5), as illustrated in Figure 2A.

A total of 16 healthy children (HC), comprising 8 males (aged
7.5 ± 2.0 years) and 8 females (aged 10.3 ± 3.7 years), were recruited
from the families of faculty members at the University of Science and
Technology of China and the outpatient department of the Pediatric
Neurorehabilitation Center at Anhui Medical University. All the HC
subjects had no history of neuromuscular injury or related ailments.
Guardians of the subjects were briefed on the experimental
procedures and signed informed consent forms.

Considering that children have thinner arms, HD-sEMG data
were collected using a self-developed 64-channel HD-sEMG grid
(size: 4 pieces×4 rows × 4 lines, inter-electrode distance: 14 mm,
electrode diameter: 3.5 mm). The electrode grid, which is fabricated
from flexible polyimide material, better conforms to the skin. To
establish high-precision target networks, it is desirable to collect
sEMG from as many parts as possible. Therefore, four electrode
grids were positioned on the biceps, triceps, extensor and flexor
muscles of the forearm, as depicted in Figure 2B. To accurately
obtain the force signal generated during different gesture executions,
different force sensors (LOADING SEN, China) were placed as
shown in Figure 2B. The LDCZL-SC sensor was used to collect
pressure signals from the pinching action of the thumb and index
finger, the LDCZL-SY sensor was used to collect pressure signals
from the pinching action of the thumb and the other four fingers, the
TH4805B sensor was used to collect grip force signals generated by
the full palm grip, the LDCZL-FCA sensor was used to collect
pressure signals generated by the four fingers pressing down, and the
LDN-08A sensor was used to collect torque signals generated by
twisting in a fist posture, which could be converted into torsion force
through the relationship with the force arm. The sampling rate for
each channel of HD-sEMG and the force signal was set to 2 kHz.

FIGURE 2
(A) Five target gestures and force sensor placement; (B) HD-sEMG grids and their placement.
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The experimental protocol required subjects to uniformly
increase their force until 80% MVC and maintain it for 3–5 s
during the execution of the five gestures. The force mode was
‘increasing-plateau’. Each subject repeated the force mode eight
times for each gesture, with a 15 s break between each repetition.
Given the comparatively weaker fine motor control abilities of
children than adults, the experimental protocol for collecting
HD-sEMG-force data from healthy children focused more on the
entire process of applying and releasing force each time, without
strict requirements for force mode or maximum force values. The
samples obtained from HC data after processing form the target
gesture dataset.

2.1.3 CP dataset
A total of 16 children with CP (aged 7.5 ± 3.2 years) were

recruited from the Pediatric Neurorehabilitation Center of the First
Affiliated Hospital of Anhui Medical University. The recruitment
criteria for CP subjects included a clinical diagnosis of congenital
cerebral palsy, age between 4 and 16 years, upper limb motor
dysfunction attributed to cerebral palsy, no obvious cognitive
impairment, and the ability to independently execute target
gestures under the guidance of the experimenter. The clinical
information of the 16 CP subjects is shown in Table 1. Before
the experiment, professional clinical physicians assessed the upper
limb motor function of the recruited CP subjects using the MACS
grading scale and described their upper limb symptoms in detail.
The MACS is mainly used to assess children’s ability to control their
hands for functional activities in daily life and is divided into five
levels from Ⅰ to Ⅴ, with higher levels indicating poorer hand function
(Eliasson et al., 2006). Owing to the loss of control over objects, we
could not collect data from CP of grade Ⅴ. In addition, the upper

limb symptoms of the 16 CP subjects were categorized into four
categories by clinical physicians, namely, Type I to Type IV. Type I
was characterized by good hand joint activity, stiffness in upper or
forearmmuscles, and abnormal muscle tone; Type II had good hand
motor function, high gesture discrimination, and no significant
stiffness in upper limb muscles; Type III had poor joint mobility
in the upper limbs, with symptoms such as finger interlocking, joint
stiffness, and wrist drooping; and Type IV had poor ulnar radial
separation due to underdeveloped hand function.

The experimental protocol for the data collection of children with
CP referred to that of healthy children and was adjusted appropriately
according to the CP subject’s status during the experiment. Some CP
subjects might have stiff finger joints and required assistance with
grasping force sensors (TH4805B). Owing to the basic loss of fine
motor function in the hands, CP4 only repeated each gesture four
times and had not completed data collection for G4 and G5; CP1-CP3
failed to complete data collection for G3 because of equipment
malfunction. All other CP subjects completed the data collection
for eight repetitions of each gesture, with each repetition consisting of
approximately 10,000 sample points (5 s). In addition, a tracking
experiment, in which two data collections with a 6-month interval
(named Exp. 1 and Exp. 2) were conducted on CP6 and CP7.
CP7 failed to complete data collection for G3 in Exp. 1 because of
equipment malfunction. The samples obtained from CP data after
processing form the CP dataset.

2.2 Data processing

To obtain the standard samples for the input of the force
estimation model, some preprocessing steps were performed on

TABLE 1 Clinical information of 16 CP subjects.

Subject Gender Age (year) Type of CP MACS Upper limb symptoms

CP1 F 5.5 right hemiplegia Ⅱ Ⅰ

CP2 F 16.0 spastic quadriplegia Ⅰ Ⅱ

CP3 M 6.5 spastic quadriplegia Ⅰ Ⅱ

CP4 M 10.0 right hemiplegia Ⅳ Ⅲ

CP5 M 5.0 right hemiplegia Ⅳ Ⅲ

CP6 F 8.0 right hemiplegia Ⅲ Ⅰ

CP7 M 7.0 spastic quadriplegia Ⅱ Ⅳ

CP8 M 4.0 spastic quadriplegia Ⅰ Ⅱ

CP9 M 6.0 right hemiplegia Ⅰ Ⅳ

CP10 F 9.0 spastic quadriplegia Ⅲ Ⅳ

CP11 M 6.0 spastic quadriplegia Ⅱ Ⅰ

CP12 M 9.0 mixed type cerebral palsy Ⅲ Ⅲ

CP13 M 8.0 spastic quadriplegia Ⅱ Ⅲ

CP14 M 13.0 dyskinetic Cerebral Palsy Ⅳ Ⅰ

CP15 M 9.0 right hemiplegia Ⅰ Ⅱ

CP16 M 9.3 right hemiplegia Ⅱ Ⅱ
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HD-sEMG and force signals in source dataset, target gesture dataset
and CP dataset.

2.2.1 Normalization and bandpass filtering
Initially, the signal quality of each channel in HD-sEMG was

screened, and the defective channels were identified and replaced.
Owing to the different sampling rates across the three datasets,
bilinear interpolation was subsequently employed to upsample the
data in Dataset A and Dataset B. Finally, the HD-sEMG data were
filtered via a finite impulse response (FIR) bandpass filter (100th-
order FIR filter, Hanning window, 20Hz–500Hz) to eliminate low-
frequency noise and extraneous high-frequency irrelevant
information.

2.2.2 PCA spatial filtering
PCA can reduce the dimensionality of high-dimensional data

through orthogonal decomposition and reconstruction, increasing
interpretability while minimizing information loss, and can be used
to remove random noise (Staudenmann et al., 2006). We adopted
PCA to decompose HD-sEMG into several principal components,
which was the same as the number of channels in HD-sEMG, and
reconstructed the signal after removing the components with the
highest and lowest contribution rates. The reason for this is that we
believe the principal component with the highest contribution rate
contains redundant common information, whereas the principal
component with the lowest contribution rate contains measurement
noise. The reconstructed signal then underwent full-wave
rectification and low-pass filtering (100th-order FIR filter,
Hanning window, cutoff frequency: 5 Hz) to derive HD-sEMG
envelope matrix. Finally, the HD-sEMG envelope matrix was
normalized with the maximum-minimum method as Formula 1.
x represents the envelope sequence of each channel of HD-sEMG,
xmin is the minimum value of x, xmax is the maximum value, and N
is the length.

xi′ � xi − xmin

xmax − xmin
i � 1, 2, . . . , N (1)

2.2.3 NMF-based channel optimization
The NMF-based channel optimization method proposed in our

previous work (Huang et al., 2017) was used to decompose the HD-
sEMG envelope matrix into an activation mode matrix and the
corresponding activation coefficient matrix first. Each row of the
activation coefficient matrix represents the time-varying trend of the
activation level of an activation mode, and the sum of each row
represents the activation intensity of the activation mode. The mode
with the highest activation intensity is called the primary activation
mode, which contributes the most to the force, and the rest are called
the secondary activation mode. In this study, the top quarter channels
corresponding to the primary activation mode were identified as the
optimal channels, and the corresponding sEMG signals were then
weighted, averaged and normalized with the maximum-minimum
method to generate a one-dimensional sEMG envelope.

2.2.4 Sample segmentation
For the one-dimensional sEMG envelope, a sliding window

approach was employed for sample segmentation. A window
length of 500 points and a sliding step size of 500 points were

utilized. For the force signals, smooth filtering was performed first to
remove tiny burrs, then the maximum-minimum method was used
for normalization, and finally the same segmentation method was
used for sample segmentation.

2.3 The establishment of HD-sEMG-force
source network

LSTM has proficiency in processing temporal information
(Hochreiter and Schmidhuber, 1997). After comparative
experiments with a hybrid model of CNN and LSTM, LSTM
was used to construct sEMG-force source network in this study
due to its lower muscle force estimation. RMSE. The details and
results of the comparison are presented in Supplementary Data
Sheet 1. The source network model was constructed on the basis
of the TensorFlow framework. The samples in the source dataset
were randomly divided into a training set, a validation set and a
testing set at a ratio of 8:1:1. To determine the structure and
parameters of the source network, comparative experiments were
conducted on the number of network layers, the number of units
in each layer, and the dropout rates. Specifically, we considered
two-layer and three-layer LSTM networks, with different
combinations of 16–256 units in each layer. For each network
structure, dropout values of 0.4, 0.6, and 0.8 were considered. The
loss function selected for training the network was the RMSE,
which is defined as Formula 2.

RMSE �
������������∑N

i�1 yi − ỹi( )2
N

√
× 100% (2)

2.4 The establishment of gesture-specific
target networks

In practical applications, the choice of transfer learning methods
typically depends on the characteristics of both the source and target
domains, as well as the task requirements (Pan and Yang, 2010). In
the model transfer of neural networks, layer transfer stands out as a
widely employed method capable of hastening the training process
of new models and enhancing their overall performance. In this
study, the target network structure retained the same structure as the
source network, with consistent hyperparameter settings. Using data
from five target gestures of healthy children, we conducted target
network calibration on the well-trained source network via different
transfer learning strategies to obtain target networks suitable for the
target gestures, namely, gesture-specific target networks.

For the combination of one gesture and one transfer strategy, a
leave-one-out cross-validation experiment was conducted for the
calibration of the target network. In each iteration, data from 15 HC
subjects were chosen as the training and validation sets in 9:1,
whereas data from the remaining 1 HC were utilized as the test set,
resulting in a total of 16 experimental results. The average RMSE and
R2 values across these 16 experiments were used to evaluate the
performance of the calibrated target network. Goodness-of-fit R2 is
defined as Formula 3, where x and y are estimated force and
measured force, respectively.
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R2 �
∑n
i�1

xi − �x( ) yi − �y( )�������������������∑n
i�1

xi − �x( )2∑n
i�1

yi − �y( )2√ (3)

Furthermore, to investigate the impact of the data volume used
for fine-tuning the source network on the performance of the target
network, we conducted 7 different training and test ratios on HD-
sEMG-force data from 16 HC subjects. The 7 training test ratios
were 15:1, 14:2, 12:4, 8:8, 4:12, 2:14, and 1:15, with the specified
ratios denoting the proportion of subjects in the training and test
sets. No validation set was set.

2.5 Application of target networks in hand
dysfunction assessment of CP children

Sample data for G1-G5 in CP dataset were separately input into
the target networks to obtain force estimation results. The
application value of sEMG-based muscle force estimation
technology in the hand dysfunction assessment of children with
CP was explored by analyzing differences in HD-sEMG-force
relationship between CP and HC of the same age, between
MACS grades and between upper limb symptom types. In
addition, to explore whether sEMG-based muscle force
estimation technology can be applied in assessing the effect of
rehabilitation training, we analyzed the muscle force estimation
results of the tracking experiments on CP6 and CP7.

3 Results

3.1 Source networks structure and
hyperparameters

This study used the Kruskal–Wallis test, a nonparametric
alternative to one-way ANOVA, to assess differences between
multiple network structures. Following the results, the LSTM
network with different numbers of layers achieved good muscle
force estimation results under different combinations of dropout
and unit numbers, and there was no significant difference in the
RMSE (p > 0.05). As shown in Table 2, the model with a three-layer
LSTM under a unit combination of 256–128–64 and a dropout of

0.4 achieved the smallest RMSE. Therefore, we ultimately determined
that the source network structure comprised 3 layers of LSTM
followed by a dense fully connected layer. Batch normalization
layer and dropout layer were incorporated after each LSTM layer
to expedite convergence andmitigate issues such as gradient explosion
or vanishing during training. The dense fully connected layer
synthesized features and output the estimation force. The batch
size was set to 100, and the initial learning rate was set to 0.001.
To prevent overfitting, an early stop technique was implemented. The
data from the training set were used to train and obtain the well-
trained source network, whose RMSE on the test set was 6.31%.

3.2 Performance testing of target networks
based on different transfer learning
strategies

3.2.1 Selection of transfer learning strategy
Based on the determined structure of the source network, the

following three transfer strategies (TL strategy 1–3) were adopted.
TL strategy 1: Transfer all layer parameters with all layers trainable;
TL strategy 2: Transfer all layer parameters while freezing the first
layer; TL strategy 3: Transfer all layer parameters while freezing the
first two layers. Directly using the well-trained source network
(labeled ‘Source Network’) was used as a comparison method.
Figure 3 shows the experimental results for the five target
gestures under the three transfer learning strategies and using
source network. The results show that fine-tuning the layer
parameters through a transfer learning strategy (TL strategy 1–3)
achieved better muscle force estimation accuracy than directly using
the well-trained source network (Source Network). For the five
target gestures, the mean RMSE values of the target networks
obtained using TL strategy 1-3 were 2.09%, 2.57%, 1.81%, 2.66%
and 1.21% lower than using source network, respectively. These
results indicate that the idea of using transfer learning and HC data
to fine-tune the source network to establish gesture-specific target
networks was effective. Additionally, for G1-G5, significant analysis
was conducted on TL strategies 1-3 and Source Network based on
the results of RMSE and R2, respectively. Based both on RMSE and
R2, repeated-measures ANOVA with the Friedman test indicated no
significant differences between TL strategies 1–3 (P > 0.05). Based
on RMSE, for G1-G4, all TL strategies showed significant differences
when compared to the source network (P < 0.016, according to

TABLE 2 Force estimation results (RMSE%) for the source network with different numbers of layers, combinations of unit numbers and dropout rates.

Combinations of unit numbers Dropout

0.4 0.6 0.8

LSTM-LSTM 256–128 6.45 6.61 6.46

128–64 6.47 6.46 6.72

64–32 6.43 6.55 7.61

LSTM-LSTM-LSTM 256–128–64 6.31 + 6.34 6.45

128–64–32 6.38 6.46 6.73

64–32–16 6.44 6.70 9.87
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Bonferroni corrected significance level of multiple comparisons).
For G5, there was no significant difference between TL strategies and
the source network (p > 0.016). Based on R2, for G1, G2 and G4, all
TL strategies showed significant differences when compared to the
source network (P < 0.016), for G3 and G5, there was no significant
difference between TL strategies and the source network (p > 0.016).
Upon comparison, we determined the optimal transfer strategies for
each gesture as follows: For G1 and G2, TL strategy 3 was selected.
For G3, G4, and G5, TL strategy 1 was selected.

3.2.2 Validation of transfer learning strategy
effectiveness

To mitigate the impact of random sampling on the results, we
employed a 16-fold cross-validation method for each training test
ratio, and the estimation results of the model were averaged across
the 16 iterations. For comparison, the muscle force estimation
results of the five target gestures in each training test ratio are
illustrated in Figure 4. TL refers to TL strategy 3 for G1 and G2 and
TL strategy 1 for G3, G4 and G5. Non-TL refers to using only the
same structure as the source network but not migrating the
parameters of the well-trained source network.

Figure 4 shows that as the number of training samples decreases,
the performance of the target network using the Non-TL strategy
deteriorates, whereas the muscle force estimation errors of each target
network using the TL strategy remain relatively low. The RMSE for all
target networks remained below 10%, even when they were calibrated
with only data from one subject. This performance, which could
achieve superior performance with only a small amount of data
calibration, is highly important for clinical practice. The average
test error of the five gesture-specific target networks obtained
when the data of the 15th subject are used for transfer learning is
the smallest, average RMSE = 8.07 ± 0.30%. Therefore, following the
optimal principle, sEMG-force data from Subject 15 were ultimately
used to train and obtain five gesture-specific target networks named
M1-M5. On the M1-M5 model, the average muscle force estimation
RMSE of the remain 15 subjects were as follows: RMSE = 7.99 ±

2.74 for M1; RMSE = 7.78 ± 3.09 for M2; RMSE = 9.19 ± 2.90 for M3;
RMSE = 7.03 ± 2.81 for M4; RMSE = 8.36 ± 3.49 for M5.

3.3 Analysis of the relationship between HD-
sEMG and muscle force in children with CP
based on target networks

3.3.1 Comparison between HC and CP
A significance analysis was conducted on the age of HC and CP

groups using independent sample t-test, and there was no significant

FIGURE 3
RMSE and R2 obtained by using three transfer strategies and the source network. * represents a significance level of <0.016.

FIGURE 4
Force estimation results with the TL strategy and non-TL strategy
under different training test ratios.
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age difference between the two groups (p > 0.05). To explore whether
there are differences in HD-sEMG‒force relationship between CP and
HC groups, data from CP and HC groups (HC15 was excluded) were
input into M1-M5 respectively to obtain the force estimation RMSE.
For each gesture, the average RMSE value of each subject’s eight
repetitions were recorded, and the average RMSE of all the subjects in
each group was calculated as the RMSE of that group. Mann-Whitney
U test was used to conduct a significance analysis of pairwise
comparisons between CP group and HC group. Figure 5 shows the
muscle force estimation results of five target gestures in the form of box
plots. The results reveal significant differences (p < 0.05 for G3, p <
0.01 for G1-G2 and p < 0.001 for G4-G5) in all five gestures between
the CP and HC groups. Compared with the HC group, the CP group
achieved a higher RMSE with a larger fluctuation range. Specifically,
for G1, the ranges of RMSE in HC and CP groups were 5.26%–10.86%
and 7.80%–15.91%, respectively, with CP group being 2.84% higher
thanHC group; for G2, the ranges of RMSE inHC andCP groups were
5.66%–8.93% and 6.97%–12.68%, respectively, with CP group being
2.53% higher than HC group; for G3, the ranges of RMSE in HC and
CP groups were 6.36%–11.09% and 5.87%–20.63%, respectively, with
CP group being 2.64% higher than HC group; for G4, the ranges of
RMSE in HC and CP groups were 4.50%–10.39% and 8.05%–18.45%,
respectively, with CP group being 3.5% higher than HC group; and for
G5, the ranges of RMSE inHC andCP groups were 5.51%–10.22% and
8.86%–23.33% respectively, with CP group being 4.4% higher than HC

group. In addition, after repeated-measures ANOVA with the
Friedman test, there was no significant difference (p > 0.05) in
RMSE of different gestures in both HC and CP group.

3.3.2 Comparison of different MACS grades
To explore whether the abnormal HD-sEMG-force relationship

can be used to assess the degree of motor impairment, we compared
the muscle force estimation results of CP subjects with different
MACS grades. As shown in Table 1, MACS grades 1, 2, 3, and 4 had
5, 5, 3, and 3 subjects, respectively. Figure 6 shows the muscle force
estimation RMSE of the five target gestures according to the MACS
grading. For each grade, the results presented were the means and
standard deviations of all the subjects.

For gestures G1, G3, and G5, the muscle force estimation RMSE
values were significantly influenced by MACS level. The
Kruskal–Wallis test result was p < 0.05. Dunn’s test was used for
further pairwise testing, and Bonferroni correction was used to adjust
the significance level for multiple comparisons. The Dunn’s test
results between each two MACS grades were p < 0.0083. For
gesture G4, The Kruskal–Wallis test result was p < 0.05, in the
Dunn’s test, expect for no significant difference between MACS Ⅰ
and MACS Ⅱ grades (p > 0.0083), there were significant differences
between every other two grades (p < 0.0083). In summary, higher
MACS levels had higher average RMSE or standard deviations. For
G1, G3, G4, and G5, the mean RMSE of MACS Ⅰ group was in the
range of 8.63%–10.01%, that of MACS Ⅱ group was 9.03%–10.71%,
that of MACS Ⅲ group was 11.00%–16.05%, and that of MACS Ⅳ
group was 13.90%–17.81%. However, for G2, no significant difference
(The Kruskal–Wallis test result was p > 0.05) was observed between
MACS grades. This discrepancy could be attributed to the fact that
G2 required less fine motor function than the other gestures do.
Consequently, CP subjects across different MACS grades
demonstrated relatively stable neuromuscular control ability for G2.

3.3.3 Comparison of different upper
limb symptoms

To explore whether the abnormal HD-sEMG-force relationship
is related to upper limb symptoms, we compared the muscle force
estimation results of CP subjects with different upper limb
symptoms. Figure 7 shows the muscle force estimation results of

FIGURE 5
Muscle force estimation results for G1-G5 in the HC and CP
groups. *** represents a significance level of <0.001, ** represents a
significance level of <0.01, and * represents a significance
level of <0.05.

FIGURE 6
Muscle force estimation results according to MACS grading. * represents a significance level of <0.0083.
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the five target gestures according to upper limb symptoms. As
shown in Table 1, Type I, Type II, Type III and Type IV had 4,
5, 4, and 3 subjects, respectively. The results were presented as the
means and standard deviations of the subjects of each type.

Type I (CP1, CP6, CP11 and CP14) had relatively high RMSE
(10.92%–14.64% on average) with large standard deviations (1.61%–
5.32%) for all gestures, especially for G1, G3 and G5. We believe that

this was related to upper limb symptoms characterized by muscle
stiffness and abnormal muscle tone. Taking CP1 as an example,
Figures 8A, B compares its HD-sEMG heatmap to that of HC2.
CP1 revealed abnormal activation in the upper arm muscles (biceps
and triceps). The muscle activation pattern of HC2 was predominantly
distributed in the forearm flexor muscles, indicating their pivotal role
in executing this gesture. In contrast, the muscle activation pattern of

FIGURE 7
Muscle force estimation results according to upper limb symptoms. (A) Type I; (B) Type II; (C) Type III; (D) Type IV.

FIGURE 8
(A)HD-sEMG heatmaps for G1 of HC2; (B)HD-sEMG heatmaps for G1 of CP1; (C) An example of an “M”-shaped tremor; (D)Muscle force estimation
example for CP14 under G3.
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CP1 was primarily concentrated in the upper arm area, which might
lead to a misalignment between its HD-sEMG and muscle force.
Additionally, within this type, CP14 presented with dyskinetic cerebral
palsy. During the execution of high-intensity gestures such as G3 and
G5, CP14 manifested significant involuntary movements, resulting in
pronounced fluctuations in force output. As illustrated in Figure 8D,
the muscle force curve rapidly changes, thereby diminishing the
tracking performance of the muscle force estimation mode.

Type Ⅱ subjects exhibited superior hand motor function
compared to the other three types. As shown in Figure 7, Type II
(CP2, CP3, CP8, CP15 and CP16) had relatively low RMSE (8.62%–

10.26% on average) for all gestures, with small standard deviations
(0.36%–1.54%), which were closest to the level of healthy children.
However, owing to inadequate control over force, Type II subjects
often experienced “M”-shaped tremors (as shown in Figure 8C)
when performing gestures, posing a challenge for accurately tracking
force output. Accordingly, CP2, CP8, and CP15 displayed elevated
RMSE, specifically in G2.

For Type III (CP4, CP5, CP12, and CP13), except for G2
(average RMSE of 10.55%), the other four gestures had relatively
high RMSE (11.41%–14.45%) and large standard deviations (2.76%–

3.84%), largely attributed to symptoms such as wrist drooping and
finger interlocking. For G1, G3, G4 and G5, the inward clasp of the
fingers caused the subject’s thumb to continue bending, hindering
the complete exerting force process. The suspension of the wrist
hindered the subject from fully grasping and applying force,
necessitating compensatory activation of the entire upper limb
muscles. The stiffness of the wrist required the help of the upper
arm to enable the subject to achieve a grasping posture. For G2, the
involvement of the other four fingers mitigated the impact of the
thumb inward clasp, resulting in slightly improved force
estimation results.

Type IV subjects (CP7, CP9, and CP10) exhibited poor ulnar
radial separation, characterized by ulnar lateral movement
accompanied by radial hand movements. As shown in Figure 7,
Type IV had (6.97%–11.94%) RMSE with small standard deviations
(0.11%–2.53%), and G2 and G3 were significantly lower than those
of the other three gestures. During the execution of G1 and G5,
simultaneous bending of the other three fingers occurs, which in
turn leads to an increase in the force estimation error. However, the
impact on G2 and G3 was relatively limited.

3.3.4 Comparison before and after
rehabilitation training

The results of the tracking experiments on CP6 andCP7 are shown
in Figure 9. The RMSE of force estimation for CP6 was relatively large
(15.02%–29.24%) in Exp. 1 but decreased by approximately 1.88%–
14.37% in Exp. 2. The reason is that at Exp. 1, CP6 had just started
rehabilitation training for approximately 4 months and had severe
hand dysfunction and poor gesture completion. After 6 months of
continuous and effective rehabilitation training, the symptoms of hand
dysfunction in CP6 patients were alleviated, and abnormal hand
posture was reduced. Therefore, good force estimation results were
obtained in Exp. 2. In contrast, CP7 received long-term scientific
rehabilitation training after birth, and his hand movement function
was in a stable state during Exp. 1 and Exp. 2, so the force estimation
results of the two experiments did not change much.

4 Discussion

With the goal of applying sEMG-based muscle force estimation
technology to assess motor dysfunction in CP children in the clinic,
this work consists of three main parts, namely,: establishing a HD-
sEMG-force source network, constructing HD-sEMG-force target
networks for five rehabilitation gestures, and assessing the hand
dysfunction of children with CP. In this section, we discuss the
progressiveness, theoretical value and clinical application value of
the research results obtained in this study.

Firstly, this study established a HD-sEMG-force source network
using three adult datasets covering different force modes and different
subjects, as well as an LSTMmodel. As mentioned in the introduction,
sEMG-based muscle force estimation technology is currently a
research hotspot in the field of biomedical engineering. Various
effective sEMG-based muscle force estimation methods have been
proposed, and their performances were usually tested in subject-related
way or subject-independent way depending on whether the training
and testing data come from the same subjects. Table 3 summarizes
recent researches in this field, where “No.Dataset” represents the
number of datasets used, “Y” and “N” represent respectively the
work was carried out in subject-independent way or in subject-
related way. Under subject-related way, Wahid et al. (2024)
employed a combined CNN and LSTM model to achieve a

FIGURE 9
The force estimation results of Exp.1 and Exp.2. (A) CP6; (B) CP7.
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RMSE = 2.3% in the triangular force mode task (Wahid et al., 2024).
Similarly, Jiang et al. (2023) developed a force estimation model using
deep forests for the triangular mode force task (Jiang et al., 2023).
Notably, they utilized two datasets collected from the same subjects on
different days, with one dataset used for training and the other for
testing, resulting in a RMSE of 8.0% ± 2.3%. Our model achieved
RMSE = 6.31% under subject-related way. In comparison to Wahid’s
work, our model has the advantage of being validated across multiple
force mode tasks using data from different datasets and more subjects,
demonstrating superior generalization capability. Compared with
Jiang’s model, our network is applicable to a wider range of force
modes and offers higher accuracy. Under subject-independent way,
Hajian et al. (2021) presented the “CNN-FLF”model, which is a CNN
model with feature level fusion (Hajian et al., 2021). In the rectangular
force mode task, their model achieved an accuracy of NMSE = 1.60 ±
3.69%, corresponding to a RMSE of 12.6% ± 19.21%. Xu et al. (2018)
utilized a CNN-LSTM hybrid model, referred to as “C-LSTM,” to
estimate force in the “increasing-plateau” force mode task, achieving
RMSE = 8.67% (Xu et al., 2018). In contrast, our model achieved
RMSE = 9.64 ± 1.47% under subject-independent way, which is better
than Hajian’s results but slightly lower than those of Xu’s. One of the
reasons is that our model was trained on adult data, but the test results
obtained on children’s data, leading to increased error due to
differences in subject population. In addition, most of these
previous works focused on single force mode, only Simon et al.
(2024) used time-varying force mode, but unfortunately their
accuracy was not satisfactory (Simon et al., 2024). In general, the
strength of our model lies in its applicability to multiple force modes
data from three datasets, enhancing its generalization. Meanwhile, the
accuracy of our model is considered satisfactory.

Secondly, this study established five gesture-specific target
networks by calibrating the parameters of the well-trained source
network using transfer learning technique and the sEMG-force data of
five target gestures from 16 healthy children. Compared with directly
using the well-trained source network, the gesture-specific target
networks reduced the RMSE of force estimation of the five target
gestures by 2.14%, 2.70%, 1.91%, 2.71%, and 1.24%, confirming the
effectiveness of using the transfer learning technique to improve
muscle force estimation accuracy. Compared with directly using

gesture data from healthy children for force estimation network
training, the advantage of using a transfer learning technique is that
it only requires a small amount of data to obtain satisfactory force
estimation accuracy. When transfer learning strategies were adopted,
an average RMSE of less than 10%was obtainedwhen only one healthy
child’s data were used as the training set. However, when only healthy
children’s data were used to train the source network structure, the
performance of the force estimation model was closely related to the
training test ratio. Relatively satisfactory performance could only be
achieved when the training test ratio was 12:4. Clinical applications
have high requirements for the accuracy of muscle estimation models,
however, there are significant difficulties in collecting a large amount of
healthy subject data for model training. The model calibration scheme
based on the transfer learning strategy proposed in this study greatly
reduces the training data volume requirement, providing a feasible
solution for promoting the application of this technology. Hajian et al.
also attempted to extend the force estimationmodel to new users using
transfer learning techniques (Hajian et al., 2024). Their research results
revealed that under isotonic, isokinetic, and dynamic conditions,
compared with the leave-one-subject-out (LOSO) case, the transfer
learning technique increased the R2 by 60.81%, 190.53%, and 199.79%,
respectively. Compared with the intra subject case, the transfer learning
technique increased R2 by 13.4%, 36.88%, and 45.51%, respectively.
Their research also confirms the advantages of using transfer learning
to alleviate the training burden on new users.

Finally, this paper explored the feasibility of applying the proposed
HD-sEMG-based muscle force estimation scheme to CP hand
dysfunction assessment. The research results first confirmed that
the target networks can be used for rough assessment of the force
level during gesture execution in CP children in clinical practice, with
an error of less than 20%. Moreover, the CP group was confirmed to
have an abnormal HD-sEMG-force relationship compared to that of
the same-age HC group, providing a basis for assessing the degree of
CP hand dysfunction. By comparing the muscle force estimation
results of CP subjects with different MACS grades, we found that
the muscle force estimation error was significantly affected by the
MACS grading. In summary, the higher the MACS grade is, the higher
the average RMSE or standard deviation. However, not all gestures
have a good correlation between the degree of deviation of the HD-

TABLE 3 Summary of Recent Research on sEMG-Based Force Estimation** “C-LSTM” is a combination model of Convolutional Neural Network (CNN) and
LSTM, “CNN-FLF” is a CNN model with feature level fusion, and “TCN” is an abbreviation for Temporal Convolutional Network.

Year Author Subject Model Force mode No.Dataset Subject-
independent

Accuracy

2018 Xu et al. 8M C-LSTM increasing-plateau 1 Y RMSE =
8.67 ± 1.14%

2021 Hajian et al. 5F,8M CNN-FLF rectangle 1 Y NMSE =
1.60 ± 3.69%

2023 Jiang et al. 8F,12M Deep
Forests

triangle 2 N RMSE = 8.0 ± 2.3%

2024 Simon et al. 50 TCN time-varying 1 Y RMSE =
29.9 ± 13.1%

2024 Wahid et al. 5M CNN-LSTM triangle 1 N RMSE = 2.3%

Our work 3F,29M LSTM increasing-plateau, sine, rectangle,
random

3 N RMSE = 6.31%

Y RMSE =
9.64 ± 1.47%
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sEMG-force relationship and MACS grading. When designing target
gestures for assessing hand dysfunction, it is necessary to avoid gestures
such as G2, which do not involve fine motor skills. Moreover, the
results demonstrated that muscle stiffness and abnormal muscle tone,
“M”-shaped tremors, wrist drooping and finger interlocking, and poor
ulnar radial separation can cause abnormal HD-sEMG-force
relationship in CP children. Therefore, the degree to which the
HD-sEMG-force relationship deviates from that of the healthy
population can be used to assess these clinical symptoms. To
achieve this, it is also necessary to select suitable gestures. For
example, when symptoms of ulnar radial nonseparation are
assessed, gestures that are less affected by this symptom, such as
G2 and G3, should be avoided; when symptoms of wrist drooping and
finger interlocking are assessed, G2 should be avoided. Finally, the
proposed scheme can also be used to track and assess the rehabilitation
process of CP patients, and the target networks can be used to assess
the stability of hand function in children with CP. The results of
CP7 indicated that once the patient establishes their own force
generation mode, the effect of rehabilitation training decreases.

5 Conclusion

The main contribution of this study is to propose a novel HD-
sEMG-force estimation framework and explore the feasibility of
applying the proposed framework to the assessment of motor
dysfunction in CP children in the clinic. Specifically, a high-
precision source network model with high generalizability was
established. On this basis, gesture-specific target networks were
established using transfer learning techniques and data from
healthy children, and their clinical value for assessing hand
dysfunction in CP children was verified. This study has laid a
foundation for promoting the application of sEMG-based muscle
force estimation technology in clinical practice and can provide a
quantifiable means for assessing motor dysfunction. The primary
limitation of this study lies in the labor-intensive preprocessing of
sEMG signals, which impedes its feasibility for real-time application in
clinical settings. Furthermore, the need to collect sEMG-force data
from healthy children to fine-tune the source network presents
additional challenges for clinical implementation. Future research
will focus on the development of advanced neural networks capable of
extracting both spatial and temporal features to replace existing
channel optimization algorithms. Additionally, expanding the
training to include a broader range of datasets can enhance the
model’s generalizability, potentially eliminating the need for fine-
tuning the source network.
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