
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
MINI REVIEW article
Front. Bioeng. Biotechnol.
Sec. Nanobiotechnology
Volume 13 - 2025 | doi: 10.3389/fbioe.2025.1563701
This article is part of the Research Topic Advances in Nanomedicine: Revolutionizing Healthcare with Nanoscale Innovations View all 4 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Mitochondria play a significant role in several cellular activities and their function in health and disease has become an important area of research. Since the brain is a high-energy-demanding organ, it is particularly vulnerable to mitochondrial dysfunction. This has been implicated in several brain disorders including neurodegenerative, psychiatric and neurological disorders e.g. Parkinson's disease and schizophrenia. Significant efforts are underway to develop mitochondria-targeting pharmaceutical interventions. However, the complex mitochondrial membrane network restricts the entry of therapeutic compounds into the mitochondrial matrix. Nanoparticles (NPs) present a novel solution to this limitation, while also increasing the stability of the therapeutic moieties and improving their bioavailability. This article provides a detailed overview of studies that have investigated the treatment of mitochondrial dysfunction in brain disorders using either targeted or non-targeted NPs as drug delivery systems. All the NPs showed improved mitochondrial functioning including a reduction in reactive oxygen species (ROS) production, an improvement in overall mitochondrial respiration and a reversal of toxin-induced mitochondrial damage. However, the mitochondrial-targeted NPs showed an advantage over the non-targeted NPs as they were able to improve or rescue mitochondrial dynamics and biogenesis, and they required a lower concentration of the in vivo therapeutic dosage of the drug load to show an effect. Consequently, mitochondriatargeted NPs are a promising therapeutic approach. Future studies should exploit advances in nanotechnology, neuroscience and chemistry to design NPs that can cross the blood-brain barrier and selectively target dysfunctional mitochondria, to improve treatment outcomes.
Keywords: Brain Disorders, Mitochondrial dysfunction, Nanomedicine, Mitochondria-targetednanoparticles, therapy
Received: 20 Jan 2025; Accepted: 24 Feb 2025.
Copyright: © 2025 Buck, Maarman, Dube and Bardien. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Soraya Bardien, Stellenbosch University, Stellenbosch, South Africa
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.