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The management of bone defects, particularly in aging populations, remains a
major clinical challenge. The immune microenvironment plays an important role
in the repair of bone defects and a favorable immune environment can effectively
promote the repair of bone defects. However, aging is closely associated with
chronic low-grade systemic inflammation, which adversely affects bone healing.
Persistent low-grade systemic inflammation critically regulates bone repair
through all stages. This review explores the potential of 3D-printed
bioceramic scaffolds in bone defect repair, focusing on their capacity to
modulate the immune microenvironment and counteract the effects of bone
aging. The scaffolds not only provide structural support for bone regeneration but
also serve as effective carriers for anti-osteoporosis drugs, offering a novel
therapeutic strategy for treating osteoporotic bone defects. By regulating
inflammation and improving the immune response, 3D-printed bioceramic
scaffolds may significantly enhance bone repair, particularly in the context of
age-related bone degeneration. This approach underscores the potential of
advanced biomaterials in addressing the dual challenges of bone aging and
immune dysregulation, offering promising avenues for the development of
effective treatments for bone defects in the elderly. We hope the concepts
discussed in this review could offer novel therapeutic strategies for bone
defect repair, and suggest promising avenues for the future development and
optimization of bioceramic scaffolds.
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1 Introduction

Bone defects are common tissue injuries that can result from infections, trauma, or
tumors (Alonso-Fernández et al., 2023). While bone tissue has some self-healing capacity,
critical-sized bone defects, especially in aging people or when the damage surpasses the
bone’s natural regenerative ability, are often challenging to heal spontaneously (Tam et al.,
2021; Subbiah et al., 2023). The implantation of bone substitute materials is one of the
primary methods for treating critical-size bone defects. This includes autografts, allografts,
xenografts, and the implantation of tissue engineering scaffolds (Zou et al., 2021).
Autografting is regarded as the gold standard for treating critical-size bone defects;
however, its limitations include high donor-site morbidity and limited availability
(Subbiah et al., 2023). Allografts and xenografts offer alternative options for bone defect
repair, but they are limited by immune response complications (Wang Y. et al., 2024). With
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advancements in 3D printing technology, bone tissue engineering
scaffolds enhance surgical precision and safety, while also enabling
personalized bone repair. In recent years, 3D-printed scaffolds made
from metals, ceramics, and polymers have shown promising
preclinical results, with some already being used in clinical
settings (Zhao et al., 2020; Zhang J. et al., 2022; Hu et al., 2023).
Metal scaffolds are known for their excellent mechanical properties
and corrosion resistance, but they lack osseointegration and
bioactivity (Lin et al., 2023). In contrast, ceramic scaffolds are
more widely used for bone defect repair due to their composition
being similar to human bone, providing excellent biocompatibility
and good biodegradability (Blázquez-Carmona et al., 2023).
Scaffolds made from materials like hydroxyapatite (HA) and
tricalcium phosphate (TCP) offer strong osteogenic potential and
high biocompatibility. Furthermore, bioactive glass (BG) scaffolds
demonstrate high bioactivity and rapid degradation. The properties
of these scaffolds can also be improved through various processing
techniques, such as phase separation, freeze-drying, solvent casting,
gas foaming, electrospinning, and material blending (Gao et al.,
2020; Li et al., 2020; Liu et al., 2021; Biscaia et al., 2022; Tommasino
et al., 2023; Liu H. et al., 2024).

Bone repair is a complex process that is orchestrated by dynamic
interactions between immune cells and bone tissue (Peng et al., 2023;
Dai et al., 2024; Liu D. et al., 2024). The immune system plays an
essential role in both the physiological and pathological processes of
bone tissue, and the modulation of the immune microenvironment
is increasingly becoming a favorable target for bone, cartilage and
soft tissue regeneration (Xiong et al., 2022; Mi et al., 2024). Bone and
the immune system not only share a common microenvironment
but also exchange various cytokines and signaling molecules,
highlighting the critical role of immune cells in the bone defect
repair process (Tsukasaki and Takayanagi, 2019). In
postmenopausal women or injury patients, the altered immune
status can directly or indirectly result in bone destruction.
Polymorphonuclear neutrophils (PMNs) rapidly infiltrate the
defect site and release cytokines (e.g., IL-1, TNF-α) to recruit
macrophages (Fischer and Haffner-Luntzer, 2022). The
differential effects of macrophages on osteoblasts depend on their
polarization curves and secreted paracrine factors. It has been shown
that various immune cells interact with osteoblasts and osteoclasts
either through direct cell-to-cell contact or, more likely, through
paracrine mechanisms, in which TNFα increases osteoclast
apoptosis and indirectly stimulates osteoclastogenesis through
NF-κB ligand receptor activator of kinase (RANKL) produced by
B cells (Fischer and Haffner-Luntzer, 2022; Kushioka et al., 2023).
Notably, bone aging itself is accompanied by changes in the immune
microenvironment and it leads to deteriorating microstructure and
function, increasing the risk of osteoporosis and bone defects (Lei
et al., 2024; Cui et al., 2024). Aging disrupts bone-immune crosstalk,
exacerbating repair challenges and impairing transition to the
M2 phenotype. Chronic low-grade inflammation perpetuates
M1 polarization and oxidative stress (Mi et al., 2024). Senescent
mesenchymal stem cells (MSCs) exhibit diminished proliferative
capacity and secrete senescence-associated secretory phenotype
(SASP) factors, further inhibiting regeneration (Tong et al., 2024).

3D-printed bioceramic scaffolds can promote bone regeneration
by regulating immune microenvironment, cellular senescence and
serving as carriers for anti-osteoporosis drugs (Graney et al., 2016).

By synergistically inducing bone regeneration and inhibiting bone
resorption, these scaffolds offer a promising approach for treating
bone defects in osteoporotic patients. This review explores recent
advances in the use of 3D-printed bioceramic scaffolds to promote
the repair of bone defects by influencing various factors, including
their impact on the osteogenic immune microenvironment and the
repair of osteoporotic bone defects in the context of bone aging.
Diverging from conventional fabrication-focused analyses, we
establish a bone immunology-aging nexus, highlighting 3D
printing’s unique spatiotemporal precision in coordinating
immune-osteogenic repair for aged bone defects. It provides an
in-depth analysis of the mechanisms involved and offers directions
for future research and improvement of 3D-printed bioceramic
scaffolds for bone regeneration following bone defect repair.

2 Immune microenvironment during
bone defect repair and bone aging

Bone healing progresses through four stages: inflammation,
fibrocartilaginous callus formation, bony callus development, and
remodeling (Ren et al., 2022). Immune cells primarily influence
bone defect repair by affecting the processes of acute and chronic
inflammation. Acute inflammation occurs in response to these
external stimuli, serving as a crucial signal for the recruitment of
immune cells to the injury site. This inflammatory response activates
tissue-resident macrophages as well as other local immune cells,
initiating an inflammatory cascade that is critical for setting the stage
for subsequent tissue repair.

As primary responders to injury sites, polymorphonuclear
neutrophils (PMNs) release chemoattractants and cytokines, such
as interleukin (IL)-1, IL-6, tumor necrosis factor-α (TNF-α), and
macrophage colony-stimulating factor (M-CSF) prior to apoptosis
(Granofszky et al., 2018; Gardizani et al., 2019; Zhang et al., 2021).
These molecules recruit and activate macrophages, driving chronic
inflammatory responses. Macrophages, in particular, play a pivotal
role in bone repair and regeneration. They are broadly classified into
two functional subtypes: pro-inflammatory M1 macrophages and
anti-inflammatory M2 macrophages.

M1 macrophages play a major role in the early stages of bone
healing. These cells secrete pro-inflammatory factors that promote
the breakdown and resorption of damaged bone tissue. While this
pro-inflammatory response is essential for initiating repair,
prolonged inflammation can impede healing (Holzer-Geissler
et al., 2022; Kuan et al., 2025). M2 macrophages, which appear
during the later stages of bone repair, are characterized by their anti-
inflammatory properties because they secrete IL-10 and
transforming growth factor (TGF) (Lv et al., 2017; Lu et al.,
2024). With the increase in anti-inflammatory cytokines,
mesenchymal stem cells (MSCs) begin to differentiate into
osteoblasts, aiding in the regeneration of bone tissue, while
osteoclasts work to degrade the damaged bone tissue. Therefore,
one of the key factors in enhancing bone regeneration is promoting
the transition from M1 to M2 macrophages. This shift not only
reduces inflammation but also fosters an environment conducive to
bone formation and vascularization, both of which are critical for
long-term healing. Figure 1A summarizes the acute inflammatory
phase of the bone defect healing process.
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The metabolic balance of bone tissue is increasingly disrupted,
leading to a decline in bone density and an increased risk of fragility,
a phenomenon known as bone aging (Kruger andWolber, 2016). As
individuals age, factors such as telomere shortening, oxidative stress,
DNA damage, and epigenetic changes contribute to cellular
senescence, reducing the regenerative and repair capabilities of
cells (Wang et al., 2022; Kwiatkowska et al., 2023; Harley et al.,
2024; Zhu et al., 2024). Senescence is associated with a phenomenon
known as “inflammation,” which describes the occurrence of
persistent, low-grade systemic inflammation (Li X. et al., 2023).
Inflammation resulting from the failure of M1 to M2 polarization
increases osteoclast activity, decreases osteoblast formation, and
exacerbates bone resorption, ultimately impairing bone healing
(Mi et al., 2022; Giraldo-Osorno et al., 2024). Additionally, the
number and proliferative capacity of MSCs decline, further
aggravating the imbalance between bone formation and
resorption, thereby prolonging bone defect healing (Peng et al.,
2022). Bone aging serves as a foundation for osteoporosis and other
age-related bone diseases. Figure 1B summarizes the acute
inflammatory phase of the bone defect healing process
subsequent to senescence.

3 3D-printed bioceramic scaffolds in
immune regulation

In the treatment of bone defects, bioceramic scaffolds serve as
the structural foundation for tissue regeneration. However, since
these scaffolds are recognized by the body as foreign objects, they
can trigger an immune rejection response. The nature and intensity
of the immune reaction elicited by the scaffold significantly impact
the overall success of the treatment. An uncontrolled or excessive
immune response could result in chronic inflammation, impaired
healing, or even scaffold rejection, while a well-modulated immune
response can support tissue regeneration and integration (Wu et al.,
2022; Sun et al., 2023). Thus, the scaffold’s ability to regulate the
immune microenvironment is paramount to achieving favorable
therapeutic outcomes. Changing scaffold structure and bioactive
factor modification are crucial approaches for reducing foreign body
reactions, modulating the immune microenvironment, and
promoting bone regeneration (Figure 2). Table 1 summarizes
recent research progress on the use of 3D-printed bioceramic
scaffolds to promote bone defect repair by modulating the
immune microenvironment.

FIGURE 1
Differences in acute inflammatory phase of bone defect healing between youth and aging. (A) The acute inflammatory phase of the bone healing
process. (B) The acute inflammatory phase of the bone healing process subsequent to senescence. IL-1: interleukin 1, IL-6: interleukin 6, IL-10: interleukin
10, CCL13: chemokine ligand 13, TNF-α: tumor necrosis factor-α, M-CSF: macrophage colony-stimulating factor, TGF-β: transforming growth factor-β,
MSCs: mesenchymal stem cells.
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3.1 Impact of scaffold structure on immune
regulation

Scaffold structural features directly regulate immune cell
interactions. Advancements in 3D printing technology have
opened up new possibilities for precisely engineering the
structure of bioceramic scaffolds to modulate immune responses.

Ordered scaffolds not only enhance immune cell adhesion and
migration but also optimize the immune response by modulating
macrophage behavior. Xuan et al. (Xuan et al., 2023) compared
ordered Bredigite (BRT-O) scaffolds with random BRT (BRT-R)
scaffolds and β-TCP scaffolds and found that BRT-O scaffold could
enhance the proliferation, migration, and osteogenic differentiation
of bone marrow stromal cells (BMSCs) by promoting
M2 macrophage polarization and creating an anti-inflammatory
healing environment. This was evidenced by the upregulation of
osteogenic markers such as BMP2 and RUNX2, resulting in
significantly improved bone regeneration in a rat critical-sized
bone defect model. Building on these findings, the authors
further investigated the application of the BRT scaffold’s ordered
structure in bone graft models (Xuan et al., 2024). The increased

expression of anti-inflammatory markers such as CD206 and IL-10
further confirmed that the BRT-O scaffold promotes BMSCs’
osteogenic differentiation and significantly enhances bone
regeneration in a rabbit calvarial graft model by inducing
M2 macrophage polarization. These two studies highlights the
potential of BRT scaffolds in clinical practice and further
underscores the critical role of ordered microstructures in
immunomodulation. Additionally, Yu et al. (2023) designed a
novel gear-inspired 3D-printed bioceramic scaffold with well-
ordered surface microstructure. Research indicates that this
scaffold can promote M2 macrophage polarization, reduce
inflammation, and stimulate the osteogenic differentiation
of BMSCs.

Apart from the ordered microstructure, altering the pore size
and porosity of the scaffold can also modulate immune responses.
The size of pores within the scaffold can significantly impact
immune cell behavior, particularly in the modulation of
macrophage activity, which is essential for tissue healing and
immune regulation. Li et al. (2022) compared polycaprolactone/
polyethylene glycol/hydroxyapatite (PCL/PEG/HA) scaffolds with
different pore sizes and found that P600 significantly reduced

FIGURE 2
The role of 3D-printed bioceramic scaffolds in regulating immunemicroenvironment and bone regeneration through structural and bioactive factor
modifications. M1: M1 macrophages, M2: M2 macrophages, MSCs: mesenchymal stem cells, ECM: extracellular matrix, IFN-γ: interferon-γ, S1P:
sphingosine-1-phosphate, Dex: dexamethasone, PDA: polydopamine.
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TABLE 1 The application of 3D-printed bioceramic scaffolds in regulating the immune microenvironment for the repair of bone defects.

Year Team Scaffold/composition The roles in immune microenvironment and
bone regeneration

2018 Li et al. PLA/PEG/nHA/Dex Dex in scaffold suppresses IL-6 and iNOS and promotes
M2 macrophage polarization, enhancing bone regeneration.

2018 Li et al. CaSiO3/β-TCP/IFN-γ The scaffold releases IFN-γ and Si ions to sequentially polarize
macrophages, promoting angiogenesis.

2019 Cao et al. β-TCP/S1P The scaffold regulates macrophage response, inhibits inflammation, and
promotes osteogenesis.

2019 Lin et al. Cu/BGC The Cu2+ ions released from the scaffold promote macrophage
polarization, activate the HIF signaling pathway and inhibit the
expression of TNF-α and IL-18.

2019 Li et al. DOPA/BC The scaffold enhances the paracrine functions of Ad-MSCs, promoting
immunomodulation and angiogenesis.

2019 Mansour et al. DCP/ECM Bone extracts coating promotes anti-inflammatory M2 macrophage
polarization and enhancing osteogenesis.

2020 Ji et al. PCL/nHA/HPCH/MSCs The scaffold promotes M2 macrophage polarization, enhances
angiogenesis and osteoinduction, and facilitates bone regeneration.

2020 Zhai et al. LCS The scaffold promotes macrophage polarization, inhibits TNF-α, IL-6,
and IL-1β, and promotes cartilage repair.

2021 Yang et al. SrFeHA/ PCL The scaffold promotes the transition of RAW264.7 macrophages and
supports the proliferation and differentiation of MC3T3 osteoblasts and
HUVECs.

2022 Li et al. PCL/PEG/HA The scaffold with 600 μ pore size significantly reduces the FBR and
induced more M2 macrophage infiltration, vascular ingrowth, and new
bone formation compared to smaller pore sizes.

2022 Pan et al. Sr2ZnSi2O7 The scaffold promotes macrophage polarization and osteogenesis.

2022 Qi et al. Mg/TCP The scaffold promotes the polarization of RAW264.7 and osteogenesis.

2022 Zhang et al. Ca7Si2P2O16/MSCs/Macrophages Tai Chi pattern with a 2:1 ratio of MSCs to macrophages is effective in
activating anti-inflammatory M2 macrophages and signaling pathways
such as BMP-Smad, OSM, and Wnt/β-catenin in MSCs.

2023 Bose et al. TCP/HA/Garlic extract The scaffold activates signaling pathways such as BMP-Smad,
Oncostatin M, and Wnt/β-catenin in MSCs and promotes osteogenesis.

2023 Deng et al. SrZn2(PO4)2 The scaffold modulates macrophage polarization, promotes IL-1β, TNF-
α, and iNOS, inhibits TGF-β1, IL-1Ra, and CD206, and promotes
osteogenesis.

2023 Li et al. PCL/HA The scaffold promotes macrophage polarization and enhances
osteogenesis through the Wnt/β-catenin pathway.

2023 Xuan et al. SrZn2(PO4)2 The scaffold promotes the polarization of macrophages and expression
of osteogenesis-related markers.

2023 Yu et al. β-TCP The scaffold promotes the polarization of macrophages, influences the
secretion of BMP-2, TGF-β, and VEGF and promotes osteogenesis.

2024 Xiong et al. HA The scaffold promotes the polarization of macrophages, upregulates the
production of IFN-β and HIF-1α and enhances bone regeneration.

2024 Xuan et al. Ca7MgSi4O16 The scaffold pomotes bone regeneration and CD68 + CD206 +
M2 macrophage polarization

2024 Geng et al. Cu/BGC The scaffold upregulates M2 surface marker Arg-1, inhibits IL-1β and
IL-6, promotes IL-4, and enhances osteogenesis.

PLA, poly Lactic Acid; PEG, polyethylene Glycol, nHA, nano hydroxyapatite; Dex, dexamethasone; IL, interleukin; iNOS, inducible nitric oxide synthase; β-TCP, β-tricalcium phosphate; IFN-γ,
interferon-γ; S1P, Sphingosine 1-phosphate; TNF-α, Tumor necrosis factor-α; BG, bioactive glass ceramic; DOPA, polydopamine; BC, bioceramic; Ad-MSCs, adipose-derived mesenchymal

stem cells; DCP, dicalcium phosphate; ECM, extracellular matrix; PCL, polycaprolactone; HPCH, hydroxypropyl chitin hydrogel; MSCs, mesenchymal stem cells; LCS, lithium calcium silicate,

TGF-β, transforming growth factor-β; BMP, bone morphogenetic protein; VEGF, vascular endothelial growth factor.
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foreign body reactions, induced M2 macrophage infiltration, and
promoted vascularization and bone regeneration. Also, macrophage
polarization may be related to the MyD88 protein. In another study,
Xiong et al. (2024) fabricated three different pore-sized
hydroxyapatite (HA) bioceramic scaffolds to investigate the
systematic effects of pore size on the immune microenvironment.
The results indicate that the 600 μm pore-sized scaffold most
effectively promoted macrophage M2 polarization and improved
the inflammatory response by upregulating interferon-β and HIF-1α
production.

Another important strategy for regulating the immune response
is to alter the hydrophilicity of the scaffold surface. Compared to
hydrophilicity, the hydrophobicity of the scaffold surface reduces
cell adhesion and bioactivity, significantly impacting the osteogenic
capacity of bioceramic scaffolds (Meng et al., 2022). Li et al. (2023a)
enhanced the hydrophilicity of PCL/HA scaffolds through alkali
treatment and found that the scaffold significantly reduced the
foreign body response and promoted M2 macrophage
polarization. In addition, it was found that the regulation of
osteogenesis by hydrophilic surface scaffolds may be related to
the Wnt/β-catenin signaling pathway.

The above research results show that modifying the structure of
3D-printed bioceramic scaffolds can guide macrophage polarization
toward an anti-inflammatory phenotype and enhance the activity of
key cell types such as BMSCs, thereby actively facilitating tissue
repair and regeneration. However, the balance between the
bioactivity and mechanical properties of the scaffold will need to
be further optimized in the future.

3.2 Impact of scaffold bioactive factor
modification on immune regulation

In addition to the structural characteristics of 3D-printed
bioceramic scaffolds, scaffold bioactive factor modification also
plays a significant role in modulating the immune response
during bone regeneration.

3.2.1 Ion doping
Bioactive bioceramics interact with the cellular environment

via surface contact and ion release into the tissue
microenvironment. The various ions released from the
scaffold, such as magnesium (Mg2+), zinc (Zn2+), and copper
(Cu2+), have been shown to modulate the immune
microenvironment, particularly by influencing macrophage
polarization and promoting bone regeneration (Yang J. et al.,
2023; Li et al., 2024; Sun et al., 2024).

Mg2+ is a key component in bone tissue, contributing to bone
metabolism and maintaining homeostasis (Qiao et al., 2021). A
deficiency in Mg2+ can lead to insufficient bone formation and
metabolic disturbances in bone. Therefore, the incorporation of
Mg2+ into bioceramic scaffolds to promote osteogenesis and regulate
the immune microenvironment has garnered widespread attention.
For instance, Qi et al. (2022) developed a 3D-printed magnesium-
doped β-TCP scaffold for bone regeneration. Varying MgO contents
(0%, 1%, 3%, 5%) were tested, with 3% Mg-TCP showing the best
biological performance. In vitro experiments have demonstrated
that 3 Mg-TCP enhanced the osteogenic and angiogenic

differentiation of BMSCs and endothelial progenitor cells. It also
promoted M2 macrophage polarization, supporting tissue
regeneration. In vivo experiments have demonstrated that 3 Mg-
TCP demonstrated superior bone repair capabilities in a rabbit
femoral defect model. Cu2+ is another important ion for
regulating immune responses and promoting tissue regeneration.
Lin et al. (2019) demonstrated that copper-incorporated bioactive
glass ceramics (Cu-BGC) enhance cartilage and bone regeneration
by promoting chondrocyte proliferation and inducing macrophage
polarization towards the anti-inflammatory M2 phenotype. The
potential mechanism may involve released Cu2+ stimulating
cartilage immune responses through the HIF-1α pathway and
inhibiting tissue inflammation. In a subsequent study, Geng et al.
(2024) found that Cu-BGC significantly inhibited the expression of
pro-inflammatory cytokines (e.g., IL-1β and IL-6) by inducing
M2 macrophage polarization, while upregulating anti-
inflammatory cytokines (e.g., IL-4), indicating its anti-
inflammatory effects. Additionally, Cu-BGC significantly reduced
the expression of matrix-degrading enzymes (e.g., MMP3, MMP13),
suggesting that Cu-BGC effectively protects cartilage matrix from
degradation in inflammatory conditions. The above research
indicates that bioceramic scaffolds with single-ion doping can
promote bone regeneration by enhancing macrophage
polarization, which holds significant value in the treatment of
bone defects.

Based on the foundation of single ion doping, the
complementary doping of multiple beneficial elements to
enhance biological effects is now considered a promising new
strategy. Yang et al. (2021) investigated the synergistic biological
effects of Sr2+/Fe3+ by employing extrusion-based low-temperature
3D printing technology to fabricate SrFeHA/PCL scaffolds,
comparing them with scaffolds doped solely with Sr10HA and
Fe10HA. The results indicated that the synergistic effect of Sr2+/
Fe3+ not only modulates the immune response by promoting
M2 macrophage polarization but also enhances the functionality
of MC3T3 osteoblasts and HUVECs. Zhai et al. (2020) investigated
whether lithium calcium silicate (LCS) bioceramic scaffolds could
promote the repair and regeneration of cartilage tissue by inducing
the differentiation of macrophages in a specific direction. The
experimental results showed that LCS scaffolds promote
M2 macrophage polarization by reducing the activity of
inflammatory-related genes TNFα, IL-6, and IL-1β, while
enhancing the expression of the IL-10 gene, thereby promoting
the growth of chondrocytes. Pan et al. (2022) developed 3D-printed
Sr2ZnSi2O7 (SZS) scaffolds. Research found that these scaffolds
possess good immunomodulatory functions, modulating the
inflammatory response of macrophages by releasing bioactive
ions. This is specifically manifested by promoting an immune
environment conducive to healing and reducing the release of
inflammatory factors. However, the issues of rapid degradation
rate and low mechanical strength remain challenges to be
addressed in the future.

The multi-ion doping method still faces certain challenges in
precisely controlling the proportions and distribution of each
dopant ion. In contrast, the single-phased bioceramics with a
fixed composition offer greater stability. Deng et al. (2023)
compared 3D-printed strontium-zinc-phosphate (SZP)
bioceramic scaffolds with β-TCP scaffolds and found that SZP
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scaffolds possess superior osteogenic, angiogenic, and antibacterial
properties, and promote M2 macrophage polarization.

The above research results reveal the significant potential of ion-
doped bioceramic scaffolds in immune modulation. By releasing
specific bioactive ions, these scaffolds can effectively modulate the
inflammatory microenvironment of macrophages, promoting the
phenotypic transformation of macrophages with anti-inflammatory
properties. This transformation is crucial for facilitating the healing
process of bone defects. However, the synergistic effects between
ions and the underlying mechanisms of their interactions still need
to be further explored, and the accuracy and stability of the
proportion and distribution of doped ions require enhancement.

3.2.2 Loading of bioactive molecules
Bioceramic scaffolds loaded with bioactive molecules not only

provide structural support for tissue regeneration but also promote
tissue repair by leveraging various immunomodulatory
mechanisms.

The extracellular matrix (ECM), composed of organic
components like proteins, polysaccharides, and growth factors,
plays a pivotal role in regulating cellular behavior and directing
tissue regeneration and development (Wang J. et al., 2024). Mansour
et al. (2019) demonstrated that coating dicalcium phosphate
bioceramic scaffolds with bone ECM extracts, especially calcium-
binding E-extract, enhances bone regeneration through
immunomodulation. E-extract-coated scaffolds reduced
inflammatory responses, promoted anti-inflammatory
macrophage activity, and significantly improved bone formation
in rat tibial defects. The study also shows that 3D-printed hydrogel
scaffolds incorporating E-extract support better bone regeneration,
suggesting future applications for personalized, ECM-based
scaffolds in complex bone repair. However, whether this process
is related to the conversion of M1 to M2 macrophages remains to
be verified.

Interferon-γ (IFN-γ) and sphingosine-1-phosphate (S1P),
among others, regulate host immune responses through different
mechanisms to promote bone regeneration. Li et al. (2018b)
presented a 3D-printed calcium silicate-β-tricalcium phosphate
(CaSiO3-β-TCP) scaffold loaded with IFN-γ. The research results
indicate that the scaffold sequentially activates M1 and
M2 macrophage polarization: M1 for early inflammation and
M2 for tissue repair. In vitro experiments have demonstrated that
it enhances macrophage-driven angiogenesis and bone regeneration
by increasing the secretion of VEGF and PDGF-BB. In vivo
experiments have demonstrated that the scaffold improves blood
vessel formation and bone healing in a mouse model. Additionally,
S1P is an important immunomodulatory molecule that, when coated
on β-tricalcium phosphate scaffolds, effectively inhibits
inflammation and promotes osteogenesis. S1P plays a crucial role
in bone formation by regulating macrophage migration and the
expression of inflammation-related genes. Cao et al. (2019)
evaluated 3D-printed β-TCP scaffolds coated with S1P for
immunomodulation and bone regeneration. The research results
indicate that the S1P-coated scaffolds reduce inflammation by
downregulating pro-inflammatory cytokines and promote
osteogenesis by upregulating osteogenic genes like OCN, OPN,
and RUNX2. Additionally, this scaffold also promotes the
differentiation of BMSCs into osteoblasts. This dual action of

reducing inflammation and enhancing bone regeneration makes
S1P-coated scaffolds a promising option for treating large
bone defects.

Dexamethasone (Dex), as a potent glucocorticoid, not only
promotes osteogenesis but also effectively controls local
inflammation due to its immunosuppressive properties. Li et al.
(2018a) developed a composite scaffold made from PLA, PEG, nHA,
and Dex using 3D printing for bone regeneration and found that
Dex release from the scaffold modulated inflammation by
promoting M2 macrophage polarization and enhanced
osteogenesis by increasing late alkaline phosphatase secretion and
calcium deposition. In a rat calvarial defect model, the scaffold
improved bone regeneration without adverse effects on vital organs.

Due to its excellent biocompatibility and degradability,
polydopamine (PDA) shows great potential for applications in
the field of tissue engineering. Li et al. (2019) conducted a
comparative study by culturing adipose-derived mesenchymal
stem cells (Ad-MSCs) on BC scaffolds and PDA-modified BC
scaffolds and found that polydopamine biomimetic coating
significantly enhanced the paracrine capabilities of mesenchymal
stem cells. Specifically, Ad-MSCs cultured on polydopamine-
modified BC scaffolds (DOPA-BC) were able to secrete a greater
amount of immunomodulatory factors. This phenomenon
promoted the polarization of M2-type macrophages, thereby
playing a positive role in immunomodulation.

3D-printed bioceramic scaffolds loaded with immune cells have
shown unique immunomodulatory potential in bone tissue
engineering. Using 3D printing technology to load macrophages
or MSCs into bioceramic scaffolds can create a complex network of
cellular interactions. The spatial distribution and arrangement of
these cells on the scaffold can significantly affect their
immunomodulatory functions. For example, Zhang et al. (2022a)
in order to observe the intercellular “cross-talk” between
macrophages and MSCs within a three-dimensional structure,
used digital light processing-based 3D printing technology to
create a multi-channel honeycomb-like bioceramic scaffold. The
study results showed that the “Taiji” pattern with a 2:1 ratio of MSCs
to macrophages more effectively stimulated M2 polarization and
promoted the osteogenic differentiation of MSCs. They also found
that this effect may be associated with the activation of the BMP-
Smad, Oncostatin M, and Wnt/β-catenin signaling pathways.

Bioceramic scaffolds loaded with bioactive molecules represent a
cutting-edge approach in bone regeneration and
immunomodulation, effectively reducing inflammatory responses
and regulating macrophage polarization. Additionally, the rational
adjustment of the spatial arrangement and distribution of immune
cells can enhance immunomodulatory capabilities. However,
research on the loading of multiple bioactive molecules, as well
as their spatial distribution and arrangement, is insufficient, and
further studies are needed in the future.

4 3D-printed bioceramic scaffolds in
bone aging and osteoporosis

With the occurrence of bone aging, the incidence of age-related
diseases such as osteoporosis has been rising year by year, posing a
significant challenge to public health. Osteoporosis is a systemic
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degenerative bone disease associated with aging, characterized by
reduced bone mass and deterioration of bone microstructure,
thereby leading to increased bone fragility and risk of fracture,
known as osteoporotic fractures (Patsch et al., 2011). 3D-printed
bioceramic scaffolds can be used to treat bone defects in an aging
environment by modulating bone aging and delivering drug
therapies for osteoporotic bone defects (Figure 3). Table 2
summarizes recent research advancements in the modulation of
bone aging and the treatment of osteoporotic bone defects using 3D-
printed bioceramic scaffolds.

4.1 Bioceramic scaffolds regulate
bone aging

3D-printed bioceramic scaffolds with tailored structures and
compositions effectively support bone regeneration in aging
microenvironments. Lu et al. (2020) compared Baghdadite
scaffolds with HA/TCP scaffolds and found that Baghdadite
scaffolds significantly reduced the expression of senescence
markers (P16, P21) in P7 human primary osteoblast-like cells
(HOBs), as well as senescence-associated secretory phenotype
markers, such as IL-1α, TNF-α, and IL-6. Additionally,
Baghdadite scaffolds decreased the paracrine effects of P7 HOB
secretions in inducing senescence in young cells. Notably,
Baghdadite scaffolds also improved mitochondrial function.

These findings suggest that Baghdadite ceramics are a promising
biomaterial capable of creating an anti-senescence and pro-
regenerative microenvironment.

In addition, Mg2+ can not only regulate the immune
microenvironment but also play a significant role in modulating
the aging microenvironment. Qi et al. (2024) in order to investigate
the effects of magnesium ions on osteoporosis and osteogenesis,
fabricated Akermanite bioceramics (Akt) scaffolds enriched with
Mg ions. The research found that magnesium-rich bioceramics can
effectively improve bone regeneration impairments caused by aging
by regulating the osteogenic differentiation and angiogenesis of
BMSCs. Mg2+ enhances bone regeneration by targeting the
Hoxa7/MAPK signaling axis, which modulates the secretion of
miR-196a-5p in exosomes, thereby influencing the expression of
osteogenesis-related genes in the aging microenvironment. This
provides a potential strategy for bone regeneration in an aging
microenvironment.

Oxidative stress plays a critical role in aging and bone tissue
degeneration, particularly in the process of bone tissue regeneration.
Reactive oxygen species (ROS)-induced damage to cellular
components is considered one of the key mechanisms promoting
aging (He et al., 2024). Similar to other tissues, the accumulation of
oxidative stress-induced cellular and tissue damage in bone
increases with age, leading to a decline in bone cell function and
senescence (Xu et al., 2020). Mitochondria are the primary source of
ROS. With advancing age, mitochondrial ATP production capacity

FIGURE 3
The role of 3D-printed bioceramic scaffolds in regulating bone regeneration in aging and osteoporosis environments. HOBs: human primary
osteoblast-like cells, SASP: senescence-associated secretory phenotype, XD: Xu Duan, ROS: reactive oxygen species, PTH: parathyroid hormone.
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declines, and the efficiency of antioxidant defense systems also
diminishes, resulting in elevated intracellular ROS levels (Cheng
and Ristow, 2013). This oxidative stress not only damages
macromolecules such as cell membranes, DNA, and proteins but
also triggers a range of age-related pathological changes, including
chronic inflammation, neurodegenerative diseases, cardiovascular
diseases, and diabetes (Kello et al., 2020; Fang et al., 2022;
Hanchang et al., 2022; Yang Y. M. et al., 2023; Prata et al.,
2024). Using 3D-printed bioceramic scaffolds to alleviate
oxidative stress may offer new strategies for slowing aging and
preventing related diseases. Shu et al. (2023) developed Zn/Co-
MOF-functionalized β-TCP scaffolds to enhance osteochondral
regeneration in osteoarthritis. The research results indicate that
the scaffold has a broad ability to clear ROS and promotes
osteogenic and chondrogenic differentiation. In subsequent
research, Shu et al. (2024) developed Co-ClAP/PLGA composite
scaffolds using 3D printing technology. The research indicates that
this scaffold possesses antioxidant characteristics, capable of
neutralizing excessive ROS in inflammatory environments,
thereby maintaining cell proliferation, adhesion, and
differentiation, and concurrently promoting the regeneration of

cartilage and subchondral bone. The above results demonstrate that
these two cobalt-containing bioceramic scaffolds not only exhibit
strong antioxidant properties, significantly clearing ROS, but also
promote osteogenesis. Future research should focus on enhancing
the antioxidant properties of the scaffold while improving
osteogenic capacity.

3D-printed bioceramic scaffolds play a crucial role in combating
bone aging. They significantly promote bone tissue regeneration
under aging conditions by reducing the expression of aging markers
and modulating the activity of osteogenesis-related genes in a aging
environment. Additionally, these scaffolds exhibit excellent
antioxidant properties, effectively neutralizing excessive ROS in
inflammatory environments, thereby combating the aging process
triggered by oxidative stress.

4.2 Drug-loaded bioceramic scaffolds treat
osteoporotic bone defects

The primary factors contributing to osteoporosis include
intrinsic factors related to natural aging, which heighten bone

TABLE 2 The application of 3D-printed bioceramic scaffolds in treating aged and osteoporotic bone defects.

Year Team Scaffold composition The roles in bone aging and treating
osteoporosis

2015 Tripathi et al. CDHA/Quercetin Quercetin, stably released from CDHA scaffolds, promotes the
proliferation of pre-osteoblast cells (MC3T3-E1) and inhibits the
proliferation of osteoclasts to treat osteoporosis.

2016 Meininger et al. Sr-Mg3(PO4)2 Strontium ions promote the proliferation of osteoblasts and inhibit
the proliferation of osteoclasts to treat osteoporosis.

2019 Gómez-Cerezo et al. MBG/PCL/ZA The released ZA can inhibit the proliferation and differentiation of
osteoclasts to treat osteoporosis.

2020 Lu et al. Baghdadite Baghdadite ceramics can provide an anti-senescent
microenvironment that prevents the induction of cellular senescence
in late passaged HOBs and modulates the secretory profiles of these
cells, reducing their pro-senescent paracrine effects.

2021 Kao et al. SrCS/XD The addition of Xu Duan to the scaffolds enhance cell proliferation
and the secretion of osteogenic-related proteins to treat osteoporosis.

2022 Deng et al. AKT/HNPs/HMPs The scaffold scavenges ROS, promotes the proliferation of
chondrocytes, and facilitates the osteogenic differentiation of BMSCs.

2023 Ran et al. Mg-Nd-Zn-Zr/ZA The osteogenic effect of Mg and the osteoclast inhibition effect of ZA
facilitate the repair of osteoporotic bone defects.

2023 Ren et al. PMBG/TCP/PTH PMBG/TCP scaffolds, coordinated with PTH (1-34), can
bidirectionally regulate bone homeostasis, promoting bone formation
while inhibiting bone resorption.

2023 Shu et al. Zn/Co-MOF/β-TCP The scaffold scavenges ROS and promotes cartilage regeneration.

2024 Codrea et al. HA/PCL/SrHA The composite scaffold possesses excellent osteogenic potential and
cell compatibility, and is capable of releasing strontium ions for the
treatment of osteoporosis.

2024 Qi et al. Ca2MgSi2O7 The scaffold promotes osteogenesis and delays the senescence of
O-BMSCs through the exosome-mir-196a-5p/Hoxa7/MAPK
signaling axis.

2024 Shu et al. Co-ClAP The scaffold scavenges ROS and promotes cartilage regeneration.

CDHA, calcium deficient hydroxyapatite; MBG, mesoporous bioactive glass; PCL, e-Polycaprolactone; ZA, zoledronic acid, Baghdadite; Ca3ZrSi2O9, HOBs, human osteoblast-like cells; XD,

XuDuan, AKT, Akermanite; HNPs, hair-derived antioxidative nanoparticles; HMPs, hair-derived antioxidative microparticles; ROS, reactive oxygen species; BMSCs, bone marrow

mesenchymal stem cells; PMBG, photo-curedmesoporous bioactive glass; TCP, tricalcium phosphate; PTH, parathyroid hormone;MOF, bimetallic organic framework; O-BMSCs, osteoporotic

bone mesenchymal stem cells; Co-ClAP, Cobalt-Incorporated Chloroapatite.
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resorption and reduce bone formation, as well as external factors,
such as long-term glucocorticoid use, which further disrupt bone
microarchitecture and lead to osteoporosis. Over the past few
decades, various pharmacological treatments have been developed
to treat osteoporotic bone defects, broadly categorized into anti-
resorptive agents (which prevent bone breakdown) and anabolic
agents (which stimulate bone formation) (Fixen and Fixen, 2022;
Shane et al., 2022; Hartz et al., 2024). In recent years, advances in 3D
printing technology have revolutionized the field of bone
regeneration by enabling the development of bioceramic scaffolds
as drug carriers.

4.2.1 Strontium ion
Strontium ions, the active component of strontium ranelate,

enhance bone formation while suppressing resorption. Codrea
et al. (2024) utilized 3D printing technology to fabricate
scaffolds made of PCL and strontium-substituted
hydroxyapatite (SrHA) with the aim of enhancing the recovery
of osteoporotic bone defects. The results indicated that scaffolds
incorporating SrHA exhibited improved mechanical properties
and osteogenic potential, suggesting their potential application
in the treatment of osteoporotic bone defects. Meininger et al.
(2016) fabricated 3D-printed strontium-substituted magnesium
phosphate (SrMPC) scaffolds designed for bone regeneration.
These biodegradable scaffolds show good mechanical strength
(36.7 MPa compressive) and a porous architecture ideal for
bone ingrowth. In vitro studies confirmed controlled
degradation and a sustained release of Sr2+, which promotes
osteoblast activity. In both studies, it has been demonstrated
that strontium-doped bioceramic scaffolds possess superior
mechanical properties, offering significant advantages in the
repair of osteoporotic bone defects. However, the stability of
strontium release rates still needs to be further improved.

4.2.2 Zoledronic acid
Zoledronic acid (ZA), a third-generation bisphosphonate with

high affinity for bone tissue, is a first-line treatment for
osteoporotic bone defects. It inhibits osteoclast differentiation
and induces osteoclast apoptosis, thereby suppressing bone
resorption. Ran et al. (2023) developed a 3D-printed
biodegradable Mg2+ scaffold with a ceramic coating loaded with
ZA for the treatment of osteoporotic bone defects. Studies have
shown that the ZA coating not only reduces the corrosion rate of
the scaffold but also achieves precise and slow drug release.
Furthermore, due to the combined action of Mg2+ and ZA, the
scaffold promotes bone formation while inhibiting osteoclast
activity, effectively facilitating the repair of osteoporotic bone
defects. In another study, Gómez-Cerezo et al. (2019) developed
mesoporous bioactive glass (MBG)/PCL scaffolds for bone
regeneration in osteoporotic sheep. The scaffold demonstrated
good biocompatibility in vivo, promoting both bone formation
and angiogenesis. Nonetheless, when loaded with 1% ZA, the
scaffold induced a strong inflammatory response and impaired
bone healing. The above results indicate that bioceramic scaffolds
loaded with ZA show great potential in promoting the repair of
osteoporotic bone defects, but further research and optimization
are needed in terms of drug dosage to achieve better
therapeutic effects.

4.2.3 Chinese medicine
Traditional Chinese medicine has long been valued for its

holistic approach to health, and its integration with modern
medical technologies presents an innovative avenue for treating
osteoporotic bone defects. Kao et al. (2021) investigated the
efficacy of 3D-printed scaffolds made from poly-ε-caprolactone,
strontium-doped calcium silicate, and Xu Duan (a traditional
Chinese medicine) for bone regeneration in osteoporosis. The
results indicate that XD and Sr ions have a synergistic effect. In
vitro and in vivo, the scaffold, especially those with a higher
concentration of strontium (XD10), can increase the secretion
of bone tissue related proteins and promote the repair of
osteoporotic bone defects. These scaffolds promote bone healing
by enhancing osteoblast activity and bone mineralization. This
approach opens up new possibilities for combining traditional
medicine with advanced materials, offering a promising strategy
for treating osteoporotic bone defects. However, research on the
combination of traditional Chinese medicine with 3D-printed
bioceramic scaffolds is insufficient, and future studies should
place greater emphasis on the use of traditional Chinese
medicine in bone tissue engineering and the treatment of
osteoporotic bone defects.

4.2.4 Hormone
Anabolic bone therapies aim to enhance bone mass by

stimulating bone formation. One widely used strategy is the
intermittent activation of parathyroid hormone (PTH), which
encourages osteogenesis by promoting osteoblast activity. Ren
et al. (2023) studied a 3D-printed scaffold composed of
photocurable mesoporous bioactive glass (PMBG) and TCP
loaded with PTH (1-34). The research findings indicate that the
scaffold, in conjunction with PTH (1-34), regulates bone
homeostasis bidirectionally by activating the Wnt/β-catenin
pathway and inhibiting fibroblast activation protein. This
study underscores the potential of combining advanced
materials like PMBG and TCP with anabolic agents such as
PTH to create scaffolds that not only support bone
regeneration but also modulate the underlying cellular
mechanisms to optimize healing. Further research is
necessary to fully elucidate the underlying molecular
pathways and optimize the therapeutic potential of PTH in
clinical applications for the treatment of osteoporotic
bone defects.

Postmenopausal estrogen deficiency accelerates bone
resorption, driving significant bone loss. Hormone
replacement therapy has been a key method for preventing
and treating osteoporotic bone defects in women (Chen et al.,
2020). Tripathi et al. (2015) developed 3D-printed calcium-
deficient hydroxyapatite scaffolds loaded with quercetin for the
treatment of osteoporotic bone defects. The research findings
indicate that the quercetin-loaded scaffolds significantly
enhanced pre-osteoblast cell (MC3T3-E1) activity and
suppressed osteoclast proliferation, outperforming traditional
treatments like alendronate. The potential advantage of this
type of scaffold may be its capacity to offer more effective
solutions for the treatment of osteoporotic bone defects,
particularly in the treatment of postmenopausal osteoporotic
bone defects.
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5 Discussion

As the population ages, bone defects from various causes
continue to be a clinical challenge. Due to their excellent
biocompatibility and potential for personalized design, 3D-
printed bioceramic scaffolds show great promise in addressing
these defects. In this review, we aim to explore the critical role of
3D-printed bioceramic scaffolds in the repair of bone defects,
highlighting their ability to regulate the immune
microenvironment, combat bone aging, and their application in
the regeneration of osteoporotic bone defects. By optimizing scaffold
design andmodifying the scaffold, it is possible to effectively regulate
the polarization state of macrophages, reduce inflammatory
responses, and promote the process of bone regeneration
(Mansour et al., 2019; Xuan et al., 2023). Also, 3D-printed
bioceramic scaffolds exhibit good antioxidant properties, capable
of neutralizing excessive ROS in the inflammatory environment, and
combating aging phenomena caused by oxidative stress (Shu et al.,
2024). More importantly, 3D-printed bioceramic scaffolds not only
reduce the expression of senescence markers but also promote bone
regeneration in a senescent environment (Lu et al., 2020). By
delivering osteoporosis drugs, bioceramic scaffolds have also
shown a promising application prospect in the treatment of
osteoporotic bone defects (Gómez-Cerezo et al., 2019; Kao
et al., 2021).

In comparison with conventional artificial molding or phase
separation techniques, 3D printing technology facilitates the
precise fabrication of complex structures for personalised defect
repair and immunomodulation, as well as the integration of
multifunctional active ingredients during the fabrication process
to further promote bone defect repair by modulating the immune
microenvironment and bone ageing. Although 3D-printed
bioceramic scaffolds have made significant breakthroughs in the
treatment of bone defects, there are still several key issues that need
in-depth exploration. Firstly, the inadequate alignment of
materials’ biocompatibility, degradability, and mechanical
properties with bone defects hinders clinical translation.
Secondly, current research lacks a detailed and in-depth
analysis of the mechanisms by which 3D-printed bioceramic
scaffolds induce macrophage polarization. Research on the role
of 3D-printed bioceramic scaffolds in regulating cellular
senescence remains limited. It is recommended that subsequent
studies investigate the manner in which the surface topology of
3D-printed bioceramic scaffolds and the microenvironment
loaded with actives coordinates macrophage polarisation with
cellular senescence. Such studies should also explore the
synergistic intervention of conventional RANKL, NF-κB, TGF-
β/Smad, p53, and other pathways, as well as explore new possible
mechanisms.

The process of bone repair is a complex physiological process
that involves not only the repair of the bone itself but also has a close
relationship with surrounding tissues such as muscles and blood
vessels (Zhai et al., 2021; Toita et al., 2024). The importance of blood
vessels in bone regeneration lies in their creation of a
microenvironment conducive to bone regeneration, which
provides sufficient nutrients, growth factors, and oxygen for bone
tissue repair. Vascular endothelial growth factor (VEGF) is a key
regulatory factor in angiogenesis, promoting the migration and

proliferation of endothelial cells through the regulation of
osteogenic growth factor release and paracrine signaling, thereby
indirectly promoting the osteogenic process (Burger et al., 2022).
Studies have found that VEGF-decorated crystalline SiHA scaffolds
can effectively treat osteoporotic bone defects (Casarrubios et al.,
2020). Enhanced vascularization observed in VEGF-decorated
scaffolds not only aids in bone regeneration but also in the
overall integration of the scaffold with surrounding tissues.
Therefore, an ideal 3D-printed bioceramic scaffold should induce
vascularization to optimize the bone repair process. Additionally,
studies have shown that skeletal muscle also plays a crucial role in
the process of bone repair. The expression of bone morphogenetic
protein 2 (BMP-2) in autologous muscle tissue significantly
enhances its ability in bone regeneration, which has a significant
therapeutic effect on the treatment of bone defects (Kong
et al., 2020).

Therefore, future scaffold designs should take a comprehensive
approach, considering the regulation of the immune
microenvironment, the mitigation of bone aging, the promotion
of vascularization, and the modulation of surrounding muscle
tissues. Regulating M1/M2 polarization will be one of the key
factors in promoting bone defect repair. M1 macrophages are
usually associated with inflammatory responses, and inhibiting
M1 polarization or inducing M2 macrophage polarization helps
reduce chronic inflammation and promote tissue repair.
M2 macrophages not only play a role in anti-inflammatory
processes but also promote bone reconstruction and
vascularization by secreting growth factors and cytokines. By
optimizing the surface properties and microstructure of the
scaffold, designing materials that promote M2 macrophage
polarization will help improve immune responses and accelerate
bone repair processes. Additionally, bone aging is a critical factor
influencing the bone defect repair process. The design of scaffold
materials should have characteristics that combate or even reverse
bone aging, such as enhancing bone density and rejuvenating
senescent bone cells. Vascularization is another important
factor for successful scaffold implantation, as a robust vascular
network is essential for supplying the necessary nutrients and
oxygen to the repair site, thereby facilitating bone tissue
regeneration. In addition, the control of surrounding muscle
tissues is also an indispensable dimension in the bone defect
repair process, as muscle function recovery has a direct impact
on the bone repair. Therefore, the design of future bioceramic
scaffolds should integrate these multifaceted biological needs,
promoting the research and clinical application of
multifunctional scaffolds.

6 Conclusion

3D-printed bioceramic scaffolds demonstrate significant
potential in regulating the immune microenvironment and
mitigating bone aging. By optimising scaffold structures and
incorporating bioactive factors, these scaffolds can modulate the
immune microenvironment, effectively target specific immune
pathways, and promote tissue healing and osteogenic
differentiation. In addition, the modified bioceramic scaffolds
reduce cellular senescence and oxidative stress, enhance bone
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regeneration and serve as carriers for anti-osteoporotic drugs,
further contributing to bone regeneration. In summary,
bioceramic scaffolds present innovative solutions for the
treatment of bone defects and promise to provide multiple
strategies for maintaining bone health.
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