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Hemodynamic analysis based on computational fluid dynamics (CFD) modelling
is expected to improve risk stratification for patients with aortic aneurysms and
dissections. However, the parameter settings in CFD simulations involve
considerable variability and uncertainty. Additionally, the exact relationship
between hemodynamic features and disease progression remains unclear.
These challenges limit the clinical application of aortic hemodynamic models.
This review presents a detailed overview of the workflow for CFD-based aortic
hemodynamic analysis, with a focus on recent advancements in the field. We also
conducted a systematic review of 27 studies with large sample sizes (n > 5) that
examine the hemodynamic characteristics of aortic aneurysms and dissections.
Some studies identified consistent relationships between hemodynamic features
and disease progression, reinforcing the potential for clinical application of aortic
hemodynamic models. However, limitations such as small sample sizes and
oversimplified patient-specific models remain. These findings emphasize the
need for larger, more detailed studies to refine CFD modelling strategies,
strengthen the connection between hemodynamics and diseases, and
ultimately facilitate the clinical use of aortic hemodynamic models in disease
management.
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1 Introduction

Aortic diseases, particularly aneurysms and dissections, remain significant global health
threats. Between 1990 and 2019, fatalities from aortic aneurysms increased by 82.1% (Wang
Z. et al., 2022). The true incidence of aortic dissection may be underestimated, as many
patients die before receiving a diagnosis. Evidence also suggests that the number of aortic
dissection cases has risen over time (LeMaire and Russell, 2011).

Currently, imaging is the primary method for diagnosing aortic aneurysms and
dissections, providing anatomical parameters that guide therapeutic protocols. However,
relying solely on anatomical risk assessments may overlook high-risk patients. For instance,
while abdominal aortic aneurysms with a diameter over 5–5.5 cm or a growth rate above
1 cm per year typically prompt surgical intervention, some smaller aneurysms can also be
prone to rupture (Spanos et al., 2020; Abdelkhalek et al., 2022; Ashkezari et al., 2022).
Similarly, certain type B aortic dissections (TBAD) that appear clinically stable may in fact
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be unstable, contributing to a persistent in-hospital mortality rate in
recent years (Evangelista et al., 2018).

Recent studies increasingly suggest that hemodynamic factors
could improve risk stratification for patients with aortic aneurysms
or dissections (Zilber et al., 2021; Ramaekers et al., 2023). Aortic
hemodynamics can be assessed through clinical measurements or in
silico analysis based on computational fluid dynamics (CFD).
Compared to clinical measurements, CFD modelling offers more
precise spatiotemporal predictions at a lower cost. However, many
clinicians face challenges in implementing CFD modelling and
interpreting its results due to insufficient training in this area.

This review aims to present the recent advancements in CFD
modelling for predicting aortic hemodynamics, providing guidance
on conducting CFD simulations and analyzing hemodynamic
indicators. We also reviewed several large sample studies to
summarize findings on the relationships between hemodynamic
metrics and aortic diseases, while highlighting limitations that
currently hinder the clinical application of aortic hemodynamic
models. Finally, we offer recommendations for future research on
CFD-based hemodynamic analysis in aortic aneurysms and
dissections.

2 Features of aortic hemodynamics

The aorta, the largest blood vessel in the body, serves as the
primary conduit for delivering oxygenated blood throughout the
body (Hall and Guyton, 2011). Hemodynamics within the aorta is
highly complex, largely due to its unique anatomy. The aorta’s
centerline is non-planar and curved in three dimensions (Chandran,
1993). As blood is ejected from the left ventricle, it undergoes
impingement, swirling, separation, and reattachment as it
navigates the tortuous path of the aorta. Additionally, the large
size of the aorta leads to the development of secondary flows within
the lumen cross-section (Tse et al., 2013).

The numerous branches of the aorta contribute to the redistribution
of blood flow, adding to the complexity and uncertainty of the aortic
hemodynamics. The aorta extends from the left ventricle to the lower
abdomen, tapering in lumen size and branching multiple times along
the way. It typically has three main branches in the aortic arch that
supply blood to the upper body, as well as several branches in the
descending aorta that deliver blood to internal organs. However, the
branching patterns of the aorta exhibit considerable variability among
individuals (Mustafa et al., 2017). Blood flow is redistributed at these
bifurcations, and the presence of lesions, such as stenosis, further
complicates the flow dynamics (Dabagh et al., 2015).

Significant changes in the shape and spatial position of the aortic
vessel wall further contribute to the complexity of intraluminal
hemodynamics. The aorta’s compliance is high, accounting for more
than half of the total compliance of the arterial system in healthy
young adults (Pagoulatou et al., 2021). The aorta stretches to
accommodate the large volume of blood ejected during systole
and recoils to maintain downstream blood flow during diastole
(Tanweer et al., 2014). Additionally, the aortic root experiences
periodical towed and relaxed movements due to ventricular traction,
which are transmitted to the ascending aorta (Wei et al., 2019).
Given these factors, predicting aortic hemodynamics through CFD
modelling presents significant challenges.

3 Workflow in CFD modelling for aortic
hemodynamics

Partial differential equations are commonly used to describe
fluid flow and related phenomena. However, in many cases, these
equations cannot be analytically solved. CFD modelling addresses
this challenge by using discretization methods to approximate
partial differential equations as a system of algebraic equations
(Feiger et al., 2020). These algebraic equations are then solved
through computational techniques. The obtained numerical
solution provides results at discrete locations in both space and time.

Despite its potential, CFD modeling for aortic hemodynamics
faces several challenges, including high computational demands,
long processing times, and the complexity of the process, which
requires multidisciplinary collaboration (Cebral and Meng, 2012;
Feiger et al., 2020; Kamada et al., 2022). Additionally, the highly
patient-specific nature of these simulations adds further complexity.
However, the successful use of CFD modelling in cardiovascular
diseases, such as noninvasive fractional flow reserve, has
strengthened confidence in its broader clinical potential (Hu
et al., 2024). Researchers remain committed to advancing CFD
techniques for aortic diseases management, aiming to bridge the
gap between research and clinical practice.

CFD modelling of hemodynamics involves seven stages: clinical
imaging, geometry reconstruction, discretization, boundary
condition specification, solution setup, post-processing, and
validation (Morris et al., 2016).

3.1 Clinical imaging

Traditional clinical imaging methods for geometry reconstruction
in hemodynamic studies include digital subtraction angiography
(DSA), contrast-enhanced computed tomography (CECT),
computed tomography angiography (CTA), magnetic resonance
imaging (MRI), and magnetic resonance angiography (MRA)
(Rayz and Cohen-Gadol, 2020). DSA is an invasive technique that
provides two-dimensional projections of the vasculature. It can be
expanded to three dimensions through 3D rotational angiography
(3DRA), which acquires and combines multiple projections by
rotating the C-arm. 3DRA is considered the gold standard for
generating intracranial aneurysm (IA) models (Steinman and
Pereira, 2019). CECT and CTA are the most commonly used
imaging method, offering high spatial resolution and rapid
acquisition times (Ren et al., 2016). However, all of these methods,
including DSA, 3DRA, CECT, and CTA, involve ionizing radiation
and nephrotoxic contrast agents. MRI is a technique free from
ionizing radiation but requires longer acquisition times and offers
lower spatial resolution (Wan Ab Naim et al., 2014). Unenhanced
MRA techniques are noninvasive. Time-of-flight MRA is a
representative unenhanced technique that uses repeated pulses to
differentiate between stationary tissues and flowing blood. However,
this technology performs poorly in regions with slow flow (François
et al., 2008). This limitation can be addressed with contrast-enhanced
MRA. In addition to lumenmodelling, MRI can also provide valuable
data on wall content through black blood MRI scans (Arzani et al.,
2014). Wang et al. (2022) systematically reviewed the applications of
MRI in the hemodynamic study of TBAD.
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Moreover, ECG-gated imaging techniques have been employed
to capture dynamic variations in the aortic wall position throughout
the cardiac cycle. Capellini et al. (2021) reconstructed ascending
aortic geometries from ECG-gated CTA data and examined how
geometric variations influence aortic hemodynamics. Similarly,
Midulla et al. (2012) used ECG-gated cine MRA to capture aortic
wall movements and performed dynamic mesh simulations to
predict hemodynamics in patients treated by thoracic
endovascular aortic repair.

3.2 Geometry reconstruction

Based on the acquired image dataset, geometry reconstruction
can proceed, involving several steps such as image segmentation,
smoothing, simplification, and treatment of the inlet and outlet.

Segmentation methods have evolved from 2D plane
segmentation and lofting to 3D volumetric segmentation based
on intensity thresholding, and now to fully automated
segmentation powered by deep learning (Steinman, 2002; Antiga
et al., 2008; Cao et al., 2019; Chen et al., 2021). A state-of-the-art
deep learning-based framework is able to identify the true and false
lumen, as well as local characteristics of the primary tear, in patients
with TBAD (Chen et al., 2021).

Typically, some degree of smoothing is applied to the segmented
model to facilitate successful spatial discretization. However, this
smoothing must be performed carefully to avoid altering the
geometry and volume size. Paritala et al. (2023) investigated
intra-team variability in hemodynamic predictions for IAs and
found that smoothing contributed the most to variations in wall
parameters. Nonetheless, its impact on aortic hemodynamics
remains underexplored.

Early hemodynamic studies often employed some
simplifications, such as neglecting variations in vessel diameter,
using circular cross-sections, and omitting downstream branches
(Caballero and Laín, 2013). These simplifications can significantly
affect the accuracy of the hemodynamic predictions. As
computational power improves, the use of complete, patient-
specific aortic models is increasingly recommended (Wan Ab
Naim et al., 2014). Stokes et al. (2023b) investigated the impact
of neglecting minor aortic branches on TBAD hemodynamics and
found that this simplification could lead to differences of 60%–75%
in clinically relevant metrics.

Truncating and extending the inlet and outlet appropriately
ensures that the blood flow in the region of interest is not affected by
boundaries. These strategies are typically determined based on the
research needs. While some studies have quantitatively assessed
their impact on intracranial hemodynamics (Pereira et al., 2013; Hua
et al., 2015), similar analyses on the aorta are relatively rare. Chi et al.
(2022) highlighted the importance of appropriate inlet truncation by
comparing the effects of truncating at the middle of the ascending
aorta versus at the aortic valve.

Geometry reconstruction can be carried out using various
software tools, including Mimics (Geiger et al., 2016),
SimVascular (Updegrove et al., 2017), CRIMSON (Arthurs et al.,
2021), VMTK (Williams et al., 2022), Simpleware ScanIP (Stokes
et al., 2023a), 3D Slicer (Pieper et al., 2004), ITK-SNAP (Yushkevich
et al., 2016), OsiriX (Rosset et al., 2004), GIMIAS (Larrabide et al.,

2009), MITK (Wolf et al., 2004), DetecModeling (Ding et al., 2024).
Some tools, such as SimVascular and DetecModeling, incorporate
advanced machine learning algorithms, which streamline the
reconstruction process and reduce the time and effort required.

To ensure that the reconstructed geometric model is suitable for
CFD simulation, several measures should be taken (Sveinsson
Cepero and Shadden, 2025). First, the research team should
consist of experienced biomedical engineers familiar with human
anatomy. A comprehensive geometric reconstruction protocol
should be developed, covering key aspects such as intensity
thresholding, smoothing extent, and inlet and outlet truncation
and extension. All operators must undergo consistent training,
and each reconstruction task should be performed by at least two
operators. Any disagreements between operators should be resolved
by experienced team members (Paritala et al., 2023). From a
technical standpoint, advanced automated algorithms should be
prioritized to reduce operator-induced uncertainties (Maher
et al., 2020). Additionally, sequentially combining advanced
algorithms–such as imaging quality enhancement, centerline
extraction, and segmentation–can further improve the accuracy
of the reconstruction process (Lesage et al., 2009; Maher et al., 2021).

3.3 Spatial discretization

Once the geometric reconstruction based on clinical images is
completed, the process can proceed similarly to CFD simulations in
other fields, starting with spatial discretization, or grid generation.
The computational domain is typically discretized into tetrahedral,
hexahedral, or polyhedral meshes using advanced software or
algorithm. A finer boundary layer mesh should be generated in
regions adjacent to the arterial wall to accurate predict near-wall
flow and wall parameters. Mesh resolution significantly impacts the
accuracy of hemodynamic predictions (Aycan et al., 2023).
Although this has primarily been demonstrated in studies of IAs
and coronary arteries (Prakash and Ethier, 2001; Hodis et al., 2012),
it can be logically extended to the aorta. Moreover, the mesh
resolution required for mesh independence varies for different
hemodynamic parameters, such as velocity and wall parameters
(Prakash and Ethier, 2001; Valen-Sendstad and Steinman, 2014;
Evju et al., 2017), and should be carefully determined.

3.4 Boundary conditions

To obtain accurate hemodynamic predictions, it is essential to
establish appropriate boundary conditions for the computational
domain. Clinically measured, patient-specific data, such as blood
flow velocity, pressure, and arterial wall movements, are considered
ideal for hemodynamic simulations (Rayz et al., 2008; Perera et al.,
2020); however, these data are often unavailable in clinical practice.

For the inlet boundary condition, the empirical flow waveform
from literature is typically used in aortic hemodynamic simulations.
However, studies have shown that deviations in the inlet flow rate,
flow waveform shape, and inlet velocity profile can hinder the
accurate prediction of patient-specific hemodynamics
(Morbiducci et al., 2013; Youssefi et al., 2018; Armour et al.,
2021; Stokes et al., 2023a). Armour et al. (2021) found that a
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reduction in stroke volume resulted in a decrease in both velocity
and wall shear stress, whereas the flow waveform shape significantly
affected the predicted pressure. Furthermore, their results also
revealed that three inlet velocity profiles–three-dimensional,
through-plane, and flat profiles–yielded similar predictions for
velocity and wall shear stress; however, the through-plane profile
predicted a more accurate pressure distribution. Similarly, Stokes
et al. (2023a) found that the choice of the inlet velocity profile
significantly influenced oscillatory shear and helicity in the aorta.
Although 4D-flow MRI can measure the temporal three-
dimensional velocity profile, it has been shown to underestimate
the peak flow rate and velocity (Cherry et al., 2022). Therefore, 2D-
flow MRI, which acquires axial velocity data (i.e., through-plane
profile), is recommended for measuring patient-specific inlet
boundary conditions (Armour et al., 2021; Stokes et al., 2023a).

For the outlet boundary condition, obtaining clinically measured
data is more challenging due to the presence of multiple outlets and
the small size of the downstream branches. In aortic hemodynamic
simulations, simplified outlet boundary conditions, such as constant
or pulsatile pressure (O’Rourke et al., 2012; Filipovic et al., 2013;
Zambrano et al., 2016), or specific flow division (Peng et al., 2019;
Zhang et al., 2023), are commonly used. However, the neglect of the
downstream arterial system in simulations using these simplified
boundary conditions often results in non-physiological predictions,
particularly regarding blood pressure. Furthermore, prescribing
equal pressure for all outlets causes the downstream flow
distribution to deviate from reality (Chnafa et al., 2018).
Coupling low-dimensional models, such as the lumped parameter
model (0D) or distributed parameter model (1D), at outlets to
perform multi-scale simulations is an effective option for
predicting hemodynamics closer to physiological conditions
(Soudah et al., 2014; Stokes et al., 2021). A comprehensive
introduction to these low-dimensional models for hemodynamic
predictions can be found elsewhere (Shi et al., 2011; Zhou et al.,
2019; Chi et al., 2022; Garber et al., 2022).

For the aortic vessel wall, variations in the shape and spatial
position due to compliance and cardiac traction are often ignored in
simulations, which typically assume that the wall is rigid with no-slip
boundary conditions (Xu et al., 2021; Li et al., 2023; Mutlu et al.,
2023). However, the assumption of a rigid wall has been shown to
cause significant deviations in the blood flow velocity and wall
parameters in hemodynamic predictions (Ene et al., 2014; Bonfanti
et al., 2017; Qiao et al., 2019; Athani et al., 2022). Ene et al. (2014)
compared fluid-structure interaction (FSI) simulation using a linear
elastic material model with rigid wall CFD simulation in a realistic
abdominal aortic aneurysm. They found that the rigid wall CFD
simulation overestimated both the velocity magnitude and wall
shear stress. Bonfanti et al. (2017) developed a patient-specific
CFD multi-scale approach incorporating aortic wall compliance
and applied it to study the hemodynamics of aortic dissection.
The results indicated that the transmural pressure predicted by
the compliant model was higher than that predicted by the rigid
model. The systolic flow rate in the true lumen predicted by the
compliant model was lower than that predicted by the rigid model,
while the diastolic flow rate in the true lumen predicted by the
compliant model was higher. Additionally, differences in the
magnitude and oscillation of the wall shear stress were observed
between compliant and rigid models (Qiao et al., 2019). Wall

compliance in aortic hemodynamics can be addressed using
several approaches. For instance, Pant et al. (2014) proposed a
lumped parameter method that introduced a capacitor before the
inlet to account for FSI effects due to aortic compliance. Some
studies have modeled the aortic wall as either linear or nonlinear
(Alimohammadi et al., 2015; Bonfanti et al., 2018; Qiao et al., 2019;
Kim et al., 2023), and isotropic or anisotropic (Jayendiran et al.,
2018; Vignali et al., 2021;Wang et al., 2023) materials to perform FSI
simulations. Additionally, based on aortic wall movements observed
during clinical imaging, some researchers have utilized dynamic
mesh methods (Ramiro et al., 2006; Midulla et al., 2012) or radial
basis functions mesh morphing technology (Capellini et al., 2018;
2021; Calò et al., 2023) to perform FSI simulations. The impact of
arterial wall elasticity on hemodynamic predictions varies
significantly across different disease scenarios (Morab et al.,
2024). Therefore, the influence of FSI simulations on the
accuracy of aortic hemodynamics predictions requires further
exploration. A comprehensive introduction to these FSI
simulation approaches for hemodynamic predictions can be
found elsewhere (Humphrey and Holzapfel, 2012; Hirschhorn
et al., 2020; Athani et al., 2024).

3.5 Solution setup

Before performing CFD simulations, it is crucial to select the
appropriate viscosity and turbulence models, as well as determine
the time dependence and convergence criteria for the simulation.

The viscosity model characterizes the blood rheology. As a non-
Newtonian fluid, the viscosity of blood varies with the shear rate.
However, the assumption of Newtonian rheology is commonly
adopted in hemodynamic studies because shear-thinning
behavior is not significant in large arteries (Mutlu et al., 2023)
and non-Newtonian simulations are more time-consuming (Liu
et al., 2023). Qiao et al. (2019) compared the performance of a two-
phase non-Newtonian model with the Newtonian model in
predicting aortic dissection hemodynamics. They found that the
Newtonian model might underestimate the magnitude of wall shear
stress. However, Qiu et al. (2018) and Marrero et al. (2014) found
that hemodynamic differences in aortic aneurysms due to the
viscosity model were negligible. A comprehensive review of
viscosity models for hemodynamic prediction can be found
elsewhere (Yilmaz, 2008; Kannojiya et al., 2021).

The turbulence model is used to predict flow instability, which
can be categorized based on the Reynolds number (Re) into laminar,
transitional, and turbulent flow states. In straight, uniform tubes
with steady flow, turbulence typically occurs when the Reynolds
number exceeds the critical threshold of 2200 (Westerhof et al.,
2019). However, for blood flow in the aorta, the pulsatile nature of
the flow alters this threshold. Specifically, the descending phase of
the cardiac cycle has been shown to facilitate the transition to
turbulence (Winter and Nerem, 1984), while flow acceleration
tends to have the opposite effect. The Womersley number (α),
which quantifies the relative importance of inertial versus viscous
forces, provides valuable insight into these oscillatory characteristics
(Womersley, 1957). Nerem et al. (1972) confirmed that the
occurrence of turbulence is related to both the peak Reynolds
number (Rê) and the Womersley number in an experimental
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study conducted in the canine ascending and descending aorta. As a
result, hemodynamic studies typically assess the likelihood of
turbulence based on the position of the inlet flow regime on the
Rê–α diagram (Kousera et al., 2013). Additionally, some researchers
suggest that the tortuous nature of arteries, along with sudden
contractions or expansions at lesion sites, can also induce
turbulence (Katz et al., 2023). Les et al. (2010) investigated aortic
hemodynamics in eight patients with abdominal aortic aneurysms
using direct numerical simulation (DNS). They observed that
turbulence was primarily present distal to the aneurysm. DNS
does not rely on assumptions about laminar or turbulent flow,
making it particularly suitable for modelling transitional arterial
flow. However, its high computational cost limits its widespread
application in hemodynamic research. As alternatives, large eddy
simulation (LES), eddy-viscosity models, and Reynolds-stress
models are commonly employed for turbulence modelling in
aortic hemodynamics, as summarized in Table 1. Among these
models, the transition shear stress transport (SST) turbulence model
is considered the most promising Reynolds-averaged Navier-Stokes
model for predicting laminar-turbulent transition in large arteries
(Tan et al., 2009; Kousera et al., 2013). Based on this turbulence
model, Cheng et al. (2014) successfully predicted blood flow pattens
that closely matched those measured using phase-contrast MRI in a
patient with aortic dissection.

For time dependence, transient CFD simulations are commonly
employed in hemodynamic studies to capture the pulsatile nature of
blood flow accurately. However, these simulations can be time-
intensive, which has prompted some researchers to explore
alternative steady-state simulations. Qiu et al. (2018) found that
in an abdominal aortic aneurysm model, the time-averaged wall

shear stress distribution in transient simulations closely matched
that of steady-state simulations. Similar findings were reported by
Chi et al. (2022) and Caballero and Laín (2015) for the thoracic
aorta. Nonetheless, with the increasing availability of computational
resources and advancements in parallel processing methods
(Mirzaee et al., 2017; Hu et al., 2023), transient simulations have
become the primary method for hemodynamic studies. These
simulations allow for the calculation of various hemodynamic
indicators over time, providing more comprehensive insights into
flow dynamics. For transient simulations, the time step size plays a
crucial role in the accuracy of predictions, as demonstrated in
studies of IAs (Valen-Sendstad et al., 2013; Valen-Sendstad and
Steinman, 2014; Dennis et al., 2017). Although similar investigations
on the aorta are less common, it is recommended to perform a time-
independence check before conducting transient simulations to
ensure the accuracy of results.

Convergence criteria are also vital for ensuring that CFD
simulations reach a valid endpoint. Dennis et al. (2017) found
that a residual error of 10–5 for mass and momentum equations
was sufficient for convergence in their IA model; however, this
threshold may vary for different geometries. Additionally, for
transient simulations, it is equally important to verify the
statistical convergence of temporal indicators by comparing these
values across at least two cardiac cycles (Poelma et al., 2015).

Several popular open-source and commercial CFD solvers are
available for hemodynamic simulations (Azizi, 2023), with general-
purpose software such as Ansys Fluent, Ansys CFX, COMSOL,
OpenFOAM, and STAR-CCM+ being widely used. However, these
general tools often require additional user programming to include
specific cardiovascular functions, such as the Windkessel outlet

TABLE 1 Turbulence models used in aortic hemodynamic simulations.

Reference Study object Turbulence model

Xu et al. (2018) Type-B aortic dissection LES model

Martínez et al. (2023) Ascending aorta

Rezaeitaleshmahalleh et al. (2024) Abdominal aortic aneurysm

Black et al. (2023) Type-B aortic dissection Standard k-omega turbulence model

Algabri et al. (2019) Abdominal aortic aneurysm SST k-omega turbulence model

Stokes et al. (2023a), Stokes et al. (2023b) Type-B aortic dissection

Kousera et al. (2013) Healthy aorta Transition SST turbulence model

Chi et al. (2017) Type-A aortic dissection

Cheng et al. (2014) Type-B aortic dissection

Cheng et al. (2015)
Wan Ab Naim et al. (2018)

Dai et al. (2020)

Etli et al. (2021) Thoracic aortic aneurysm k-epsilon turbulence model

Moretti et al. (2023) Aortic dissection

Hohri et al. (2021) Type-A aortic dissection

Long Ko et al. (2017) Type-B aortic dissection

Botar et al. (2017) Abdominal aortic aneurysm Reynolds-stress model
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boundary. In contrast, cardiovascular-specific software, including
SimVascular (Updegrove et al., 2017), CRIMSON (Arthurs et al.,
2021), and DetecFluid (Liu et al., 2025), are more streamlined for
hemodynamic applications as they already integrate these functions.
Moreover, in-house developed codes are also used for specialized
hemodynamic analyses, such as DNS for turbulence (Les
et al., 2010).

3.6 Postprocessing and related metrics

Upon completing the numerical solutions, fundamental physical
quantities like velocity and pressure are determined within the
computational domain. From these quantities, various
hemodynamic metrics are derived to analyze and characterize
blood flow behavior. These metrics include flow pattern
descriptors such as vorticity and helicity, energy-related
parameters such as energy loss and pressure loss coefficient, and
wall shear parameters like wall shear stress (WSS) and oscillatory
shear index (OSI). Some of these metrics, initially proposed for
arterial vessels other than the aorta, can be extended to other
vascular regions due to shared underlying mechanisms. For
instance, Shimogonya et al. (2009) introduced the gradient
oscillatory number (GON) as a metric to assess the risk of IA
initiation. GON can also be used to evaluate the risk of aortic
aneurysms, as both the intracranial and aortic aneurysms shear
similar pathophysiological factors, such as endothelial dysfunction,
inflammation, and remodeling of the arterial wall induced by
hemodynamic factors (Tanweer et al., 2014; Signorelli et al.,
2015; 2018; Gao et al., 2023). As such, a comprehensive
summary of hemodynamic metrics relevant to both aortic and
non-aortic diseases is provided in the Supplementary Table
S1 online.

Certain hemodynamic metrics exhibit strong correlations with
one another. For example, Lee et al. (2009) found significant
correlations between relative residence time (RRT) and time-
averaged WSS (TAWSS) or OSI, suggesting that RRT might
serve as a robust single metric for identifying low or oscillating
shear regions. Additionally, metrics vary in their sensitivity to CFD
settings. Lassila et al. (2020) demonstrated that although both OSI
and transverse WSS (transWSS) can be used to assess the directional
variation of the WSS vector, OSI is more sensitive to changes in
blood flow dynamics in IAs. Consequently, transWSS performed
better in assessing the risk of IA rupture. This highlights the
importance of selecting appropriate metrics based on specific
research goal and simulation settings.

In terms of data visualization during postprocessing, various
graphic representations are commonly employed, including
contour plots, vector plots, streamline plots, and isosurfaces of
hemodynamic metrics. Postprocessing is often conducted at
different levels of data granularity, with two main categories
of focus. The first category is concerned with specific lesion sites,
such as the rupture point of an aortic aneurysm (Teng et al., 2022)
or the primary entry tear of an aortic dissection (Chi et al., 2017).
The second category focuses on broader hemodynamic
characteristics, such as the maximum, minimum, and average
values of metrics within the aneurysm dome (Bappoo et al., 2021;
Wen et al., 2023).

3.7 Validation

To ensure that CFD modelling accurately predicts the
hemodynamic characteristics of the aorta, validation efforts are
essential, though they can be complex and costly. CFD validation
typically involves three approaches: in vitro validation using an
idealized model (Mansouri et al., 2024), in vitro validation with a
patient-specific model created through 3D printing (Ong et al., 2019;
Bonfanti et al., 2020), and in vivo validation based on clinical
measurements (Bonfanti et al., 2017; Bonfanti et al., 2019;
Boccadifuoco et al., 2018; Stokes et al., 2021). Table 2 provided a
summary of these validation studies related to aortic hemodynamics,
highlighting CFD settings, validation methods, validated parameters,
and key findings. Among these methods, in vivo validation against
clinical data is considered the most reliable way to confirm CFD
accuracy. Typically, clinical studies utilize invasive blood pressure
measurements taken by arterial catheter (Bonfanti et al., 2019), blood
flow rates obtained via phase-contrastMRI (Bonfanti et al., 2017), and
cross-sectional velocity profiles captured by 4D-flow MRI (Stokes
et al., 2021) as reference values. However, other hemodynamic
metrics, such as WSS, are more difficult to validate due to
limitations in the temporal and spatial resolution of current
measurement techniques (Miyazaki et al., 2017).

Furthermore, some validation studies have investigated the
impact of CFD modelling settings on prediction accuracy.
Boccadifuoco et al. (2018) compared the performance of rigid
and compliant vessel wall models in predicting the hemodynamic
characteristics of the thoracic aorta. By comparing their results with
in vivo phase-contrast MRI data, they found that FSI simulations
with a compliant wall yielded more accurate flow velocity
predictions. The role of FSI simulations on the accuracy of
hemodynamic predictions across various disease states requires
further exploration (Morab et al., 2024). Additionally, Black et al.
(2023) studied how parameters in three-element Windkessel models
at the outlets affect the predicted flow rate waveforms. Their findings
showed that using parameters calibrated with flow waveforms from
4D-flow MRI data resulted in more accurate predictions.

4 Studies and limitations

The primary goal of hemodynamic prediction is to establish a
link between hemodynamic metrics and aortic diseases and their
related complications. This understanding can inform better clinical
management strategies. We conducted a systematic search to
investigate the application of hemodynamic prediction in aortic
aneurysm and dissection. A full description of the search and
screening strategy can be found in the Supplementary Material
online. To ensure a reliable connection between hemodynamics
and aortic diseases, we focused on studies with sample sizes greater
than five, including 17 studies on aortic aneurysms and 9 studies on
aortic dissections.

Accurate correlation between hemodynamic features and
diseases requires careful study design. Common methods used in
these studies include virtual repair, longitudinal analysis, and
parallel control (Peiffer et al., 2013). Virtual repair is often to
identify risk factors associated with the occurrence of aortic
diseases. However, due to the complex shape changes resulting

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Hu et al. 10.3389/fbioe.2025.1556091

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2025.1556091


from aortic aneurysms or dissections, there is still a lack of efficient,
automated technology for repairing and modelling a healthy aorta.
Longitudinal analysis is frequently employed to link hemodynamic
metrics with disease progression. However, this approach is limited
by the potential radiation exposure associated from clinical imaging.
Parallel control offers the greatest flexibility and is applicable to all
stages of aortic diseases, but it typically requires a large sample size to
minimize the impact of intra-group differences.

Despite the increasing body of research on aortic
hemodynamics, these findings have yet to be widely applied in
clinical settings. We will examine the current barriers to
implementing aortic hemodynamic models in clinical practice.

4.1 Aortic aneurysm

This review includes 17 studies on aortic aneurysms published
between 2010 and 2024, detailed in the Supplementary Table S2 online.

Of these, 14 studies focused on abdominal aortic aneurysms (AAA) and
three on thoracic aortic aneurysm. The primary objective of these
studies was to investigate the relationship between aneurysm volume
expansion (Joly et al., 2020; Meyrignac et al., 2020; Bappoo et al., 2021;
Rezaeitaleshmahalleh et al., 2024), progression (Arzani et al., 2014;
Zambrano et al., 2016; McClarty et al., 2022; Salmasi et al., 2023),
rupture (Boyd et al., 2016; Chisci et al., 2018;Qiu et al., 2019; 2022; Zhou
et al., 2021; Teng et al., 2022), and hemodynamic characteristics.
Additionally, the effects of physiological factors such as exercise (Les
et al., 2010; Suh et al., 2011) and hypertension (Ramaekers et al., 2024)
on these hemodynamic features were explored.

The methodologies employed in these studies included parallel
control (12 studies) and longitudinal analysis (5 studies), either
alone or in combination. The most common imaging technique was
CTA (10 studies), followed by MRA (4 studies). Two studies used
4D-flow MRI, which allowed for the simultaneous acquisition of
patient-specific inlet velocity profiles. One study adopted CECT for
AAA imaging. Most studies modeled blood flow as a Newtonian

TABLE 2 Summary of validation studies on aortic hemodynamics.

Reference Study object and
geometry model

CFD settings Validation methods, validated
parameters, and major findings

Mansouri et al.
(2024)

Healthy thoracic aorta; idealized
aorta with major anatomic features

Steady-state, k-omega turbulence model, Newtonian
fluid, rigid wall, uniform bulk velocity at inlet, zero-
pressure outlet

PIV experiments; velocity and flow patterns. The global
flow patterns in the idealized model showed excellent
qualitative and quantitative agreement between CFD
simulations and PIV experiments.

Ong et al. (2019) Thoracic aortic aneurysm; patient-
specific model

Transient, laminar, Newtonian fluid, compliant wall
with linear elastic material, time-dependent flow
profile at inlet, pressure waveform at outlet

PIV experiments; flow at inlet, pressure at outlets, and
flow pattern. Flow behaviors observed in FSI simulations
closely matched those in experiments.

Bonfanti et al.
(2020)

Type B aortic dissection; patient-
specific model

Transient, SST k-omega turbulence model,
Newtonian fluid, rigid wall, flow rate waveform at
inlet, three-element Windkessel model at outlet

PIV experiments; flow rate and pressure at inlet and
outlets, velocity, flow patterns. Numerical results on flow
rate, pressure, and velocity fields closely matched
experimental data.

Bonfanti et al.
(2017)

Type B aortic dissection; patient-
specific model

Transient, laminar, non-Newtonian fluid (Carreau-
Yasuda model), compliant wall (moving boundary
method), uniform velocity profile at inlet, three-
element Windkessel model at outlet

2D phase-contrast MRI; flow rate at different locations
along the aorta, displacement of the vessel wall. CFD
simulations underestimated peak flow rates, but
accurately predicted flow waveforms and vessel wall
displacement.

Miyazaki et al.
(2017)

Healthy aortic arch and double
aortic arch; patient-specific model

Transient, laminar or LES or k-epsilon model,
Newtonian fluid, rigid wall, flow rate waveform at
inlet, pressure waveform at outlet

4D-flow MRI; velocity, flow patterns, WSS distribution,
energy loss. CFD simulations accurately predicted flow
patterns distal to the aortic arch but failed to capture
helical flow in the ascending aorta. WSS distribution
matched MRI results, though the average WSS was five
times higher, likely due to MRI’s low spatial resolution.

Boccadifuoco et al.
(2018)

Healthy thoracic aorta; patient-
specific model

Transient, laminar, Newtonian fluid, rigid or
compliant wall (linear elastic material), flow rate
waveform at inlet, three-elementWindkessel model at
outlet

4D-flow MRI; flow rate waveform at outlets, vessel wall
displacement, velocity fields. CFD simulations showed
discrepancies with measured results, particularly in the
aortic arch and descending aorta. Using a lower Young’s
modulus improved accuracy but tended to significantly
underestimate peak flow rate.

Bonfanti et al.
(2019)

Type B aortic dissection; patient-
specific model

Transient, laminar, non-Newtonian fluid (Carreau-
Yasuda model), rigid wall with a capacitor before the
inlet to account for FSI effects, flow rate waveform at
inlet, three-element Windkessel model at outlet

Invasive blood pressure measurements by catheter;
pressure in the true and false lumen along the aorta. CFD
predictions closely matched invasive catheter
measurements.

Stokes et al. (2021) Healthy thoracic aorta; patient-
specific model

Transient, SST k-omega turbulence model, rigid wall
or compliant wall (moving boundary method), flow
rate waveform at inlet, three-element Windkessel
model at outlet

Cine-MRI and 4D-flowMRI; flow rate waveform, luminal
cross-sectional area variation, velocity, flow patterns.
Simulated luminal area and flow rate variations closely
matched clinical measurements. Compliant and rigid
simulations over- and under-predicted peak flow rates,
while velocity profiles showed moderate consistency with
4D-flow MRI data.
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fluid (12 studies) and assumed laminar flow (7 studies), with
14 studies conducting transient simulations. Regarding the
boundary conditions, only one study modeled the vessel wall as a
nonlinear, isotropic, hyperelastic material for FSI analysis (Teng
et al., 2022), while the rest used a rigid, no-slip wall. For inlet
boundary conditions, six studies used patient-specific, clinically
measured flow rates, while the others relied on empirical values.
At the outlets, nine studies applied three-element Windkessel
models, while the remainder utilized empirical pressure values
(5 studies) or flow distributions (1 study). In the postprocessing
of hemodynamics, the most commonly assessed metrics were WSS,
TAWSS, OSI, RRT, and endothelial cell activation potential (ECAP).

Three studies on aneurysm volume expansion confirmed a
strong correlation between low baseline WSS and AAA
expansion (Joly et al., 2020; Meyrignac et al., 2020; Bappoo et al.,
2021). Furthermore, Joly et al. (2020) found that lower minimum
TAWSS, along with higher RRT and ECAP values, were linked to a
higher risk of rapid AAA expansion.

Two studies on intraluminal thrombus (ILT) progression in
AAA yielded conflicting results. Arzani et al. (2014) found that low
OSI was the primary factor associated with ILT growth, while low
TAWSS showed no significant role in thrombus deposition. In
contrast, Zambrano et al. (2016) identified low WSS as a key
driver of ILT accumulation. These differences may stem from
varying thresholds for low WSS. Arzani et al. (2014) considered
WSS below 0.1 Pa as low, while Zambrano et al. (2016) identified the
lowest TAWSS in their study at around 0.4 Pa. Despite these
discrepancies, both studies agreed that thrombus deposition
primarily occurred in recirculation zones.

Two studies on ascending thoracic aortic aneurysm progression
found that elevated WSS was associated with local biomechanical
deterioration (McClarty et al., 2022; Salmasi et al., 2023). In
addition, Salmasi et al. (2023) suggested that a large angle
between the left ventricular outflow tract and ascending aorta
may contribute to the abnormal elevation of WSS.

Five of the six studies on AAA rupture showed that low WSS
could distinguish aneurysms at high risk of rupture or predict rupture
locations (Boyd et al., 2016; Chisci et al., 2018; Qiu et al., 2019; Zhou
et al., 2021; Teng et al., 2022). Although Qiu et al. (2022) did not find
significant differences in WSS values between ruptured and
unruptured aneurysms, they observed a larger area of low WSS in
the ruptured group. They also identified that a non-physiological flow
pattern, characterized by a helical main flow channel with vortices,
strongly associated with rupture risk. In addition, ILT deposition,
which generally occurs in areas of blood recirculation (Boyd et al.,
2016), was linked to rupture risk. Studies suggested that thin-layered
ILT might offer a protective effect, while thick-layered ILT was
considered a risk factor for rupture (Qiu et al., 2019; Zhou et al., 2021).

4.2 Aortic dissection

Nine studies on aortic dissections published between 2013 and
2023 were included, as detailed in the Supplementary Table S3 online.
Of these, six studies were on TBAD and three on type A aortic
dissection (TAAD). These studies mainly focused on the relationship
between tear occurrence and hemodynamic characteristics (Chi et al.,
2017; Hohri et al., 2021; Marrocco-Trischitta and Sturla, 2022; Wen

et al., 2022; Wen et al., 2023; Williams et al., 2022; Li et al., 2023), as
well as the correlation between hemodynamics and disease
progression (Cheng et al., 2013; Shang et al., 2015).

All studies used parallel control methodology, with three
incorporating longitudinal analysis and three combined virtual
repairs. Seven studies used CTA imaging, while two studies
adopted CECT for TAAD imaging. All studies performed
transient simulations. In six studies, blood was modeled as a
Newtonian fluid, whereas turbulence models were employed in
three studies, and laminar flow was assumed in two others. For
boundary conditions, all studies simplified the vessel wall as rigid
and no-slip. Empirical flow waveforms were specified at inlet in all
cases. At the outlet, four studies used three-element Windkessel
models, while the rest utilized empirical pressure values. In the
postprocessing of hemodynamic characteristics, the most
commonly assessed metrics were WSS, TAWSS, OSI, and local
normalized helicity (LNH).

Four studies on TBAD occurrence found a correlation between
abnormal flow patterns, disturbed WSS, and tear location (Marrocco-
Trischitta and Sturla, 2022; Wen et al., 2022; Wen et al., 2023; Li et al.,
2023). These studies suggested that disrupted helical flow in the
proximal descending aorta contributed to the initial tear formation.
Additionally, metrics of WSS disturbance, such as transWSS (Li et al.,
2023), cross-flow index (CFI) (Wen et al., 2022; Wen et al., 2023), and
OSI (Wen et al., 2023), were significantly elevated in TBAD patients
compared to healthy individuals. In TAAD, two studies linked elevated
maximum WSS in the ascending aorta to an increased dissection risk
(Chi et al., 2017; Williams et al., 2022). However, Hohri et al. (2021)
found high OSI, rather than high WSS to be more closely associated
with the tear location.

Two studies on TBAD progression suggested that higher flow
rates in the false lumen were associated with both short- and long-
term adverse outcomes, including malperfusion and rapid
aneurysmal dilation (Cheng et al., 2013; Shang et al., 2015).
Cheng et al. (2013) found that the flow rate in the false lumen
correlated with the size and location of the primary entry tear, while
Shang et al. (2015) observed a significant link between elevated
TAWSS and aneurysmal dilation.

4.3 Limitations

Obviously, the studies included a limited number of patients,
with a total of 1,047 subjects across 26 studies, the largest of which
involved 295 subjects (Bappoo et al., 2021). Notably, 80% of the
studies had fewer than 50 patients. Additionally, due to ethical
concerns, it is difficult to track the severe progression of aortic
aneurysms or dissections, which results in smaller patient cohorts
for these conditions, making it harder to fully understand the role of
hemodynamics. As an example, we can refer to the noninvasive
fractional flow reserve, a hemodynamic indicator that has been used
clinically to diagnose coronary stenosis. Prospective studies on this
indicator, like the DISCOVER-FLOW study (Koo et al., 2011) and
the DeFACTO study (Nakazato et al., 2013), involved over
100 patients and more than 400 vessels. However, given that the
aorta is far more complex than the coronary arteries, larger patient
cohorts will be necessary to establish a clear relationship between
hemodynamics and disease progression in aortic conditions.
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Additionally, many studies did not provide comprehensive
descriptions of the parameters used in their CFD models, as
summarized in Supplementary Tables S1, S2. Only five studies
fully detailed their settings (Cheng et al., 2013; Qiu et al., 2019;
Joly et al., 2020; Ramaekers et al., 2024; Rezaeitaleshmahalleh et al.,
2024). Although this does not necessarily undermine the reliability
of these studies, it does limit the applicability of their findings to
other cohorts.

Moreover, patient-specific boundary conditions were seldom
used, with only six studies employing clinically measured inlet flow
waveforms. Although the use of empirical boundary conditions may
compromise the accuracy of CFD models in reflecting true aortic
hemodynamics, such simplifications can still be acceptable if they do
not affect disease stratification, as demonstrated in studies on
intracranial aneurysms (Li et al., 2020).

Finally, advanced modelling techniques were rarely employed in
these large sample studies, likely due to the challenges of
implementation and the substantial computational time required.
For instance, most studies assumed a rigid, no-slip vessel wall, with
only one study using a compliant wall for FSI simulations (Teng
et al., 2022). However, rigid wall models fail to capture certain
clinical features such as dynamic obstruction caused by intimal flap
motion in aortic dissection (Kim et al., 2023). This highlights the
need for further development and application of advanced
modelling approaches in diverse clinical scenarios, focusing on
reducing implementation complexity and improving overall
performance.

5 Future directions

Despite the challenges associated with CFD modelling, such as
complex computational processes and high computational
demands, it shows considerable promise in the clinical
management of cardiovascular diseases. However, significant
uncertainties remain in accurately predicting the hemodynamics
in aortic aneurysms and dissections. While existing studies have
provided guidance on parameter settings for specific stages of CFD
modelling, these insights remain insufficient for the full modelling
process. Future research should focus on assessing the impact of
different parameter settings on risk stratification through large-scale
studies and provide well-founded recommendations.

Several large sample studies have demonstrated consistent associations
between hemodynamics and aortic diseases, highlighting the potential of
CFD-based hemodynamic analysis in clinical management. However,
these studies are often constrained by limited sample sizes and insufficient
detail on CFD parameters, such as turbulence model and convergence
criteria. To address these limitations, future research should prioritize
expanding cohort sizes and establishing standardized reporting protocols
for computational modelling details.

This review outlines the workflow in CFD modelling for aortic
hemodynamics and highlights recent advancements in the field. It
also examines large sample studies to explore the relationship
between hemodynamic features and aortic aneurysms and
dissections. Our hope is to contribute to advancing the clinical
application of CFD-based hemodynamic analysis in the
management of these conditions.
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Glossary
CFD computational fluid dynamics

TBAD type B aortic dissection

DSA digital subtraction angiography

CECT contrast-enhanced computed tomography

CTA computed tomography angiography

MRI magnetic resonance imaging

MRA magnetic resonance angiography

3DRA 3D rotational angiography

IA intracranial aneurysm

FSI fluid-structure interaction

Re Reynolds number

α Womersley number

Rê peak Reynolds number

DNS direct numerical simulation

LES large eddy simulation

SST shear stress transport

WSS wall shear stress

OSI oscillatory shear index

GON gradient oscillatory number

RRT relative residence time

TAWSS time-averaged wall shear stress

transWSS transverse wall shear stress

AAA abdominal aortic aneurysm

ECAP endothelial cell activation potential

ILT intraluminal thrombus

TAAD type A aortic dissection

LNH local normalized helicity

CFI cross-flow index
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